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Radiation therapy has been used for many years to treat tumors based on its

DNA-damage-mediated ability to kill cells. More recently, RT has been shown

to exert beneficial modulatory effects on immune responses, such as triggering

immunogenic cell death, enhancing antigen presentation, and activating cytotoxic

T cells. Consequently, combining radiation therapy with immunotherapy represents

an important area of research. Thus far, immune-checkpoint inhibitors targeting

programmed death-ligand 1 (PD-L1), programmed cell death protein 1 (PD-1), and

cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) have been the focus of many

research studies and clinical trials. The available data suggest that such immunotherapies

are enhanced when combined with radiation therapy. However, treatment resistance,

intrinsic or acquired, is still prevalent. Various theories as to how to enhance these

combination therapies to overcome treatment resistance have been proposed. In this

review, we focus on the principles surrounding radiation therapy’s positive and negative

effects on the tumor microenvironment. We explore mechanisms underlying radiation

therapy’s synergistic and antagonistic effects on immune responses and provide a

base of knowledge for radio-immunology combination therapies to overcome treatment

resistance. We provide evidence for targeting regulatory T cells, tumor-associated

macrophages, and cancer-associated fibroblasts in combination radio-immunotherapies

to improve cancer treatment.

Keywords: immunotherapy, radiation therapy (RT), myeloid derived suppressor cell (MDSC), regulatory T (Treg)

cell, tumor microenvironment (TME), immunotherapy resistance, cancer associated fibroblast (CAF)

INTRODUCTION

Radiation therapy (RT) represents standard-of-care treatment for more than half
of all cancer patients (1). RT was originally used for its ability to induce double-
stranded DNA damage resulting in cell death via apoptosis, necrosis, autophagy, mitotic
catastrophe, or replicative senescence (2, 3). But RT can also modulate the immune
system and the tumor microenvironment (TME) in a dose-dependent manner (4–6).
Our increased knowledge of the positive immune-modulating effects of RT has led
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to the development of novel combination therapies. Several
preclinical studies have shown that combining RT with
immunotherapy (IT) can result in better local and systemic
tumor control (5). Combining RT with anti-CTLA-4 therapy
(7–10), anti-PD-1 (11–13), or anti-PD-L1 therapy (14–16), with
RT doses ranging from 2 to 20Gy in single and fractionated
regimens, has resulted in prolonged survival and reduced
tumor growth in preclinical tumor models (17). Emerging data
from clinical trials combining RT and IT have also shown
promise (18–21). Most recently, a Phase II clinical trial in
which patients with locally advanced non-small cell lung cancer
(NSCLC) or metastatic disease were treated with RT followed
by pembrolizumab (anti-PD-1) found that this combination
prolonged overall survival by 19.8 weeks (NCT02407171).
Administration of nivolumab (anti-PD-1) before RT in another
Phase II clinical trial looking at advanced NSCLC was shown
to increase the 18 months survival of patients by 29% (22).
Similarly, RT increased the effectiveness of PD-L1 inhibition
in a retrospective study of recurrent/metastatic nasopharyngeal
carcinoma (23). Although combining IT with RT has shown
promising improvements in survival in these clinical trials,
patients eventually relapse, and durable responses are rare
(24). Several parameters can influence the response to IT
and RT combinations, including RT dose, sequencing, and
tumor oncogenic and immune composition. This variable
success rate is thought to be caused by resistance—regrowth
of the tumor—and is still common in most patients treated
with radio-immunotherapy as some cancers like head and
neck squamous cell carcinoma have a low response rate of
13% (25). By considering the cancer tumor microenvironment
(TME) and its components, and how to specifically modulate
them with RT and IT, we can potentially determine how
to override resistance to radio-immunotherapy and improve
outcomes.

