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Abstract

Background

An individual’s rate of aging directly influences his/her susceptibility to morbidity and mortal-

ity. Thus, quantifying aging and disentangling how various factors coalesce to produce

between-person differences in the rate of aging, have important implications for potential

interventions. We recently developed and validated a novel multi-system-based aging mea-

sure, Phenotypic Age (PhenoAge), which has been shown to capture mortality and morbid-

ity risk in the full US population and diverse subpopulations. The aim of this study was to

evaluate associations between PhenoAge and a comprehensive set of factors, including

genetic scores, childhood and adulthood circumstances, and health behaviors, to determine

the relative contributions of these factors to variance in this aging measure.

Methods and findings

Based on data from 2,339 adults (aged 51+ years, mean age 69.4 years, 56% female, and

93.9% non-Hispanic white) from the US Health and Retirement Study, we calculated Pheno-

Age and evaluated the multivariable associations for a comprehensive set of factors using 2

innovative approaches—Shapley value decomposition (the Shapley approach hereafter)

and hierarchical clustering. The Shapley approach revealed that together all 11 study

domains (4 childhood and adulthood circumstances domains, 5 polygenic score [PGS]

domains, and 1 behavior domain, and 1 demographic domain) accounted for 29.2% (boot-

strap standard error = 0.003) of variance in PhenoAge after adjustment for chronological

age. Behaviors exhibited the greatest contribution to PhenoAge (9.2%), closely followed by
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adulthood adversity, which was suggested to contribute 9.0% of the variance in PhenoAge.

Collectively, the PGSs contributed 3.8% of the variance in PhenoAge (after accounting for

chronological age). Next, using hierarchical clustering, we identified 6 distinct subpopula-

tions based on the 4 childhood and adulthood circumstances domains. Two of these sub-

populations stood out as disadvantaged, exhibiting significantly higher PhenoAges on

average. Finally, we observed a significant gene-by-environment interaction between a pre-

viously validated PGS for coronary artery disease and the seemingly most disadvantaged

subpopulation, suggesting a multiplicative effect of adverse life course circumstances cou-

pled with genetic risk on phenotypic aging. The main limitations of this study were the retro-

spective nature of self-reported circumstances, leading to possible recall biases, and the

unrepresentative racial/ethnic makeup of the population.

Conclusions

In a sample of US older adults, genetic, behavioral, and socioenvironmental circumstances

during childhood and adulthood account for about 30% of differences in phenotypic aging.

Our results also suggest that the detrimental effects of disadvantaged life course circum-

stances for health and aging may be further exacerbated among persons with genetic pre-

disposition to coronary artery disease. Finally, our finding that behaviors had the largest

contribution to PhenoAge highlights a potential policy target. Nevertheless, further validation

of these findings and identification of causal links are greatly needed.

Author summary

Why was this study done?

• Identifying factors that account for between-person differences in the rate of aging has

important implications for potential interventions.

• We recently developed and validated a novel multi-system-based aging measure, Pheno-

typic Age (PhenoAge), which has been shown to capture mortality and morbidity risk.

• The aim of this study was to evaluate associations of a comprehensive set of factors,

including genetics, behaviors, and childhood and adulthood circumstances, with Pheno-

Age, to determine their relative contributions to variance in this aging measure.

What did the researchers do and find?

• We classified 11 domains (4 childhood and adulthood circumstances domains, 5 poly-

genic score domains, 1 behavior domain, and 1 demographic domain) and estimated

that together they accounted for about 30% of variance in phenotypic aging.

• Behaviors exhibited the greatest contribution to variance in PhenoAge (9.2%), closely

followed by adulthood adversity (9%).

Genetics, behaviors, life course circumstances and phenotypic aging
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• We identified subpopulations of participants, represented by shared childhood and

adulthood circumstances, that exhibited either accelerated or decelerated phenotypic

aging.

• Genetic predisposition to coronary artery disease further exacerbated phenotypic aging

among those in the most disadvantaged subpopulation.

What do these findings mean?

• Behavioral factors and socioenvironmental circumstances have the largest influence

over levels of phenotypic aging. This is important given the modifiability of these fac-

tors, highlighting a potential policy target.

• Genetic predisposition may multiply the impact of socioenvironmental circumstances

in a super-additive synergistic manner, suggesting risk stratification that may inform

targeted intervention strategies.

Introduction

One major driver in the pathogenesis of many chronic diseases is presumed to be aging [1,2], a

complex multifactorial process characterized by increasing dysregulation and loss of function

across multiple levels and systems [3]. Thus, quantifying aging and disentangling how various

factors coalesce to produce between-person differences in the rate of aging have important

implications for potential interventions. We recently developed and validated a novel multi-

system-based aging measure, Phenotypic Age (PhenoAge), which has been shown to capture

mortality and morbidity risk in the full US population and diverse subpopulations, even

among healthy individuals [4,5]. PhenoAge is meant to capture age-related dysregulation and

can facilitate identification of individuals at risk for a number of chronic diseases or causes of

death. It can also be applied to basic and observational research, shedding light on genetic and

environmental factors that alter the pace of aging.

Genetic differences are hypothesized to contribute to differential vulnerability for aging

and disease, such that life span is estimated to be 20%–30% heritable [6], while twin studies

suggest that fatal coronary heart disease is about 40%–50% heritable [7–9]. Nevertheless, a

large proportion of the variance in age-related outcomes is presumed to be driven by environ-

ment. For instance, previous work has provided strong evidence that traumas and adversities

in childhood and adulthood influence the risk of various outcomes (e.g., disease and mortality)

in later life [10–13], presumably via an acceleration of the aging process [14–17]. The cumula-

tive “wear and tear” in response to chronic stressors or deprivation experienced over the life

course is thought to contribute to declines in physiological adaptation (i.e., allostatic load) that

manifest as vulnerability to disease and death [18,19]. “Wear and tear” is believed to account

for the observation that low socioeconomic status (SES) is often accompanied by increased

risk for long-term aging-related outcomes worldwide [14,16,20–30].

