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Summary
Alcohol-related liver disease (ARLD) is a primary cause of chronic liver disease in the United States.
Despite advances in the diagnosis and management of ARLD, it remains a major public health
problem associated with significant morbidity and mortality, emphasising the need to adopt novel
approaches to the study of ARLD and its complications. Epigenetic changes are increasingly being
recognised as contributing to the pathogenesis of multiple disease states. Harnessing the power of
innovative technologies for the study of epigenetics (e.g., next-generation sequencing, DNA
methylation assays, histone modification profiling and computational techniques like machine
learning) has resulted in a seismic shift in our understanding of the pathophysiology of ARLD.
Knowledge of these techniques and advances is of paramount importance for the practicing hep-
atologist and researchers alike. Accordingly, in this review article we will summarise the current
knowledge about alcohol-induced epigenetic alterations in the context of ARLD, including but not
limited to, DNA hyper/hypo methylation, histone modifications, changes in non-coding RNA, 3D
chromatin architecture and enhancer-promoter interactions. Additionally, we will discuss the state-
of-the-art techniques used in the study of ARLD (e.g. single-cell sequencing). We will also highlight
the epigenetic regulation of chemokines and their proinflammatory role in the context of ARLD.
Lastly, we will examine the clinical applications of epigenetics in the diagnosis and management of
ARLD.
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Introduction
Alcohol consumption is a leading cause of pre-
ventable death and is responsible for roughly 3.3
million deaths annually (5.9% of all deaths).1

Alcohol-related liver disease (ARLD) is one of the
most prevalent forms of liver disease in the world.
ARLD represents a spectrum of disorders that en-
compasses alcohol-related fatty liver, alcohol-
related hepatitis (AH)/steatohepatitis (ASH),
alcohol-related cirrhosis and hepatocellular carci-
noma (HCC). The natural history and pathophysi-
ology of ARLD are complicated. The vast majority of
chronic alcohol users develop alcohol-related fatty
liver, but only a minority progress to alcohol-
related cirrhosis or HCC.2 Genetic and epigenetic
factors, at least in part, determine disease onset
and progression. For example, genome-wide asso-
ciation studies revealed multiple genes that were
linked to the risk and severity of ARLD (e.g. PNPLA3,
TM6SF2, MBOAT7, HSD17B13).3–14

The management of ARLD is determined by the
extent of the disease. Abstinence, nutritional sup-
port, and screening for associated complications
(e.g., HCC) represent the foundation of ARLD
management.2,15–17 Agents like the tumour necro-
sis factor (TNF)-a inhibitors infliximab and eta-
nercept have been used to treat AH based on their
anti-inflammatory properties, but results have
been disappointing.18,19 Currently no agents are
available that truly alter the outcome of advanced
ARLD. Accordingly, liver transplantation is the only
long-term management solution. Notably, ARLD
accounted for 28% of all patients on the liver
transplant waiting list in the US between 2006 and
2014.20

The scarcity of available organs, the risk of
relapse following transplantation, and the ‘self-
inflicted’ and ‘moral failing’ view of ARLD raise
numerous ethical questions, with the main ques-
tion being ‘Is it fair to give patients with ARLD such
a limited resource?’. Studies have shown that the
majority of patients transplanted for ARLD have
good outcomes with relatively low rates of relapse
when proper selection criteria are applied (e.g.
abstinence for >6 months, presence of appropriate
social support.etc).21,22

Given the significant burden associated with
ARLD and limited treatment options, viewing ARLD
through the lens of epigenetics is of paramount
importance, particularly in the era of individualised
and precision medicine. Understanding the intri-
cate mechanisms that orchestrate the maintenance
and reprogramming of the genetic code of the
constituent cells of the liver in health and disease
provides an unrivalled opportunity to prevent,
better diagnose (e.g. liquid biopsies),23–26 and
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Key points

� The definition of epigenetics has evolved over time. Currently it refers
to “the study of molecules and mechanisms that can perpetuate
alternative gene activity states in the context of the same DNA
sequence”

� The epigenetic machinery controls gene expression by modulating
chromatin confirmation, high order chromatin 3D structure, and the
interaction between genes and the transcriptional apparatus.

� Epigenetic dysregulation is central to the pathophysiology of ARLD.

� Advances in the study of epigenetics and single-cell epigenome tech-
nique and their implications in health and disease have paved the way
for novel diagnostic modalities (liquid biopsy) and therapeutic options
(epidrugs).