Various elements of the TME can prevent effective lymphocyte
priming, reduce immune cell infiltration, and suppress effector
cell function that can lead to a failure of the host to reject tumors
(26). These elements identify several potential mechanisms that
could affect the efficacy of radio-immunotherapy: suppressive
immune cells including regulatory T cells (Tregs), macrophages,
or myeloid derived suppressor cells (MDSC); lack of antigen
stimulation/co-stimulation for dendritic cells (DCs) leading to
inadequate T cell priming; physical barriers such as a thick
extracellular matrix (ECM) produced by fibroblasts around
tumor tissues preventing immune cell entry into tumors; and
exhausted or short-lived activation of antigen-specific cytotoxic
CD8+ T cells through activation of immune checkpoints like
PD-1. Although tumor-intrinsic factors also play an important
role in mediating growth and survival of the primary tumor
(27), the focus of this review is on how elements of the
TME can impact treatment outcomes, how RT modulates
the immune TME, and potential immunotherapies that could
improve RT’s effects (as shown in Figure 1). This will provide
a foundation for developing rational targeted ITs aimed at
reducing the development of resistance when combined with
RT. Further, it presents a rationale for shifting from broad
targeting of immune checkpoint receptors to targeting of

FIGURE 1 | Overview of the interplay between a tumor and its

microenvironment and potential targets of immunotherapy and radiation

therapy covered in this review. Treg, Regulatory T cells; TAM, Tumor

Associated Macrophages.

regulatory T cells, tumor-associated macrophages, and cancer-
associated fibroblasts as specific targets for combination radio-
immunotherapies. We conclude by suggesting that a thorough
understanding of the biological pathways underlying known
interactions between RT and various immune targets is
and will continue to be invaluable for informing design
of combination radio-immunotherapies to improve cancer
treatment.

HIGHLIGHTING RT’S DELICATE BALANCE
BETWEEN PROMOTING
IMMUNOSUPPRESSION AND TUMOR
CYTOTOXICITY

To maximize the therapeutic ratio, it is important to establish a
combination of ITs that activate pathways to promote anti-tumor
immunity and effector T cell function while limiting pathways
that mediate an immunosuppressive TME. Several mechanisms
are involved in immune regulation and response to stress stimuli,
including RT.

RT INCREASES TYPE I IFN SECRETION
VIA STING ACTIVATION: A DICHOTOMY
BETWEEN DENDRITIC CELL AND MDSC
RECRUITMENT DETERMINES THE
THERAPEUTIC RESPONSE TO RADIATION

When RT induces tumor cell death, DNA from dying tumor
cells is delivered to antigen presenting cells (APCs), most notably
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CD11c+ dendritic cells (DCs). In this process DCs are stimulated
to present antigens, and express costimulatory molecules (28). A
critical mediator of DC function is the stimulator of interferon
genes (STING). STING pathway activation (Figure 2) occurs
when DNA from tumor cells taken up by APCs is sensed by
cyclic-GMP-AMP (cGAMP) synthase, which interacts directly
with STING to induce a conformational change leading to
translocation of STING from the endoplasmic reticulum to
perinuclear vesicles (29). Inside the nucleus, STING recruits
and phosphorylates TANK-binding kinase 1 (TBK1), which
activates interferon regulatry factor 3 (IRF3). Finally, IRF3
induces expression of Type I IFNs (30). Type I IFN release from
APCs facilitates the ability of Batf3 DCs to take up antigen (31).
This stimulates maturation of DCs and cross-presentation of
tumor associated antigens (TAA) to CD8+ T cells, which mediate
antitumor immunity after proliferation and infiltration into the
tumor microenvironment.