To capture a more complete picture of how various factors coalesce and in turn manifest as

health disparities, it is necessary to assemble a comprehensive set of life course circumstances

that can be examined concurrently. While various factors, including socioenvironmental

Genetics, behaviors, life course circumstances and phenotypic aging
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circumstances and genetics, influence health and aging, their relative contributions to aging

and disease risk are uncertain. The multitude of factors defining an individual’s specific life

course circumstances poses challenges for modeling the effects of individual variables and

cumulative effects. Variance in health (i.e., inequality) can be influenced by circumstances

throughout the life course; yet, there are variations in the level of control a person has over the

circumstances shown to contribute to health and aging inequalities. One key contribution of

the current research is to innovatively distinguish circumstances outside versus within the

realm of one’s control. Shapley value decomposition (the Shapley approach hereafter) facili-

tates estimation of the share of health inequality due to circumstances with varying degrees of

modifiability. By appropriately assigning contributions from sources of health inequality, the

Shapley approach estimates the overall and relative importance of these sources of inequality

(see details of statistical analyses in S1 Appendix). In doing so, this approach has the potential

to inform the priorities of public policies aimed at alleviating health inequality.

Using data from a large sample of US older adults, including a comprehensive set of factors

assessing childhood and adulthood circumstances, behaviors, and genetics, the present study

calculated PhenoAge and innovatively applied 2 approaches—the Shapley approach and hier-

archical clustering—to evaluate the associations between these various factors and PhenoAge.

The results will inform the development of preventive interventions to promote healthy aging

and reduce morbidity and mortality risk.

Methods

Data

The Health and Retirement Study (HRS) is an ongoing, nationally representative, biennial sur-

vey of older Americans (aged 51+ years) and their spouses, beginning in 1992 [31]. HRS is

funded by the National Institute on Aging and carried out by the University of Michigan. In

this study, we assembled a large array of variables from 4 components within HRS, including

the core survey (1996–2016), the newly released 2015 Life History Mail Survey (LHMS), the

Enhanced Face-To-Face (EFTF) interview (2006–2016), and the 2016 Venous Blood Study

(VBS). A description of the 4 data sources can be found in S1 Appendix and elsewhere [31].

After restricting the sample to persons who participated in each of these sub-studies, our final

analytic sample included 2,339 persons (Fig 1). Compared with persons who participated in

both the 2015 LHMS and 2016 VBS but were excluded in this analysis, our analytic sample

showed a similar sex ratio but was older (mean age 69.4 versus 68.3 years), more highly edu-

cated (mean number of years of school 13.9 versus 13.2 years), and more likely to be non-His-

panic white (93.9% versus 84.0%). Note that our analytic sample excluded participants who

did not self-identify as either non-Hispanic white or non-Hispanic black, given that polygenic

scores (PGSs) were only available for participants of European and/or African ancestry. As a

result, the analytic sample in this study is not nationally representative. HRS was approved by

the Institutional Review Board of the University of Michigan, and all participants provided

informed consent. Data used in this study are de-identified and publicly available (http://

hrsonline.isr.umich.edu).

Childhood and adulthood circumstances

Since no consensus has been reached regarding the selection and definitions of variables char-

acterizing childhood and adulthood circumstances, we considered a comprehensive set of fac-

tors suggested by existing literature to be associated with age-related health outcomes. All

questions and corresponding responses/descriptions are provided in S1 Table. In brief, we

defined 4 domains of childhood and adulthood circumstances: childhood SES, childhood

Genetics, behaviors, life course circumstances and phenotypic aging
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adversity, adulthood SES, and adulthood adversity (Fig 2). These circumstance domains were

also referred to as socioenvironmental circumstances. To enhance the clarity of our defini-

tions, a full list of terminology (e.g., domains, circumstances) used in this study is provided in

S1 Appendix.

Behaviors

We included 1 domain for behaviors in this study, involving obesity, smoking, alcohol con-

sumption, and physical activity. For obesity, we defined a variable called proportion of

experiencing obesity (proportion obesity, range 0–1) as the percentage of survey waves for

which a participant experienced a body mass index over 30 kg/m2. We used the most recent

response to define smoking since this behavior largely did not change and the recent response

would reflect a person’s recent health status. Three categories were defined for smoking: never

smoking, former smoking, and current smoking. More details can be found in S1 Table and

S1 Appendix.

Genetic factors

To further differentiate the effect of socioenvironmental circumstances on phenotypic aging

due to genetic predisposition (i.e., beyond one’s control), we included 5 domains for genetic

Fig 1. Flow chart of study participants. Genetic samples (saliva) were collected in the Enhanced Face-To-Face interview from 2006 to 2012.

https://doi.org/10.1371/journal.pmed.1002827.g001
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factors based on previously established PGSs: anthropometrics, disease/longevity, mental

health/personality, education/cognition, and smoking (details can be found in S1 Appendix).

The saliva samples for genotyping SNPs were collected in the EFTF interviews from 2006 to

2012, and details on the construction of these PGSs are provided elsewhere [32].