� Selective bromodomain inhibitors are a novel class of molecules with
therapeutic potential in a wide range of liver diseases.
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potentially reverse the deleterious effects of alcohol (e.g.
epidrugs).27,28

Herein, we will cover the basic epigenetic mechanisms while
highlighting relevant examples from the realm of ARLD when
applicable. Additionally, we will discuss the chromatic structure
and enhancer-promoter (E-P) interactions and their role in ARLD.
We will conclude by summarising the clinical applications of
epigenetics in the field of ARLD.

Epigenetics: the writers, the readers, and the erasers
The definition of epigenetics has evolved over time, in keeping
with our deepening understanding of cell fate, pluripotency, and
plasticity. Originally, the term epigenetics referred to the process
by which the genotype brings the phenotype into being.
Currently, it refers to ‘the study of molecules and mechanisms
that can perpetuate alternative gene activity states in the context
of the same DNA sequence.’29 The major epigenetic mechanisms
include DNA methylation, post-translational modification of
histones (methylation and acetylation of lysine and arginine,
phosphorylation of serine and threonine, ubiquitination, and
SUMOylation of lysine), ADP-ribosylation, histone replacement,
and non-coding RNAs. Traditionally, epigenetic modifiers are
classified into 3 groups: the writers, the readers, and the erasers.
An in-depth description of the epigenetic machinery is outside
the scope of this article. We refer the reader to the following
recent publications for more details.29–33 We also encourage the
reader to refer to Fig. 1.
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DNA methylation, histone modifications and non-
coding RNA in ARLD
DNA methylation
DNA methylation is one of the better-described epigenetic
modifications. Methylation occurs mostly at the 5th carbon of
cytosine within CpG dinucleotide-rich islands that predomi-
nantly occupy the 50 promoter region of genes. S-Adenosyl-L-
methionine is the methyl group donor. The deposition, removal,
and maintenance of methyl groups is a dynamic process that is
mediated by a group of enzymes of 2 broad types: DNA
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methyltransferases (DNMTs) and DNA demethylases.33 Methyl-
ated CpG islands act as binding sites for repressive proteins with
a methyl-binding domain (e.g. methyl-CpG binding protein 2
[MECP2]).34 DNA methylation can be altered in response to
alcohol consumption via different mechanisms, namely, direct
inhibition of DNMTs, distortion of the 1-carbon metabolism cycle
via changes in the intracellular redox balance, or limited dietary
intake of folic acid (methyl donor).35 Differential methylation of
specific CpG dinucleotides in patients with ARLD and non-
alcohol-related fatty liver disease (NAFLD) has been well
described.36,37

Alcohol-related steatosis and steatohepatitis and DNA methylation
Increased levels of DNA methylationwere shown to be present in
patients with alcohol-related disease by Bonsch et al. more than
a decade ago.38 In the subsequent years, numerous studies have
linked DNA methylation and the development of ASH.39–43 More
recently, a study uncovered a new axis consisting of FKBP5-YAP-
TEAD1-CXCL1 connecting ethanol consumption and the devel-
opment of steatohepatitis.44 FK506-binding protein 5 (FKBP5) is
a cochaperone protein that is involved in stress-related disor-
ders.45 FKBP5 expression was shown to be upregulated in pa-
tients with ARLD and in ethanol-fed mice. When compared with
Fkbp5 knockout mice, wild-type mice had higher expression of
FKBP5 after eating ethanol-containing chow. Ethanol feeding
also led to neutrophilic infiltration of the liver, which is a his-
tologic hallmark of AH.46–48 Intriguingly, this effect was attenu-
ated in Fkbp5 knockout mice. In patients with ARLD, the
promoter of FKBP5was hypomethylated. By interacting with Yes-
associated protein (YAP) and TEA domain transcription factor 1
(TEAD1), FKBP5 increases the expression of the inflammatory C-
X-C motif chemokine ligand (CXCL)1. This axis consisting of
FKBP5-YAP-TEAD1-CXCL1 may provide new targets for future
treatments.44

Liver fibrosis, ARLD and DNA methylation
Fibrosis is a common end pathway of many liver disease pro-
cesses including ARLD.43,49–51 In a healthy liver, hepatic stellate
cells (HSCs) are quiescent perisinusoidal cells, but in response to
hepatic damage, HSCs undergo transdifferentiation into extra-
cellular matrix-depositing myofibroblasts.50,51 HSC trans-
differentiation is mediated in part by DNA methylation.50,52