Type I IFNs induced by RT include IFN -α, -β and the less
studied IFN-τ , -ε, -κ, and -ω. Expression of Type I IFN and
Type I-inducible genes is associated with T cell-infiltrated tumors
(32, 33). In addition, Type I IFN expression can be induced by
RT. Burnette et al. showed increased Type I IFNs in a melanoma
cancer model (B16-SYI) after 20Gy of local RT (34). Knockdown
of IFN-β receptor (IFN-α receptor 1) in B6/IFNAR1 KO mice
abolished RT’s ability to reduce tumor growth in this model. Lim
et al. showed similar findings with a dose of 15Gy (35). These
data suggest that Type I IFNs, specifically IFN-β, may be key
targets by which RT modulates the TME.

Deng et al showed that innate immune sensing following RT
is predominantly mediated by a STING-dependent mechanism
(31). The study demonstrated that cGAS- and STING-
dependent cytosolic DNA sensing in DCs is required for
type I IFN induction after RT and that adding the STING
agonist cGAMP reduces radioresistance and enhances antitumor

FIGURE 2 | Role of the stimulator of interferon genes (STING) signaling

pathway in antitumor immunity. By inducing Type I IFN release from antigen

presenting cells (APCs), radiation therapy (RT) can enhance antigen uptake by

specialized dendritic cells (DCs) known as Batf3 DCs. This stimulates

maturation of DCs and the cross-presentation of tumor associated antigens

(TAA) to CD8+ T cells, which exhibit antitumor immunity after proliferation and

infiltration into tumor microenvironment. DNA from tumor cells is recognized by

cytosolic DNA sensor cGAS to produce cGAMP for STING activation and

cytokine production, which stimulate the maturation of DCs and stimulate the

cross-presentation of TAA to CD8+ T cells, which exhibit antitumor immunity

after proliferation and infiltration into the tumor microenvironment.

immune responses. However, the paradox of RT-mediated
STING activation is that it can also recruit MDSCs (34, 36).
While this could be an RT dose-dependent phenomenon, the
recruitment of MDSCs by RT can inhibit CD8+ T cells and
DC activity, thus negating any benefit from activation of the
Type I IFN pathway. This has been demonstrated in MC38
colon tumors where irradiation was shown to primarily increase
monocytic MDSCs (Ly6chi CD11b+ cells) (36). In support of
this being mediated via the STING pathway, tumor irradiation
in STING KO mice led to a significant decrease in MDSC
recruitment (36). This evidence supports STING as an initiating
factor in MDSC recruitment. It is possible that STING-mediated
RT effects are tumor-specific. Tumors that are poorly MDSC
infiltrated and/or do not induce MDSC chemoattractants in
response to RTmay benefit from a STING agonist in combination
with RT. In contrast, tumors that are MDSC rich and/or activate
MDSC recruitment in response to RT may require strategies
for targeting MDSCs. Combining MDSC targeting therapies
with RT may not only enhance STING activation, but also
increase Type I IFN production and recruitment of CD8+

T cells (37, 38).
A potential target through which RT increases MDSC

recruitment is themonocyte chemoattractant CCL2. In theMC38
colon tumor model above, genetic knockdown of CCL2 yielded
complete tumor eradication in 60% of irradiated mice further
supporting MDSCs as a major driver of immunosuppression
(36). Similarly, monoclonal antibodies against CCL2 led to tumor
rejection in 40% of mice, but only when combined with RT (36).
Anti-CCL2 antibody therapy combined with RT also resulted in
an increase of CD8+ T cell activity, measured by INF-γ by Elispot
assay (36). Antitumor immune-mediated effects of CCL2 genetic
knockdown or anti-CCL2 antibody treatment were abolished
when both CD8+ and CD4+ T cells were depleted (36). This
evidence indicates that MDSCs block RT-induced T-cell anti-
tumor activity via CCL2 and suggests this is a therapeutic target
that could be manipulated to tip the balance in favor of dendritic
cell recruitment.

Combining MDSC targeting therapies with RT may not
only enhance STING activation, but also increase Type I IFN
production and recruitment of CD8+ T cells (37, 38). For tumors
where MDSCs play a prominent role, using RT with STING
immunotherapies may not be sufficient. MDSCs may be able to
block the positive effects of these therapies by inhibiting CD8+

T cell activity. For these tumors, adding anti-CCL2 antibodies to
the treatment may be prudent.