PhenoAge and phenotypic aging (PhenoAgeAccel)

PhenoAge was first developed and validated using independent waves from the National

Health and Nutrition Examination Survey [4]. In brief, PhenoAge was derived from chrono-

logical age and 9 biomarkers, which included albumin, creatinine, glucose, (log) C-reactive

protein, lymphocyte percent, mean cell volume, red cell distribution width, alkaline phospha-

tase, and white blood cell count. The score was calculated as a weighted (coefficients available

in our previous publication [4]) linear combination of these variables, which was then trans-

formed into units of years using 2 parametric (Gompertz distribution) proportional hazard

models—one for the linearly combined score for all 10 variables and another for chronological

Fig 2. Roadmap for evaluating the association of genetics, behaviors, and life course circumstances with PhenoAge. The roadmap depicts our analytical

procedures. We assembled analytic samples and a large array of variables from 4 components within HRS, including the core survey (1996–2016), the newly

released 2015 LHMS, the EFTF interview (2006–2016), and the 2016 VBS. We also restricted the sample to participants who were part of the genetic sample (i.e.,

had a saliva sample collected in the EFTF interview [2006–2012]), leaving a final analytic sample of 2,339 persons. We categorized a large array of variables across

the life course into 11 study domains, including 5 PGS domains (genetics), 2 childhood circumstances domains, 2 adulthood circumstances domains, 1 behavior

domain, and 1 demographic domain. The relation between study domains and individual variables can be found in S1 Appendix and S1 Table. We then performed

3 analyses to evaluate the association of these domains (particularly the childhood and adulthood circumstances domains) with PhenoAge. EFTF, Enhanced Face-

To-Face; HRS, Health and Retirement Study; LHMS, Life History Mail Survey; NHANES, National Health and Nutrition Examination Survey; PCA, principal

component analysis; VBS, Venous Blood Study.

https://doi.org/10.1371/journal.pmed.1002827.g002
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age. Thus, PhenoAge represents the expected age within the population that corresponds to a

person’s estimated hazard of mortality as a function of his/her biological profile [4,5].

Next, we calculated a measure, PhenoAge Acceleration (PhenoAgeAccel), defined as the

residual resulting from a linear model when regressing PhenoAge on chronological age. There-

fore, PhenoAgeAccel represents phenotypic aging after accounting for chronological age (i.e.,

whether a person’s biological profile is reflective of being older [positive value] or younger

[negative value] than expected based on his/her chronological age).

Statistical analyses

Fig 2 provides an overview of our analytical procedures; more complete details can be found in

S1 Appendix. Briefly, in the first step, to evaluate the overall and relative contributions of all

variables including childhood and adulthood circumstances, behaviors, and genetics to differ-

ences in PhenoAge after accounting for chronological age (which is essentially PhenoAgeAc-

cel), we used the Shapley approach with mean logarithmic deviation. Compared with other

decomposition methods, the Shapley approach has substantial advantages, such as being order

independent (i.e., the order of circumstances for decomposition does not influence the results)

and being able to sum components to produce the total value.

In the second step, to further evaluate the effect of childhood and adulthood circumstances

on PhenoAge, we used a series of analyses. First, we performed a principal component analysis

(PCA) for the 60 (mainly categorical) variables included in the 4 circumstance domains (child-

hood SES, childhood adversity, adulthood SES, and adulthood adversity). Second, we selected

the top 4 principal components, based on the proportional variance explained, and used them

as inputs in a hierarchical clustering analysis (HCA), in which we clustered participants into

distinct subpopulations/clusters. These subpopulations can be taken to represent groups of

participants with shared socioenvironmental circumstances. We then compared the PhenoAge

of the subpopulations after accounting for chronological age to determine whether some sub-

populations exhibited signs of accelerated aging. Finally, for every subpopulation/cluster, we

estimated participants’ cluster membership (a continuous measure ranging from −1 to 1),

which denotes how similar a participant’s profile is to the characteristics of the subpopulation/

cluster. For instance, having a score of 0.8 for cluster 1 and −0.6 for cluster 2 suggests an indi-

vidual is very similar to the profile represented by cluster 1, but not cluster 2. We then related

these cluster membership values to the circumstances measures to determine which character-

istics defined each subpopulation/cluster.

In the third step, we used multivariate models to examine the associations of PhenoAge

with the subpopulations, behaviors, and individual PGSs (determined by assessing the magni-

tude of their associations with PhenoAge), with adjustment for covariates such as chronologi-

cal age, sex, and ancestry (non-Hispanic white or non-Hispanic black). In these models, we

also examined gene-by-environment interactions, by testing whether the PGSs and subpopula-

tions, as well as behaviors, were related to PhenoAge in a multiplicative manner.

Results

The characteristics of the study population

As shown in Table 1, the average chronological age of the study population was 69.4 years

(standard deviation [SD] = 11.1). About 56% (n = 1,392) were female, and the majority were

non-Hispanic white (93.9%). There was a sizable proportion of participants reporting low

childhood SES, e.g., 23.1% reported being financially poor in childhood. The prevalence varied

for the 10 childhood traumatic events, from 0.8% (lived in orphanage) to 19.3% (parents

abused drugs or alcohol). As adults, about 12% of participants reported receiving food stamps,

Genetics, behaviors, life course circumstances and phenotypic aging
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16% were not satisfied with their current financial situation, and over 20% found it at least

somewhat difficult meeting payments on bills. The average education was 13.9 years

(SD = 2.8). In general, variations in exposure to adulthood adversity were also found. For

example, one-quarter reported having the experience of a spouse or child battling a life-threat-

ening illness, while less than 4% of participants reported ever firing a weapon in combat.

Obesity had a prevalence of about 30% over the entire study period. About 44% of partici-

pants were former smokers, and 8% were current smokers. Over 60% of participants con-

sumed alcohol, and on average participants drank 1.5 times per week, and averaged about 1

drink on those days. Engaging in vigorous and/or moderate physical activity was most com-

mon during young adulthood and subsequently deceased as participants aged. Finally, the

average level of PhenoAgeAccel was –0.38, with 927 participants having accelerated pheno-

typic aging (i.e., positive value) and 1,412 having decelerated phenotypic aging (i.e., negative

value). This suggests that our analytical sample is slightly healthier than the general HRS sam-

ple, given that PhenoAgeAccel was estimated in the full sample, and by definition had a mean

of 0.