In support of this finding, treatment of HSCs with the DNMT
inhibitor azacitidine prevented HSC transdifferentiation in mu-
rine models.53 Peroxisome proliferator activated receptor-c
(PPARG) is one of many genes that is differentially methylated
during the process of HSC transdifferentiation. MECP2 promotes
the methylation and repression of PPARG and inhibition of
MECP2 was associated with reduced fibrosis in murine
models.54,55 Likewise, the histone methyltransferase G9a activity,
alongside DNMT1, was linked to the fibrogenic activation of HSCs
in patients with chronic liver injury including those with ARLD.56

Intriguingly, the use of the novel dual G9a/DNMT1 inhibitor
CM272 reduced the burden of fibrosis in mouse models.56

In patients with either alcohol or non-alcohol-related liver
disease, the same differential methylation pattern at the PPARG
promoter was detectable in the pool of cell-free DNA. Moreover,
the levels correlated with the degree of hepatic fibrosis.57

Interestingly, the negative effects of toxins, including alcohol,
can influence subsequent generations, a phenomenon known as
transgenerational epigenetic inheritance.58,59 Against this
JHEP Reports 2022
background, the offspring of rats with carbon tetrachloride–
induced hepatic fibrosis demonstrated upregulation of PPARc
as an adaptive protective mechanism. These effects are believed
to be mediated through DNA methylation and histone acetyla-
tion in the paternal sperm.60
Post-translational histone modification
Histone methylation and acetylation have been studied exten-
sively as markers of chromatin expression states.61–63 Post-
translational modification of histones affects DNA expression
via 2 pathways: i) by changing the charge of histone proteins via
acetylation, thus loosening the binding to nucleosomal DNA and
leading to increased expression; and ii) by post-translational
modifications acting as homing signals for proteins that can
alter DNA expression.

Histone acetylation
Histone acetylation and deacetylation are catalysed by the en-
zymes histone acetyltransferase and histone deacetylase (HDAC),
respectively.32,64 Unlike histone methylation, histone acetylation
is linked to transcriptional activation by promoting a less-taut 3D
configuration of DNA or by acting as a signal for reader proteins
(e.g., bromodomain [BRD]-containing proteins).32

Ethanol is known to affect hepatocyte nuclear histone acet-
ylation status in a time-and concentration-dependent
manner.65–67 For example, the expression of class I alcohol de-
hydrogenase (ADH1) – a key enzyme in the metabolism of
alcohol – was upregulated in response to alcohol-containing
chow in rats. This upregulation was associated with increased
histone acetylation of the promoter region and coding region of
the ADH1 gene.66,68 Excessive alcohol use can lead to hepatic
steatosis. Interestingly, binge alcohol treatment affected meta-
bolic pathways controlling lipogenesis and fatty acid b-oxidation
by deregulation of various HDACs.69 Similarly, increased histone
acetylation of the promoter region of PNPLA3 (patatin like
phospholipase domain containing 3) was demonstrated in
response to alcohol treatment in mouse models.70 Sterol regu-
latory element-binding proteins (SREBPs) play a central role in
cholesterol and lipid metabolism and dysregulation of SREBPs is
associated with hepatic steatosis.71 Interestingly, SREBP-1 activ-
ity is augmented in response to alcohol treatment via increased
histone acetylation.72 This effect was abolished following treat-
ment with resveratrol, a potent sirtuin (SIRT)1 agonist.72 Along
the same line, overexpression of SIRT2 mediated deacetylation of
CCAAT/enhancer binding protein-b, which prevented alcohol-
induced liver injury.73 Likewise, repression of carnitine
palmitoyltransferase-1 gene expression via the action of HDAC1
explains the mechanism that underpins the ethanol-mediated
decrease in carnitine palmitoyltransferase-1 expression and
alcohol-related steatosis. This effect was ameliorated following
treatment with the HDAC1 inhibitor tributyrin.74

Alcohol promotes inflammation.75,76 In ARLD, alcohol erodes
gut endothelial integrity, which leads to increased translocation
of lipopolysaccharide (LPS) into the portal circulation.48 Ethanol
and its end product acetate directly affect macrophages’
response to LPS.77,78 Macrophages cultured in methanol-
containing medium, exhibited enhanced expression of inter-
leukin (IL)-6, IL-8, and TNF-a after LPS stimulation.77,78 Promoter
sites of proinflammatory genes in alcohol-treated macrophages
exhibited increased acetylation which can be attributed to
3vol. 4 j 100466
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reduced HDAC activity. This effect was prevented by inhibiting
the metabolism of ethanol into acetate.77 Curiously, the use of
the SIRT1 inhibitor sirtinol augmented TNF-a release from LPS-
treated macrophages.78