In addition to MDSCs, M2 macrophages play a similar
role in mediating immune suppression and resistance to RT
(39). The IL-6/JAK/STAT3 pathway has been shown to polarize
macrophages toward the pro-tumoral M2 phenotype through
activation of STAT3, and anti-IL-6 immunotherapy increased
the number of M1 polarized macrophages in a hepatocellular
carcinoma mouse model (40). A review focused on the IL-
6/JAK/STAT3 pathway, its role in cancer, and possible inhibitors
of the pathway was recently published by Johnson et al. (41).
The effects of targeting IL-6 with RT in a murine model of
prostate cancer resulted in attenuation of angiogenesis, MDSC
recruitment and decreased tumor growth (39).
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Collectively, these studies highlight that it may be prudent
to combine RT with immunotherapies that target MDSC and/or
M2 macrophage recruitment and polarization to enhance anti-
tumor immune responses. Some initial successes in targeting
macrophages have been achieved. Anti-CSF1 immunotherapy,
when used in combination with RT, prolonged survival in a
glioblastoma (GBM) mouse model and significantly reduced
RT-mediated macrophage recruitment to the tumor (42).
Chloroquine, a common drug used to treat malaria, has also been
shown to have anti-tumor effects via its ability to convert M2s
into an M1 phenotype. Alone, chloroquine was able to reduce
tumor burden in a murine melanoma and a hepatocarcinoma
model (43). Since chloroquine was shown to be dependent on T
cells for its effects (43), it might induce an even larger reduction
in tumor burden when combined with RT given RT’s potent effect
on increasing T cell infiltration. Finally, myeloid cells’ activation
status can be targeted for therapeutic development. One such
example is CD40 a surface protein present on most APCs (44).
When CD40 is activated on APCs by binding to CD40L, APCs
are able to present antigens to T cells (45). Increasing antigen
presentation with anti-CD40 therapy in combination with RT
was shown to increase survival of a B-cell lymphoma mouse
model to 100% when the study ended at 100 days post-tumor-
inoculation (46).

PD-L1-DEPENDENT RESISTANCE AND
PD-L1-INDEPENDENT RESISTANCE: HOW
CD8+ T CELLS NEGATIVELY REGULATE
THEIR OWN ACTIVATION BY IFN-γ AND
CCL22 SECRETION

RT’s ability to recruit and activate CD8+ T cells by inducing
secretion of chemoattractant molecules CXCL9, CXCL10,
CXCL16, and CCL5 as a response to tissue damage is well-known
(47–52). Despite this, resistance to RT still occurs. This is in
part explained by CD8+ T cell exhaustion, which is characterized
by increased expression of immune checkpoint receptors such
as PD-1, resulting in PD-L1-dependent resistance (53). Tumor-
intrinsic factors can determine the extent of PD-L1 expression
in tumors treated with RT and chemotherapeutic agents (27),
but it also increases in response to IFN-γ (53). Gajewski et al.
found evidence that activated CD8+ T cells and their secretion
of IFN-γ are responsible for promoting PD-L1 expression in
the TME in a negative feedback loop in vivo (36). IFN-γ has
been known for supporting an anti-tumor TME by promoting
Th1 polarization, cytotoxic T cell activation, DC maturation
(54), and increased CXCL9 secretion (55). But evidence now
suggests that IFN-γ can also upregulate PD-L1 in the TME (53)
(Figure 3).