Potential contributions to phenotypic aging

Fig 3 presents the results from the Shapley approach, depicting the proportions of the variance

explained by all 11 study domains. Collectively, the factors accounted for 29.2% (bootstrap

standard error [SE] = 0.003) of the variance in PhenoAgeAccel. Overall, behaviors had the

largest single contribution to PhenoAgeAccel (9.2%, bootstrap SE = 0.004). Among the 4 child-

hood and adulthood circumstances domains, adulthood adversity was the largest contributor

(9.0%, bootstrap SE = 0.003), while adulthood SES, childhood adversity, and childhood SES

accounted for 2.8% (bootstrap SE = 0.002), 2.1% (bootstrap SE = 0.003), and 0.7% (bootstrap

SE = 0.001), respectively. All 5 domains of PGSs contributed 3.8% of the variance in PhenoA-

geAccel, with the largest proportion coming from the PGS domain of mental health/personal-

ity (1.7%, bootstrap SE = 0.002), followed by anthropometric measures (1.1%, bootstrap

SE = 0.002), disease/longevity (0.5%, bootstrap SE = 0.001), education/cognition (0.2%, boot-

strap SE = 0.001), and smoking (0.2%, bootstrap SE = 0.001).

Profiles of childhood and adulthood circumstances and their relation to

phenotypic aging

Using input from 4 principal components derived using 60 variables, HCA was used to cluster

individuals into subpopulations. Overall, we identified 6 distinct subpopulations characterized

by shared childhood and adulthood circumstances (S1 Fig, top colored row). Those assigned

to the red subpopulation in Fig 4A are characterized by having lower levels of education, hav-

ing poor financial situations during childhood and adulthood, having lower educated parents,

and living in neighborhoods with severe physical disorder. Conversely, the green subpopula-

tion includes participants who were more likely to have higher adult SES, to have had moder-

ately higher childhood SES, and to live in neighborhoods with lower levels of physical

disorder. The turquoise subpopulation includes participants with the highest SES in childhood

and adulthood, but whose neighborhoods are slightly more disordered than those in the green

cluster. Those in the yellow subpopulation are mainly characterized by having higher levels of

chronic stress, while those in the orange subpopulation had low SES in childhood and higher

levels of childhood trauma. Finally, the blue subpopulation represents participants with mod-

erate SES in childhood, and much lower levels of chronic stress than other clusters. S2 Fig

shows the correlation among the 6 subpopulations. An inverse association was observed

between the green and red subpopulations—suggesting that participants assigned to them

Genetics, behaviors, life course circumstances and phenotypic aging
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Table 1. Characteristics of study population: Health and Retirement Study, n = 2,339.

Characteristic Mean (SD) or n
(%)

Demographics

Age, years 69.4 (11.1)

Sex

Male 957 (44.2%)

Female 1,392 (55.8%)

Race/ethnicity

Non-Hispanic white 2,039 (93.9%)

Non-Hispanic black 300 (6.1%)

Childhood circumstances

Childhood SES

Relocated due to financial difficulties 371 (15.5%)

Family received financial help 341 (14.2%)

Self-reported family poverty

Pretty well off financially 168 (8.2%)

About average 1,579 (68.7%)

Poor 592 (23.1%)

Parental education, years 11.9 (3.7)

Father lost jobs

No 1,730 (75.2%)

Yes 461 (19.7%)

Father never worked/always disabled 13 (0.5%)

Never lived with father/father was not alive 135 (4.6%)

Childhood adversity

Childhood traumas

Trouble with police 137 (6.5%)

Repeated school 322 (12.9%)

Physically abused 145 (6.2%)

Parents used drugs or alcohol 439 (19.3%)

Parents died 461 (17.5%)

Separated from mother 237 (9.2%)

Separated from father 474 (18.0%)

Lived in orphanage 22 (0.8%)

Lived in a foster home 27 (1.2%)

Parents separated or divorced 301 (11.8%)

Childhood health

Self-reported health

Excellent 1,324 (57.8%)

Very good 588 (25.4%)

Good 314 (12.5%)

Fair 90 (3.6%)

Poor 23 (0.7%)

Disabled for 6 months 93 (4.3%)

Head injury 248 (11.6%)

Adulthood circumstances

Adulthood SES

Education, years 13.9 (2.8)

(Continued)

Genetics, behaviors, life course circumstances and phenotypic aging
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Table 1. (Continued)

Characteristic Mean (SD) or n
(%)

Ever received Medicaid 219 (7.1%)

Ever received food stamps 325 (11.8%)

Proportion of experiencing unemployment, 0–1 0.03 (0.1)

Total wealth, dollars

Quintile 1 −5,438 (125,873)

Quintile 2 58,185 (24,665)

Quintile 3 151,192 (39,526)

Quintile 4 303,823 (75,819)

Quintile 5 1,153,861

(2,135,321)

Satisfaction with present financial situation

Completely satisfied 468 (19.8%)

Very satisfied 735 (32.6%)

Somewhat satisfied 719 (31.0%)

Not very satisfied 294 (11.8%)

Not at all satisfied 123 (4.8%)

Difficulties for meeting payments on bills

Not at all difficult 1,114 (48.3%)

Not very difficult 672 (30.3%)

Somewhat difficult 417 (16.4%)

Very difficult 104 (3.8%)

Completely difficult 32 (1.3%)

Adulthood adversity

Adulthood traumas

Experienced the death of a child 327 (11.8%)

Experienced a natural disaster 370 (16.1%)

Fired a weapon in combat 86 (3.8%)

Been a victim of a physical attack 152 (6.5%)

Ever had life-threatening illness 561 (23.3%)

Ever had a spouse or child with life-threatening illness 625 (24.8%)

Spouse, partner, or child ever been addicted to drugs or alcohol 441 (18.4%)

Neighborhood physical disorder, range 1 (first statement) to 7 (second statement)