Histone methylation
Histone methylation and demethylation at lysine and arginine
residues of histones H3 and H4 are mediated by histone meth-
yltransferase and lysine demethylase, respectively. Lysine and
arginine can be monomethylated or dimethylated, and lysine can
be trimethylated. The influence of lysine methylation on DNA
expression is complex and depends on the lysine residue
methylated.79 Generally, methylation events occurring at some
locations (e.g., H3K4, H3K36, and H3K79) lead to transcriptional
activation, whereas methylation at H3K9, H3K27, and H4K20 is
linked to transcriptional repression.80 In the context of ARLD,
multiple studies showed altered histone methylation in rat he-
patocytes after ethanol treatment, with increased H3K4 dime-
thylation and decreased H3K9 dimethylation in one study.81

Notably, the changes observed in the histone methylation sta-
tus were dependent on the mode of alcohol exposure, namely,
acute binge model vs. chronic model.82 Other studies investi-
gated the role of histone methylation in AH and fibrosis. For
example, LPS leads to increased methylation of the TNF promoter
region. This effect was abrogated by S-adenosyl L-methionine
treatment.83 Regarding fibrosis, a direct effect of ethanol was
seen on HSCs. When cultured in ethanol-containing media,
JHEP Reports 2022
primary rat HSCs demonstrated increased expression of extra-
cellular matrix-associated genes, including type I/III collagen,
elastin, and tissue inhibitor of metalloproteinases.37 MLL1
(KMT2A) and H3k4 methylation were enriched at the elastin
gene in alcohol-treated HSCs.37

Non-coding RNA
Non-coding RNA refers to a wide range of RNA molecules of
varying lengths and functions (Fig. 2). We will focus on the role
of microRNA (miRNA) and long non-coding RNA (lncRNA) in the
pathogenesis of ARLD.

MicroRNA and ARLD
Alcohol promotes inflammation, steatosis, and subsequently
fibrosis by regulating multiple miRNAs.84–91 In alcohol-fed mu-
rine models, miR-132 and miR-155 levels were upregulated in
Kupffer cells.92 MiR-155 enhances the proinflammatory effects of
alcohol on Kupffer cells.93 Overexpression of miR-217 worsens
ASH through SIRT1 inhibition. Targeting miR- 217 using miRI-
DIAN hairpin inhibitor ameliorated these effects.94 Multiple
miRNAs are downregulated in the pathogenesis of ARLD (e.g.,
miR-122, miR-148a, miR-708).95–97 miR-122 plays a protective
role against alcohol-mediated liver injury by reducing the level
of hypoxia inducible factor-1a (HIF1a). Little is known about the
regulation of miR-122 in ARLD.95 A recent study recognised the
transcriptional regulator (GRHL2) to be responsible for the
downregulation of miR-122 and subsequent increase in HIF1a in
4vol. 4 j 100466
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106
murine alcohol disease models.95 Similarly, miR-148a protects
against inflammasome activation and pyroptosis via thioredoxin-
interacting protein inhibition. Forkhead box O1 and hepatocyte
nuclear factor 4a (HNF4a) have recently been described as novel
transcriptional regulators of miR-148a in the context of
ARLD.96,98 miR-148a has also been shown to regulate the
expression of multiple enzymes essential for the metabolism of
various substances including alcohol (e.g., cytochrome P450 and
alcohol dehydrogenase 4.98,99 Also, miR-708 is suggested to
inhibit hepatic inflammation and steatosis through its effect on
ZEB1.97

lncRNA and ARLD
Not much is known about the contribution of lncRNA in the
context of ARLD. Multiple studies have linked lncRNA to the
development of ARLD and progression to HCC. Dou et al.100

analysed the effect of alcohol on lncRNA expression profiles in
a murine ARLD model. In total, 29 lncRNAs were identified, 17 of
which were downregulated. Pathway analysis of the top 5
downregulated lncRNAs (mou_lnc_0610005C13Rik,
mou_lnc_1700023H06Rik, mou _ lnc _ Gm12265, mou _ lnc _
AW495222(39,807), and mou_lnc_Gm45724) showed an asso-
ciation with alcohol-induced hepatic oxidative damage and
cellular inflammation. Furthermore, 5 regulatory networks were
constructed to provide a deeper understanding of the mecha-
nism of action of these lncRNAs in ARLD, but validation studies
are awaited.100 Also, through its interaction with SIRT1, the
lncRNA MALAT1 (metastasis-associated lung adenocarcinoma
transcript 1) has been shown to propagate fibrosis and
active enhancers (State 13 and 14).” (From Terranova et al. ).
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inflammation. During liver injury, lnc-MALAT1 is overexpressed.
Lnc-MALAT1 binds SIRT1, leading to its inactivation, which sub-
sequently activates HSCs and results in extracellular matrix
deposition and fibrosis.101
Advances in the study of epigenetics in ARLD
Recent advances in the technologies utilised in the study of
epigenetics improved our appreciation of the epigenetic land-
scape during health and disease. In the next section we will
describe current (chromatin confirmation capture assays) and
more advanced (single-cell epigenome assays) technologies used
in the study of ARLD.