IFN-γ’s upregulation of PD-L1 has been shown in both
murine and human tumor cell lines (56). The presence of both
high CD8+ T cell infiltration and IFN-γ is required for PD-L1’s
increase in tumors. This has been demonstrated by comparing
levels of PD-L1 and IFN-γ in WT mice and CD8 KO mice in
multiple murine melanoma models (53). It has been postulated
that IFN-γ upregulates PD-L1 expression through activation

FIGURE 3 | PD-L1-dependent and independent resistance by CD8 effector

cells and tumor cells. Tumor cells secrete IFN-y and IFN-I that can bind to

IFNGR and IFNAR on tumor cells and promote PD-L1-independent resistance

through constitutive activation of STAT1. Tumor cells and CD8 effector cells

produce and secrete IFN-y that increases PD-L1 in the TME and causes

exhaustion of CD8 cells promoting PD-L1-dependent resistance. CD8 effector

cells increase production of CCL22, a chemoattractant that binds to CCR4 on

Tregs increasing their presence in the TME, thus decreasing CD8 effector cell

activity.

of IRF-1, an interferon regulatory factor with a binding site
on the promotor of the gene coding for PD-L1 (57). IFN-
γ’s upregulation of PD-L1 supports the rationale for anti-PD-
L1/PD-1 axis therapies in cancer therapy, but it also highlights
why these therapies are only useful for a small portion of
patients with high baseline levels of PD-L1 expression. Many
tumors are devoid of T cells at baseline, and thus lack PD-L1
expression or effector T cells (Teff cells) that can be activated by
anti-PD1/PD-L1 therapies (58). Combining such therapies with
RT could be beneficial as RT increases PD-L1 expression and
enhances infiltration of Teff cells (59).

Although combining RT and PD-L1 therapy has improved
outcomes in more patients than anti-PD-L1 treatment alone,
emerging data suggest that resistance still develops (24). In
preclinical models, Benci et al. identified a novel role for INF-γ
and Type I IFNs in PD-L1-independent resistance and showed
that targeting IFN-γ/Type I IFNs resulted in decreasing T cell
exhaustion (60). To determine if IFN-γ was responsible for
resistance independent of PD-L1 expression, PD-L1 was deleted
in tumor cells using CRISPR and PD-L1 was deleted in tumor
associated macrophages (TAMs) or globally deleted with anti-
PD-L1 therapy. The authors reported that IFN-γ expression
was still able to induce resistance when PD-L1 was deleted, but
when IFN-γ’s receptor IFNGR and the receptor for Type I IFNs
IFNAR were knocked out on tumor cells, exhausted T cells were
significantly reduced and response to RT and anti-CTLA4 was
enhanced (60). These data demonstrate that IFN-γ and Type I
IFNs are responsible for promoting resistance to combined RT
and anti-CTLA-4 treatment in a PD-L1-independent manner
(60). Benci et al. further showed that this resistance is mediated
by constitutive activation of STAT1 expression in tumor cells
through genomic studies and effect studies involving STAT1
KOs combined with anti-PD-L1 treatment (60). Based on these
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results and the finding that IFN-stimulated genes are increased
in patients who develop resistance to anti-PD-L1 therapy (60),
screening patients for IFN-stimulated genes may determine if
patients qualify for therapeutic combinations of RT, anti-PD-L1,
or anti-IFN therapy.

CD8+ T cells can also regulate their own activity by recruiting
Tregs through the CCL22-CCR4 axis (Figure 3). Gajewski et al.
demonstrated that an increase in CCR4-expressing Tregs as a
percentage of total immune cells was observed only when CD8+

T cells were present (53). In CD8 KO mice, Tregs represented
a lower percentage of total immune cells (53). Through a series
of experiments, they showed that secretion of CCL22 by CD8+

T cells recruits T cells and supports their proliferation without
inducing T cell differentiation (53). Additionally, inhibition of
CCR4 using the antagonist C021 prevented Treg accumulation in
tumors (53). Targeting CCR4 could be a promising therapeutic
target, especially in Treg enriched tumors. Such a therapy may
have enhanced efficacy when combined with RT to induce Teff
cell infiltration.