There is no problem with vandalism and graffiti in this area/Vandalism and graffiti are

a big problem in this area

2.2 (1.8)

People feel safe walking alone in this area after dark/People would be afraid to walk

alone in this area after dark

2.4 (1.9)

This area is kept very clean/This area is always full of rubbish and litter 2.2 (1.7)

There are no vacant or deserted houses or storefronts in this area/There are many

vacant or deserted houses or storefronts in this area

2.4 (2.1)

Lifetime discrimination

Unfairly dismissed from a job 488 (21.8%)

Unfairly ever not been hired for a job 194 (8.8%)

Ever been unfairly denied a promotion 233 (10.3%)

Unfairly been prevented from moving into a neighborhood 49 (1.6%)

Ever been unfairly denied a bank loan 113 (4.5%)

Ever been unfairly treated by the police 133 (5.8%)

Chronic stressors

(Continued)
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Table 1. (Continued)

Characteristic Mean (SD) or n
(%)

Ongoing health problems (in yourself)

No, didn’t happen 709 (32.4%)

Yes, but not upsetting 759 (31.0%)

Yes, somewhat upsetting 685 (28.8%)

Yes, very upsetting 186 (7.8%)

Ongoing physical or emotional problems (in spouse or child)

No, didn’t happen 1276 (56.0%)

Yes, but not upsetting 374 (15.1%)

Yes, somewhat upsetting 510 (21.1%)

Yes, very upsetting 179 (7.7%)

Ongoing problems with alcohol or drug use in family member

No, didn’t happen 1894 (80.9%)

Yes, but not upsetting 142 (6.1%)

Yes, somewhat upsetting 209 (8.9%)

Yes, very upsetting 94 (4.1%)

Ongoing difficulties at work

No, didn’t happen 1951 (80.7%)

Yes, but not upsetting 219 (10.8%)

Yes, somewhat upsetting 142 (7.5%)

Yes, very upsetting 27 (1.2%)

Ongoing financial strain

No, didn’t happen 1392 (59.9%)

Yes, but not upsetting 484 (20.4%)

Yes, somewhat upsetting 362 (15.4%)

Yes, very upsetting 101 (4.3%)

Ongoing housing problems

No, didn’t happen 1968 (84.9%)

Yes, but not upsetting 223 (9.1%)

Yes, somewhat upsetting 118 (4.6%)

Yes, very upsetting 30 (1.4%)

Ongoing problems in a close relationship

No, didn’t happen 1779 (75.5%)

Yes, but not upsetting 279 (11.9%)

Yes, somewhat upsetting 224 (9.7%)

Yes, very upsetting 57 (2.7%)

Helping at least 1 sick, limited, or frail family member or friend on a regular basis

No, didn’t happen 1506 (63.9%)

Yes, but not upsetting 531 (22.9%)

Yes, somewhat upsetting 240 (10.6%)

Yes, very upsetting 62 (2.6%)

Life events

Involuntarily lost a job for reasons other than retirement 213 (11.1%)

Unemployed 210 (9.9%)

Anyone else in your household unemployed 261 (11.5%)

Moved to a worse residence or neighborhood 43 (2.5%)

Robbed or burglarized 135 (5.9%)

(Continued)
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have opposite life course circumstances. Similarly, the turquoise and orange subpopulations

appeared to have opposite circumstances, as did the yellow and blue subpopulations.

Bivariate differences in PhenoAgeAccel between the 6 subpopulations are presented in Fig

4B (see S3 Fig for a violin plot). Two of these subpopulations (i.e., red and yellow) stood out as

disadvantaged, exhibiting significantly higher PhenoAges on average. More specifically, partic-

ipants assigned to the red or yellow subpopulations were about 1.75 years older phenotypically

than expected based on their chronological ages. Conversely, advantaged subpopulations, such

as those in the green or turquoise subpopulations, had PhenoAges that were about 2 years

younger than expected, while those in the blue subpopulation were a little over 1 year younger

than expected.

Gene-by-environmental interactions

Because a PGS for coronary artery disease (CAD-PGS) (in the disease/longevity domain)

accounted for the highest proportion of variance in PhenoAge of all the PGSs (S4 Fig), we

tested for main effects and gene-by-environment interactions for CAD-PGS, the 6 environ-

mental clusters, and 2 important behavioral variables: smoking and obesity. Relative to the

green subpopulation, those in the red, yellow, and orange subpopulations had significantly

Table 1. (Continued)

Characteristic Mean (SD) or n
(%)

Major events

Ever been in a jail 68 (2.6%)

Ever been in a hospital 114 (4.5%)

Ever lived in a combat zone 118 (5.4%)

Ever lived in military housing 499 (21.2%)

Ever been homeless 47 (2.0%)

Behaviors

Proportion of experiencing obesity, 0–1 0.3 (0.5)

Smoking

Never smoking 1115 (47.3%)

Former smoking 1037 (44.4%)

Current smoking 187 (8.3%)

Alcohol consumption

Ever drinking 1377 (63.1%)

Drinking days per week 1.5 (2.7)

Number of drinks per drinking day 0.9 (1.8)

Activities

Vigorous activities age 18–29 years 734 (35.9%)

Vigorous activities age 30–39 years 591 (29.1%)

Vigorous activities age 40–49 years 539 (26.2%)

Moderate activities age 18–29 years 1,078 (49.3%)

Moderate activities age 30–39 years 1,015 (46.8%)

Moderate activities age 40–49 years 990 (45.1%)

Percentages (%) were weighted. The percentages may not sum to 100 because of rounding. As described in the

Methods, we defined the proportion of experiencing obesity (the proportion of observations that met criteria for

obesity, range 0–1) as the percentage of survey waves for which a participant had a measured BMI over 30 kg/m2.