3D genome structure, E-P interactions, and epigenetic gene
regulation in ARLD
Technologies that study the interactions between genetic loci in
3D chromatin configuration reshaped our thinking of the role
epigenetics plays in certain disease states (Fig. 3).33,102–104

Chromatin state annotation was developed by analysing chro-
matin modification patterns and has been a powerful tool in the
discovery of regulatory patterns.105 ChromHMM – a java-based
programme that uses multivariate Hidden Markov Mode – can
recognise abnormal chromatin states and their correlations to
biological functions from a large scale functional database, and
can enable visualisation of the whole genome.105 Fig. 4 is an
example of the application of ChromHMM.106

Chromosome conformation capture assays and E-P interactions
Original chromosome conformation capture (3C) studies estab-
lished the existence of E-P contacts.104 Chromosome capture
JHEP Reports 2022
followed by high-throughput sequencing (Hi-C) data showed the
enhancer and associated promoter interaction within the
boundaries of a tissue topologically associating domain (TAD).107

DNA sequences within a TAD can physically interact with each
other more frequently than with sequences outside the TAD.
TNF-a and LPS are the 2 main upstream regulators in the course
of ARLD. There are a few studies on the effects of TNF-a and LPS
on E-P interactions. In fact, our study showed that pre-existing
loops within a TAD can affect TNF-a-dependent transcriptional
regulation in ARLD for the first time.120,154 Along the same lines,
the human genes C-C motif chemokine ligand 2 (CCL2) and CXCLs
responded to TNF-a signalling in ARLD and in Hi-C experiments
designed to study dynamic chromatin interactions in primary
human fibroblasts (IMR-90); the chemokine genes were ar-
ranged collinearly within the CCL2 or CXCL gene clusters, which
reflected their relative spatial-temporal expression pat-
terns.108–110 The genes appear to rely on long-range enhancer
and promoter DNA contacts. Unexpectedly, 3C, chromosome
conformation capture-on-chip (4C), and Hi-C studies showed
that TNF-a-responsive enhancers are prelooped with their target
promoters before signalling. Such pre-existing chromatin loop-
ing, which also exists in other cell types with different extra-
cellular signalling, is a strong indicator of gene induction (Fig. 5).
These observations suggest that the 3D chromatin landscape is
stable and can influence the selection or activation of target
genes by a ubiquitous transcriptional activator in a cell-specific
manner, with the spatiotemporal deposition of active histone
modifications.108–111 The systematic mapping of chromatin loops
by high-resolution Hi-C helps us to understand loop formation
dynamics. Studies show that about a billion Hi-C ligation junc-
tions are found per cell type, and up to 10,000 long-range
6vol. 4 j 100466



contacts or loops were called per cell line.112 Approximately 30%
of the loops involved genes. Applying modified chromatin
interaction analysis with a paired-end tag sequencing protocol
and Hi-C also demonstrated that regulatory chromatin loops
involve CCCTC-binding factor (CTCF). Cohesin, a chromosome-
associated multi-subunit protein complex is critical and highly
associated with looped enhancers (Fig. 5).113

3D epigenomics and ARLD
Research into 3D gene regulation has greatly improved in the
past few decades.114 One of the earliest topological analyses was
a 3C study demonstrating that a variant destabilised an E-P loop
with the OCA2 gene and caused its downregulation.115 Recently,
researchers have also established defined physiologic responses
that lead to dynamic activation of pre-existing E-P interactions
and the formation of new E-P loops in liver samples in response
to physiologic stimuli (e.g., diet).116 For example, response to a fat
rich diet was mediated largely by activation of preformed E-P
loops interacting with nuclear receptors including HNF4a.116