RT-INDUCED ADENOSINE: SHIFTING THE
TME FROM DENDRITIC CELL
RECRUITMENT TOWARD TREG- AND M2-
MEDIATED IMMUNE SUPPRESSION

Immunogenic cell death resulting from tumor irradiation alerts
the immune system to a potential threat via upregulation or
release of DAMPs, including adenosine triphosphate (ATP).
The dose-dependent release of ATP as a result of RT-induced
cancer cell death (61), can recruit and activate DCs to uptake
tumor antigens and cross-present them to naïve T cells,
thus initiating antitumor immune responses (62) (Figure 4).
However, ATP is rapidly catabolized into adenosine in the
TME by the ectoenzymes CD39 and CD73 expressed on
tumor cells, stromal cells, and immune cells, primarily, Tregs
and Th17 cells. CD39 hydrolyzes ATP to ADP, and ADP
into AMP, and then CD73 converts AMP into adenosine
(63). Local accumulation of extracellular adenosine suppresses
DCs and Teff cells while promoting proliferation of Tregs,
increases the expression of CTLA-4 and adenosine receptor
2A (A2AR) on Tregs, and enhanced the polarization of
tumor-associated macrophages (TAMs) into an M2 suppressive
phenotype (64, 65).

Conversion of ATP to adenosine can be induced directly by
RT. One mechanism for this conversion is mediated via the
induction of reactive oxygen species (ROS) by RT, which then
converts pro-TGF-β into its activated form (66). TGF-β promotes
TAM polarization into M2s and upon glucocorticoid induction,
TGF-β modifies gene expression in M2 macrophages to express
additional immune-suppressive genes like the one coding for IL-
17 receptor (IL17RB) that promotes development of Th17 cells.
TGF-β is also able to increase the expression of ectonucleotidases
CD73 and CD39 on Th17 cells by downregulating zinc finger
protein growth factor independent-1 (Gfi-1) and by inducing
Stat3 expression, respectively (67). Taken together, TGF-β

FIGURE 4 | RT-induced cancer cell death leads to release of ATP that both

recruits and activates dendritic cells (DCs) thus initiating antitumor immune

responses. ATP is rapidly catabolized into adenosine in the TME by CD39 and

CD73 expressed on tumor cells, stromal cells, and immune cells. Local

accumulation of extracellular adenosine suppresses DCs and CD8T cells,

while promoting proliferation of Tregs, M2 polarization, and increasing the

release of TGF-β into the TME. RT, can also directly activate TGF-β via

activation of reactive oxygen species (ROS). The increase in TGF-β promotes

more adenosine formation in a positive feedback loop.

increases the number of Th17 cells and the expression of genes
responsible for converting ATP into adenosine in Th17 cells.

Therapeutic targeting of A2AR, CD73, and TGF-β may shift
the TME to a pro-ATP environment and reduce resistance
to immunotherapy in the setting of RT. In preclinical animal
models, targeting A2AR, the receptor for adenosine, with a
pharmacological inhibitor SCH58261 led to a significant decrease
in tumor growth and reduced Tregs while enhancing Teff cell
activity in a spontaneous Cre/lox HNSCC model (68). Targeting
A2AR alone with CPI-444 led to a significant reduction in
tumor burden for mice implanted with MC38 tumors (69).
Further tumor regression was achieved by the addition of anti-
PD-L1 and anti-CTLA-4 treatment in both MC38 and CT26
tumors. The combination of CPI-444 and anti-PD-L1 in MC38
implanted mice led to a 50% eradication of the tumors (5/10)
(69). Another way to reduce the effects of adenosine is to limit
its production in the first place by targeting CD73. Targeting
CD73 with an anti-CD73 monoclonal antibody (mAb), anti-
CD73 decreased the tumor burden and increased the survival
of mice with MC38-OVA tumor cells (70). This effect was
even greater when combined with anti-PD-L1 and anti-CTLA-
4 (70). Another group found that CD73 knockout mice had
greater homing of Teff cells and that this effect was primarily
driven by CD73 expression on Tregs (71). Although blocking
production and direct action of adenosine has been shown to
be effective, therapeutic strategies aimed at targeting TGF-β can
be of more significant benefit in combination with RT. TGF-
β increases the expression of both CD73 and CD39 and is
responsible for promoting a variety of pro-tumor effects. There
has been some hesitation in targeting TGF-β in the past because
of the potential for cardiac toxicities, but new-generation small-
molecule inhibitors have been shown to have limited side effects
in clinical trials (72–74). The newly developed bifunctional fusion
protein, M7824, TGF-β Trap (75) is another potential therapeutic
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target to combine with RT, as it simultaneously blocks the PD-
L1 and TGF-β pathways and might yield increased response
compared to monotherapy alone.