SD, standard deviation; SES, socioeconomic status.

https://doi.org/10.1371/journal.pmed.1002827.t001
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higher PhenoAges (Table 2). For instance, in a fully adjusted main-effect model, those assigned

to the red subpopulation on average had PhenoAges that were more than 3.5 years older than

those assigned to the green subpopulation (β = 3.60, p< 0.001). We also observed a significant

main effect for the CAD-PGS, such that every 1-SD increase in the PGS was associated with a

0.44-year increase in PhenoAge (β = 0.44, p = 0.014). Both obesity and smoking were also asso-

ciated with higher PhenoAges—each 1-SD increase in the proportion of observations a partici-

pant qualified as obese (BMI> 30 kg/m2), was associated with a nearly 2.5-year increase in

PhenoAge (β = 2.44, p< 0.001), while current smokers on average had PhenoAges that were

3.6 years older than never smokers (β = 3.55, p< 0.001). When considering gene-by-environ-

ment interactions, we observed a significant interaction between CAD-PGS and the red (rela-

tive to the green) subpopulation (β = 1.48, p = 0.020). This being said, while on average those

in the red subpopulation had PhenoAges that were 3.6 years higher than those in the green

subpopulation, the differences were exacerbated among individuals who also were genetically

predisposed to coronary artery disease (CAD), suggesting that such an environment is even

more harmful for those with increased genetic vulnerability to CAD. As illustrated in Fig 5, a

higher CAD-PGS increased the difference in PhenoAge between those in the red versus the

green subpopulation in a multiplicative manner, such that among participants with a

CAD-PGS that was 2 SDs below the mean, those in the red subpopulation had slightly higher

average PhenoAge (+0.6 years) than those in the green subpopulation. However, among those

with a CAD-PGS that was 2 SDs above the mean, those in the red subpopulation had substan-

tially higher average PhenoAge (+6.6 years) than those in the green subpopulation.

In addition to PGS-by-subpopulation interactions, we also observed a significant interac-

tion between CAD-PGS and proportion obesity (proportion of experiencing obesity). This

suggests that the increase in PhenoAge accompanying every 1-SD increase in the obesity

Fig 3. The contribution of all 11 study domains to PhenoAgeAccel. The 11 domains include 4 childhood and adulthood circumstances domains, 5 PGS

domains, 1 behavior domain, and 1 demographic domains. Overall, the 11 study domains contributed 29.2% (bootstrap standard error = 0.003) of the variance

in PhenoAgeAccel. PGS, polygenic score; SES, socioeconomic status.

https://doi.org/10.1371/journal.pmed.1002827.g003
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measure was multiplicatively increased by 0.45 years with every 1-SD increase in the

CAD-PGS. Finally, no interactions were observed between smoking and CAD-PGS.

Discussion

Based on data from a large sample of older adults in the US, our comprehensive analyses

showed that childhood and adulthood circumstances, behaviors, and genetic factors were asso-

ciated with differences in a novel multi-system signature of aging. Collectively, the factors we

evaluated accounted for just under one-third of the variance in phenotypic aging. Using many

of the variables characterizing childhood and adulthood circumstances, we were able to group

participants into 6 subpopulations—2 of which appeared to reflect disadvantaged subpopula-

tions exhibiting substantially increased phenotypic aging. Finally, we observed a significant

gene-by-environment interaction between a previously validated PGS for CAD and the seem-

ingly most disadvantaged subpopulation, suggesting a multiplicative effect of adverse life

course circumstances coupled with genetic risk on phenotypic aging. Taken together, these

results may inform potential interventions to reduce morbidity and mortality risk experienced

throughout the life course. While causality needs to be formally evaluated, the results from the

current study highlight the socioenvironmental circumstances and behavioral factors that

potentially have the largest influence over level of phenotypic aging. As such, targeting these

factors may lead to improvements in health and diminish corresponding disparities over the

life course.

Fig 4. Cluster membership–trait correlations and PhenoAgeAccel across 6 clusters. (A) Cluster membership–trait correlations and p-values; (B)

PhenoAgeAccel across the 6 clusters. In (A), to determine what each subpopulation/cluster represents, we calculated a continuous measure (cluster

membership) for each cluster (between −1 and 1) that denotes how strongly a person belongs to that given cluster—for instance, someone may have a score of

0.8 for the green cluster and −0.6 for the red cluster, suggesting that he/she is very similar to the profile represented by the green cluster, but not the red cluster.

Each cell reports the correlation (and p-value) resulting from correlating cluster membership (rows) to traits (columns, including PhenoAgeAccel and

summarized measures of several circumstances). The table is color-coded by correlation according to the color legend. PhenoAgeAccel, Phenotypic Age

Acceleration.

https://doi.org/10.1371/journal.pmed.1002827.g004
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Results from both the Shapley approach and HCA draw attention to adversity in adulthood

as a potential driver of differences in phenotypic aging, i.e., subsequent disparities in morbidity

and mortality risk. More specifically, persons with higher levels of neighborhood physical dis-

order or high chronic stress—which were the defining characteristics of the red and the yellow

subpopulations/clusters—appear to be phenotypically older than their peers. Our study

extends results from earlier studies reporting that persons living in neighborhoods character-

ized by poor environments (e.g., lower aesthetic quality and safety) exhibited accelerated cellu-

lar aging, as denoted by shorter telomere length [33,34]. Poor neighborhood environments

may induce stress, predispose one to stressful life events, or shape exposure and vulnerability

to stress [35]. To date, both human and animal research have documented the negative effects

of stress on health and aging [36,37]. For instance, the literature on “allostatic load” postulates

Table 2. Associations of PhenoAge with CAD-PGS, behaviors, and childhood and adulthood circumstances.

Trait or interaction Model 1 Model 2 Model 3 Model 4

Coef. (SE) p-Value Coef. (SE) p-Value Coef. (SE) p-Value Coef. (SE) p-Value

6 subpopulations/clusters for childhood and adulthood

circumstances

Green Ref. Ref. Ref. Ref.