Peculiarly, studies on the 3D epigenome and transcriptome in
AH are scarce. However, regulation of HNF4a E-P interactions
through looping might be of relevance in ARLD. Analysis of RNA-
sequencing of hepatic samples from patients with AH linked the
development of AH to dysfunction of liver-enriched transcription
factors with HNF4a being one of the most dysregulated.117 Two
promoter-driven, HNF4a-spliced isoforms in hepatocytes have
been studied in detail using multiple epigenetic approaches such
as whole-genome DNA methylome analysis, chromatin
immunoprecipitation-sequencing (ChIP-seq) of histone markers,
and single-nucleotide variation analysis. These studies show that
AH livers underwent major alterations in DNA methylation pat-
terns that resulted in chromatin remodelling.117 For instance,
HNF4a has 12 isoforms, which are expressed under the control of
2 promoters and result from alternative splicing. These isoforms
can be categorised into 2 types; the adult isoforms, HNF4a-P1,
and the foetal isoforms, HNF4a-P2, which are driven by a �45-kb
upstream alternative promoter. The relevance of the P2 isoforms
in adult human liver disease is not clear. The authors117 found
that HNF4a-P1 mRNA was unchanged in AH, but expression of
the HNF4a-P2 isoforms was significantly increased in livers from
patients with AH. They117 showed that the expression of the
lncRNA HNF4A-AS1, which uses the same P1 promoter region of
HNF4a, was decreased in patients with AH. The function of this
antisense lncRNA was not previously known and seemed to be
related to HNF4a regulation and cell differentiation and possibly
HNF4a E-P looping.118 Thus, targeting epigenetic drivers that
modulate HNF4a-dependent gene expression could be beneficial
in patients with AH.117

Another facet of epigenomic regulation in ARLD is the role of
super-enhancers. Super-enhancers is a term that denotes ‘groups
of putative enhancers in close genomic proximity with unusually
high levels of Mediator binding, as measured by ChIP-seq’.119 Our
group and others demonstrated activation of cytokine pathways
and chemokine production in AH.120,121 Our initial tran-
scriptomic study showed remarkable changes in the tran-
scriptome and epigenome of AH cirrhotic livers, which were also
accompanied by the upregulation of several CXCL chemokines.
By using 3C, 4C, and analysis of histone markers such as
H3K27ac, H3K4m1, H3K4m3, along with NF-jB ChIP-seq, our
group also identified the existence of a super-enhancer govern-
ing CXCL chemokines that is located upstream of the CXCL locus
in liver cells (Fig. 5). Similarly, we identified H3K27ac enrichment
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on the promoter and super-enhancer of CXCL chemokines in
response to TNF-a stimulation in AH livers. Interestingly, phar-
macologic inhibition of NF-jB and bromodomain-containing
(BRD)4 binding can attenuate TNF-a-induced H3K27ac enrich-
ment and downregulate CXCL expression. These findings and the
favourable effects of suppressing the CXCL super-enhancer
highlight the significance of epigenetic regulation in AH and a
potential new treatment approach.120

Single-cell epigenome applications in ARLD
Traditionally, studies describing epigenetic changes and regula-
tors in the pathogenesis of human disease have been limited to
bulk assessment of tissues. Recently, one study combined single-
cell RNA-sequencing data from healthy livers and peripheral
immune cells to measure cell proportions in early AH, severe AH,
HCV, HCV with cirrhosis, and NAFLD;122 these analyses showed
that patients with severe AH had the greatest change in cell
composition. In addition, this study also identified a new group
of inflammatory macrophages that is increased in patients with
HCV. Network and signalling analysis also found that these
changes are highly correlated with liver function tests. This ev-
idence proved that only single-cell RNA-sequencing technology
can provide this kind of statistical power in clinical disease
studies.122 Although other techniques, such as assay for
transposase-accessible chromatin (ATAC)-sequencing, can pro-
vide more useful information about the overall chromatic
accessibility state, they are limited by tissue and disease het-
erogeneity.123 Liver tissue heterogeneity is being increasingly
appreciated thanks to new state-of-the-art technologies that
allow disease conditions to be discerned at the single-cell level.
Similarly, the pathologic process of ARLD includes injury not only
to hepatocytes but also to HSCs, Kupffer cells, liver sinusoidal
endothelial cells, and others.120,124,125 Until recently, few tech-
nologies were available that enabled the determination of epi-
genomic changes in individual cell types. Single-cell technologies
are now available such as RNA-sequencing for the transcriptome,
ATAC-sequencing for chromatin-accessibility and potential epi-
genomic regulatory elements, and single-nucleus multiome that
combines RNA and ATAC-sequencing data from individual nuclei.
These technologies may also help explain differences in pre-
sentation and outcome in patients at different points on the
ARLD spectrum.126–128