CLASSIC RT ANTI-TUMOR EFFECTS
MEDIATED THROUGH ROS HAVE A DARK
SIDE: INCREASING ADENOSINE
THROUGH TREG APOPTOSIS AND
CREATING A HYPOXIC
IMMUNOSUPPRESSIVE TME

RT is classically known to act on cancer cells by inducing
apoptosis, senescence, and mitotic catastrophe through the
production of reactive oxygen species (ROS) that, at high enough
concentrations, can damage cells and cause double-stranded
DNA damage (2, 3). It was thought that these effects would
primarily affect tumor cells, causing tumor cell death, and—based
on current understanding—increase tumor associated antigens
for immune cell recognition. Recently, Zou et al. showed that
within the immune TME, ROS resulting from RT induced
apoptosis of Tregs driving increased immunosuppression. Their
data support a hypothesis that apoptotic, but not proliferating,
Tregs release high levels of ATP and subsequently metabolize
ATP into adenosine because CD73 and CD39 are still
metabolically active (76) (Figure 5). This fundamentally changes
the current dogma of targeting all Tregs with immunotherapies.
If Treg apoptosis is driving immunosuppression, an ideal
immunotherapy would decrease Treg activity and proliferation,
without inducing their apoptosis.

A more hypoxic environment will be less sensitive to the
effects of RT (77), and many solid tumors are known to be more
radioresistant in hypoxic regions. Although there is intrinsic
hypoxia due to the nature of solid tumors, RT can worsen
hypoxic conditions by increasing hypoxia-inducible factor-1α

FIGURE 5 | ROS induces apoptosis of CD73+CD39+ Tregs, increasing

production of adenosine in the TME. ROS classically induces tumor cell death

through DNA-mediated cell damage, but it also induces apoptosis in immune

cells. When CD73+CD39+ Tregs undergo apoptosis, they produce high levels

of ATP that are rapidly converted into adenosine by CD73 and CD39 on the

Tregs cell membrane. Accumulation of adenosine promotes an immuno

suppressive environment. ROS, reactive oxygen species.

(HIF-1α). HIF-1α has been shown to cause radioresistance
of endothelial cells (78), angiogenesis through expression of
vascular endothelial growth factor A (VEGF-A) (79), malignant
progression (79), and poor survival outcomes after RT treatment
(80, 81). Upregulation of HIF-1α by RT can be a direct result
of stabilizing HIF-1α in cancer cells (78, 79), or it can occur
indirectly as RT increases TAMs, which also stabilizeHIF-1α (82).