Turquoise 0.82 (0.58) 0.158 0.83 (0.58) 0.152 0.85 (0.58) 0.143 0.79 (0.58) 0.169

Blue −0.06

(0.61)

0.922 −0.05

(0.61)

0.939 −0.06

(0.61)

0.926 −0.08

(0.61)

0.899

Orange 1.91 (0.66) 0.004 1.94 (0.66) 0.003 1.88 (0.66) 0.004 1.93 (0.66) 0.003

Yellow 3.42 (0.61) <0.001 3.46 (0.61) <0.001 3.44 (0.61) <0.001 3.42 (0.61) <0.001

Red 3.60 (0.63) <0.001 3.61 (0.63) <0.001 3.57 (0.63) <0.001 3.59 (0.63) <0.001

Proportion obesity 2.44 (0.18) <0.001 2.43 (0.18) <0.001 2.45 (0.18) <0.001 2.44 (0.18) <0.001

Smoking

Never smoking Ref.

Former smoking 1.36 (0.37) <0.001 1.38 (0.37) <0.001 1.38 (0.37) <0.001 1.35 (0.37) <0.001

Current smoking 3.55 (0.68) <0.001 3.53 (0.68) <0.001 3.56 (0.68) <0.001 3.61 (0.68) <0.001

CAD-PGS 0.44 (0.18) 0.014 −0.08

(0.40)

0.841 0.44 (0.18) 0.013 0.55 (0.26) 0.032

Gene-by-environmental interactions

CAD-PGS × green Ref.

CAD-PGS × turquoise 0.44 (0.56) 0.431

CAD-PGS × blue 0.52 (0.58) 0.371

CAD-PGS × orange 0.64 (0.66) 0.332

CAD-PGS × yellow 0.40 (0.60) 0.505

CAD-PGS × red 1.48 (0.64) 0.020

CAD-PGS × proportion obesity 0.45 (0.18) 0.012

CAD-PGS × never smoking Ref.

CAD-PGS × former smoking −0.07

(0.37)

0.845

CAD-PGS × current smoking −0.96

(0.66)

0.147

As described in Methods, we defined the proportion of experiencing obesity (proportion obesity; range 0–1) as the percentage of survey waves for which a participant

experienced a BMI over 30 kg/m2. The numbers of participants in each cluster were n = 438 for green, n = 593 for turquoise, n = 470 for blue, n = 392 for orange, n =
503 for yellow, and n = 460 for red. Model 1 adjusted for chronological age, sex, ancestry, proportion obesity, and smoking. Model 2, 3, and 4 additionally added the

CAD-PGS × cluster interaction terms, the CAD-PGS × proportion obesity interaction term, and the CAD-PGS × smoking interaction term, respectively.

BMI, body mass index; CAD-PGS, polygenic score for coronary artery disease; Coef., coefficient; PhenoAge, Phenotypic Age; SE, standard error.

https://doi.org/10.1371/journal.pmed.1002827.t002
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that stressful life experiences may contribute to multi-system dysregulation. However, by con-

sidering multiple potential stressors simultaneously using advanced statistical approaches, we

were able to assess their relative contributions. Our results suggest that preventing or reducing

these adversities (e.g., through improvements in neighborhood safety and increasing afford-

ability of housing) should be prioritized in efforts to improve population health, particularly in

the face of rapid population aging in the US and worldwide.

Similarly, our results add further evidence to substantiate the link between adulthood SES

and healthy aging. Education is thought to act as a robust indicator of SES, contributing to

social gradients. In this study, the characteristic that best defined the 3 advantaged subpopula-

tions (i.e., green, turquoise, and blue) was higher levels of education (Fig 4A). This is in stark

contrast to the 3 disadvantaged clusters—all of which were characterized by low education.

Chronic socioeconomic deprivation associated with low education is thought to provoke a

Fig 5. The significant interaction between CAD-PGS and the red (relative to the green) subpopulation for PhenoAge. This figure is based on results from the

multivariate models in Table 2, with adjustment for chronological age, sex, ancestry, proportion obesity, smoking, and the CAD-PGS × cluster interaction terms. We

provide an example of 2 predictions, one for those in the red subpopulation/cluster and another for those in the green subpopulation/cluster (setting all other

confounding variables to the mean). Therefore, both groups are equivalent on all variables, and the only things that differ are the main effects for the clusters and the

interaction effect of CAD-PGS (e.g., 2 SDs below the population mean). CAD-PGS, polygenic score for coronary artery disease; PhenoAge, Phenotypic Age.

https://doi.org/10.1371/journal.pmed.1002827.g005
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number of adverse biological responses, including a gene expression profile called the con-

served transcriptional response to adversity, characterized by increased proinflammatory sig-

naling, and downregulation of antiviral type I interferon and antibody-related genes [38].

Over time, this transcriptional profile may increase susceptibility to a number of age-related

chronic diseases, possibly through acceleration of the biological aging process, although the

causal relationship between these transcriptional changes and our measures of biological aging

remains unclear.

As with adulthood SES, a large number of studies have highlighted the influence of child-

hood circumstances (e.g., SES and adversity) [10–17]. For instance, Hayward and Gorman

suggested that childhood social and economic conditions get embedded within one’s biology

and have far-reaching implications for one’s health as one ages [39]. However, it is important

to account for the fact that individuals who experience disadvantages in childhood are more

likely to go on to experience adverse circumstances in adulthood, which could lead to overesti-

mation of the effect of childhood circumstances in traditional regression analysis. In this

study, we applied the Shapley approach to appropriately decompose the contributions of child-

hood and adulthood circumstances, providing relatively accurate estimates compared to those

from traditional methods. We observed an influence of childhood SES and adversity on phe-

notypic aging, suggesting that adversity in childhood may influence aging beyond predispos-

ing a person to adversity in adulthood.