Response to injury and fate of various cell lineages are
determined in part by sequence-specific transcription factors
interacting with cis-regulatory elements in a cell- and tissue-
dependent manner. This is a guiding principle to understand-
ing heterogeneity in normal and diseased tissue. Single-cell ATAC
and DNase (DNase I–hypersensitive sites) sequencing leverage
the hypersensitivity of cis-regulatory elements to transposases
and nucleases in poised-to-act or active states and can be used to
generate genome-wide regulome maps.129 Some other nuanced
and less-widely used technologies such as single-cell trans-
posome hypersensitive site sequencing, or studying individual
cells using cells isolated via microfluidic devices or nanowell
arrays, are also now available for the study of chromatin
landscapes.130–132

As noted earlier, dysregulation of master transcription factors
such as HNF4a is well described.117 Furthermore, an altered im-
mune response in ARLD has been shown to have an epigenetic
reprogramming function.133,134 Transcription factors from the
ETS, CCAAT/enhancer binding protein, and interferon-regulatory
factor 1 families have been implicated in these changes.134
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Similarly, endothelial GATA4 has been shown to control liver
fibrosis and regeneration by preventing a pathogenic switch in
angiocrine signalling.135 These cis-regulatory elements then lead
to tissue-specific alterations in the transcriptome. Thus, identi-
fying the role of one or a group of transcription factors in each
cell type will help to identify new therapeutic targets, monitor
responses, and provide insight into cell-cell interactions. Mean-
while, a lot of effort has also been put into the study of these
pioneer transcription factors in cis-regulatory elements and E-P
regulation, which are being recognised as druggable targets
against disease onset and progression,120,136,137 owing to their
activity in a cell-identity and state-dependent manner. Advances
in single-cell technologies will facilitate recognition of these
interactions on a genome-wide level and provide new epi-
genomic target regions for known and novel genes of interest.
Clinical implications of the study of epigenetics in
ARLD
The study of the epigenetics of ARLD has led to discoveries that
are now entering everyday clinical practice in the form of either
diagnostic tests or medications.

Epigenetics and the diagnosis of liver disease: Liquid biopsy
Liver biopsy remains the standard for the diagnosis and staging
of acute and chronic liver diseases. The search for reliable non-
invasive methods to diagnose and monitor disease progression
has always been at the forefront of medical research.25,88

Candidate serum biomarkers should fulfil certain criteria –
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they should be sensitive and specific and should correlate well
with tissue-based tests. Liquid biopsies can be broadly defined as
any body fluid-derived biomarker that can inform medical de-
cision-making.138 One example of liquid biopsy is miRNA and
lncRNA profiling. In a recent study, Eguchi et al.139 showed a
specific miRNA signature that was released from hepatocytes
during early ASH in a mouse model. Specifically, miRNAs Let7f,
miR-29a, and miR-340 were increased in ASH mice but not in
other chronic liver injury models. The same 3 miRNAs were
increased in the serum of patients with mild ARLD.139 Similarly,
global profiling of sera from patients with and without ARLD
showed a unique lncRNA signature. Further analysis identified
244 upregulated lncRNAs; lncRNAs AK128652 and AK054921
were significantly increased. To determine the prognostic value
of AK128652 and AK054921, 48 patients with alcohol-related
cirrhosis were followed up for 520 days, and these 2 lncRNAs
were linked to shortened survival.140

Detecting and staging the degree of hepatic fibrosis is
essential for practicing hepatologists. Given the invasive nature
of liver biopsy, many alternatives have been sought.141 As
mentioned previously, PPARG is methylated during the trans-
differentiation of HSCs into activated HSCs in the context of
hepatic fibrosis. DNA methylation of the PPARG promoter was
detected in cell-free DNA in patients with ARLD,142 and the level
correlated with progression to cirrhosis in ARLD and NAFLD.
Also, the hypermethylation of PPARGwas specific to liver fibrosis.
These findings are promising and may herald the development of
cost-effective blood-based liquid biomarkers for the assessment
of liver fibrosis.142
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Drugs targeting epigenetic regulation and ARLDs
Epigenetic drugs (epidrugs) are a group of compounds that
target perturbed epigenetic changes in different disease states.
The first class of epidrugs, DNMT inhibitors (e.g., azacitidine,
decitabine), were in use for many years before their epigenetic
mechanism of action was elucidated.27 Intriguingly, the list of
medications with previously unknown epigenetic modulatory
function is expanding, which has broadened their therapeutic
indications. A noteworthy example is the antiepileptic drug
valproic acid, which has been shown to have HDAC inhibitor
capabilities, with possible implications for the treatment of
HCC143 (Fig. 6). ARLD is a leading cause of HCC.144 The role of
environmental factors – including alcohol consumption – and
the epigenetic changes that promote the development of HCC
have been studied extensively.42,144,145 The role of epidrugs in the
management of liver disease is most established in the field of
HCC. This topic has been reviewed recently by Fernandez-
Barrena et al.28 The field of epidrugs for the treatment of ARLD
and NAFLD is not as developed.28 However, recent advances have
been made, particularly with the use of novel selective BRD in-
hibitors to counteract inflammation in ARLD. Chemokines are
small chemotactic molecules that promote inflammation. In
ARLD, CXCL chemokines facilitate neutrophil tissue infiltration
and are linked to poor clinical outcome.

Suppression of CXCLs mitigated alcohol-induced liver injury
in mouse models.146 The regulation and function of chemokines
in liver disease was reviewed thoroughly by Cao et al.146

As described previously, our group described the role of
super-enhancers in regulating inflammation in ARLD, particu-
larly upregulation of several CXCL chemokines.120 The bromo-
domain and extraterminal (BET) family comprises epigenetic
reader proteins. BET proteins are known to bind with super-
enhancers and modulate super-enhancers’ function in inflam-
matory conditions.111,147–150 BET proteins recognise the acetyl
group on tagged histone lysine residues through their BRD.
Four BET proteins have been described, one of which is germ
cell-specific (BRDT), with the other 3 being expressed ubiqui-
tously (BRD2, BRD3, and BRD4). Each BET protein contains 2
BRDs that are structurally homologous (BD1 and BD2). The role
of BET proteins in modulating the expression of inflammatory
mediators drew attention to their therapeutic potential, leading
to the design of multiple BET inhibitors (BETis). The original
BETi molecules targeted both BD1 and BD2 in a non-selective
manner.151,152 The lack of selectivity limited the development
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of medications owing to the pleiotropic effects exerted by these
inhibitors.153 Accordingly, the development of selective BD1
and BD2 BETis represents a turning point in our understanding
of the roles of BET proteins in health and disease states. In fact,
our group found suppression of CXCL expression in mice un-
dergoing alcohol binges/LPS injection using the novel selective
BD1 inhibitor, UMN627.120 UMN627 is a novel BD1-selective
inhibitor, with a 20-fold higher affinity for BRD4 BD1 over
BRD4 BD2.154,155 Treatment with UMN627 not only decreased
the expression of CXCL but also attenuated neutrophil infil-
tration.120 Another relevant example is the BRD2-selective BETi
GSK620 developed by Gilan et al.153 In NAFLD mouse models,
GSK620 resulted in reduced levels of steatosis, lobular inflam-
mation, and hepatocyte ballooning.153 Taken together, the
findings of our group120 and Gilan et al.153 may facilitate a new
era of therapeutic approaches for the treatment of liver disease.
In contrast, salvianolic acid A (SAA), a phenolic acid compound
found in Danshen (used in Chinese herbal medicine), is a non-
specific BRD4 inhibitor. In a recent study, SAA appeared to
protect against AH and fibrosis in mouse models.156 The effects
of SAA were mediated by the inhibition of BRD4 and the
translocation of its downstream inflammatory mediator, high-
mobility group box protein 1 (HMGB1), which is secreted pri-
marily by inflammatory cells. HMGB1 is believed to regulate
NF-kb via the modulation of Toll-like receptor (TLR)2, TLR4, and
TLR9, which subsequently culminates in the expression of in-
flammatory mediators such as IL-6 and TNF-a.156
Conclusion
In the past couple of decades, our understanding of epigenetics
and its molecular mechanisms has increased significantly. This
knowledge has added a new layer to our understanding of dis-
ease mechanisms, facilitated innovative diagnostic avenues and
capabilities, and, most intriguingly, paved the way for a new class
of medications (epidrugs). Despite all these advances, the field of
epigenetics and its clinical applications are still in their early
stages. For example, adverse reactions to epidrugs have emerged
because they have pleiotropic effects and off-target issues.
Furthermore, advances in single-cell epigenomics will allow for
recognition of these interactions on a genome-wide level and
provide new target regions for known and novel genes of in-
terest. A great deal remains to be determined, but the advances
made thus far are promising.
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