Unlike socioenvironmental circumstances, which are mostly beyond the individual’s con-

trol, health behaviors are much more modifiable and, more importantly, appear to have the

greatest contribution to the variance in phenotypic aging in this study (9.2%). This finding

highlights the importance of strategies aimed at attenuating modifiable risk factors like obesity

and smoking. A recent observational study showed that the American population today is

experiencing “delayed aging” and better health compared to the population during the late

1980s. While this can be partially explained by changes in smoking habits and increased use of

antihypertensive and cholesterol-lowering medications, these changes are being counteracted

by exorbitantly high obesity rates [40]. Generally, rising BMI in the US has stunted potential

gains in life expectancy—such as those as experienced by other high-income countries [30]. To

inform policy, research is needed to assess the effectiveness of behavioral interventions on

measures of aging [41]. If the health behaviors considered in this analysis are shown to be

causal drivers of phenotypic aging, they represent a targetable strategy for reducing disease

burden. While interventions to promote exercise, smoking and/or drinking cessation, and

weight reduction are not new to public health, measures like PhenoAge provide a useful inter-

mediate phenotype that can be used to either target interventions for at-risk groups and/or

track progress and intervention efficacy. From an individual standpoint, a more immediate

measure like PhenoAge could be a more powerful and concrete motivator than are future risk

assessments.

While our results highlight the influence of a variety of factors on phenotypic aging, the det-

rimental effects were not consistent across individuals. Our results suggest a moderating effect

of genetic predisposition, such that individuals who have an innate susceptibility to diseases,

such as CAD, may suffer even more from experiences of chronic stress and adversity, and/or

the negative implications of obesity. For instance, among participants with low genetic risk for

CAD, we showed that the differences in PhenoAge between those in the most adverse social

environments (red cluster) and those in the most advantageous (green cluster) were minimal.

However, among individuals with high genetic risk for CAD, we observed much higher Phe-

noAges for those in the red relative to the green cluster—suggesting that genetic predisposition

may multiply the impact of social environment in a super-additive synergistic manner. Similar

results were also observed for the obesity-by-CAD-PGS interaction, suggesting that genetic
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predisposition may also compound the association between extreme adiposity and aging.

While there are previous reports on interactions between genes (PGSs and specific genes such

as APOE ε4) and environmental factors (e.g., SES, education, exercise, and stressful life events)

for aging-related outcomes (e.g., cognition and self-reported health) (e.g., [42–47]), no studies

to our knowledge have examined the interaction between PGSs and a comprehensive set of life

course circumstances for a single aging measure like PhenoAge. Our gene-by-environment

results are noteworthy, given that we have previously shown that every 1-year increase in Phe-

noAge, relative to chronological age, is associated with a 9% increased risk of dying [5]. This

finding is particularly concerning given that the red subpopulation (relative to the green) was

associated with a 3.6-year increase in PhenoAge, each 1-SD increase in CAD-PGS was associ-

ated with about a half year increase in PhenoAge, and, together, they had a multiplicative

effect. Based on these findings, targeting interventions and policies towards disproportionally

at-risk individuals may have significant public health implications.

Despite the availability of a comprehensive set of life course circumstances and the innova-

tive application of interdisciplinary approaches (e.g., the Shapley approach), the results should

be interpreted with caution. First, efforts to assemble a comprehensive set of circumstances

from several components of HRS reduced sample size and potentially altered the population

structure. For instance, a sizable proportion of persons who attended the 2016 VBS were

excluded due to missing data on childhood adversity, collected through the 2015 LHMS. Fur-

thermore, PGSs were only available for persons of European or African ancestry. As a result,

we observed slight differences in relevant characteristics of our analytic sample compared with

those excluded from the analyses. This issue was slightly offset by using dummy variables for

missingness in order to retain participants and by considering other versions of survey weights

in the sensitivity analyses—all of which produced findings consistent with those presented.

However, as mentioned before, the representativeness of the study population is still problem-

atic. Second, information on the specific timing of childhood and adulthood circumstances

was not available. Previous studies have suggested that the earlier adversity develops, the

greater the negative effect on health in later life [48]. Third, most of these circumstances were

based on self-reports, and this retrospective approach leads to possible recall biases. Fourth,

since we were unable to observe all childhood and adulthood SES and adversity factors, this

type of decomposition tends to offer a more conservative estimate (e.g., underestimate) of

their contribution to phenotypic aging. This possible underestimation also applies to genetics,

as all the PGSs are merely a small set among a potentially large set of genetic factors that mat-

ter. Finally, we acknowledge that many unmeasured confounding factors may exist but were

not accounted for in this study. Further, this study was not able to address questions of causal-

ity. In future research, it will be important to examine associations between childhood adver-

sity/SES and measures such as PhenoAge longitudinally and at earlier life stages, in order to

draw causal inferences, as well as track differences in rates of aging, rather than levels.

In conclusion, in a sample of US older adults, we estimated that genetic, behavioral, and

socioenvironmental circumstances during both childhood and adulthood accounted for about

30% of the variance in phenotypic aging, i.e., difference in morbidity and mortality risk. Indi-

vidually, both behaviors and socioenvironmental circumstances contributed to substantial

amounts of the variance in phenotypic age. Furthermore, we identified disadvantaged subpop-

ulations that exhibited accelerated aging and for whom genetic predisposition—in this case

genetic risk for CAD—multiplied the associated increase in phenotypic aging. These findings

highlight the influence of behaviors, socioenvironmental circumstances, and genetic predispo-

sition for CAD on aging and health, and thus may directly inform policies surrounding tar-

geted interventions and allocation of resources for promoting healthy aging, and ameliorating

health disparities. While this study is unique in terms of the comprehensive set of variables
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and the outcome measure—PhenoAge—and may only reflect results specific to the US popula-

tion, further validation of these findings is needed.
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