Within the TME, HIF-1α mediates immunosuppression
by modulating specific immune cell functions (Figure 6). It
modulates gene expression and cytokine production in MDSCs,
thereby increasing their role in T cell suppression. HIF-1α
inhibits myeloid cell differentiation through a VEGF-A mediated
mechanism leading to accumulation of MDSCs (83, 84).
Induced by RT, VEGF-A can also increase inhibitory receptors
on CD8+ T cells (e.g., Tim-3, CTLA-4, PD-1, Lag-3) (85)
as well as PDL-1 expression on tumor cells and MDSCs
(86), thereby promoting T cell exhaustion and inactivity (85).
Another mechanism by which RT-induced VEGF-A secretion
can enhance a pro-tumor environment is through its influence
on endothelial cells by inducing expression of CD95L (or
FasL), the ligand for FAS (87, 88). In response to RT,
expression of Fas can be induced by tumor cells secreting IL-10,
prostaglandin E2, and VEGF-A (89). Fas can induce apoptosis
of Teff cells, while sparing Tregs to support an anti-tumor
environment (90).

HIF-1α represents an ideal target for reducing the
immunosuppression driven by a hypoxic environment, but

FIGURE 6 | The role HIF-1α and its downstream components play in

producing an immunosuppressive environment. HIF-1α’s action on the TME is

primarily through its induction of VEGF-A. VEGF-A drives immunosuppression

by recruiting MDSCs, promoting proliferation of Tregs, and by increasing the

expression of immune checkpoint inhibitor genes on CD8+ T cells. Increasing

MDSCs in the TME leads to their conversion to TAMs, specifically an M2

polarization.
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currently no drugs are approved for clinical trials in humans.
Drugs designed in an attempt to target HIF-1α have had many
off-target effects, including but not limited to inhibiting mRNA
expression, protein synthesis, protein degradation, and DNA
binding (91). In the future, more effective and specific inhibitors
of HIF-1αwill be developed. In the meantime, targeting VEGF-A
may have some potential. There are several FDA-approved
drugs that target VEGF-A, including the monoclonal antibody
bevacizumab (66). Pre-clinical and clinical applications of these
drugs have been well-described by others recently (92–94).
Briefly, inhibiting VEGF-A appears to produce only a modest
increase in survival for patients with a wide range of tumor
types (95–99). These modest effects could be the result of
indiscriminate administration of the drugs and/or parallel
pathways of resistance. Combination approaches targeting both
VEGF-A and HIF-1α axes or with cox-1 inhibitors as described
in the next section could prove to be more beneficial than any
single approach.

RT’S REMODELING OF THE
EXTRACELLULAR MATRIX AND
ENDOTHELIAL CELLS: PROMOTING
FIBROSIS, MMP ACTIVITY, AND FASL
EXPRESSION

By increasing the number and activity of fibroblasts and
MMPs, and increasing pro-tumoral endothelial cell function,
RT can directly modulate the extra-cellular matrix (ECM)
component of the TME (Figure 7). RT-mediated TGF-β signaling
increases the number of cancer-associated fibroblasts (CAFs)
or myofibroblasts in the ECM. These cells deposit type I,
type II, type III, and type V collagen, fibronectin, and matrix
metalloproteinases (MMPs) that regulate ECM homeostasis
(100–102). CAFs also express fibroblast activation protein
(FAP) (103) enhancing immunosuppression within the TME via
CXCL12 (104), a chemokine that reportedly coats tumor cells
and inhibits recruitment of T cells in the area (104) and reduces
ECM-associated fibrosis (105).

RT can directly modulate endothelial cell function to inhibit
Teff cell immune function and create a pro-tumoral TME.
Upregulation of FasL, on endothelial cells has been shown to be
a critical mediator of Teff cell inhibition in a variety of cancers
(87, 88, 90). Fas can induce preferential apoptosis in Teff, while
sparing CD25-expressing Tregs, favoring an immunosuppressive
TME (90). Tumor-derived IL-10 and prostaglandin E2 can
independently increase endothelial cell expression of Fas, and
tumor derived VEGF-A is dependent on the presence of IL10
or prostaglandin E2 to further increase Fas expression (90). This
explains why a blockade of FasL expression in different ovarian
cancer cell lines by targeting VEGF-A was shown to be drastically
enhanced when combined with COX1 inhibitors (90). VEGF-
A’s effects were dependent on the amount of COX 1 expression,
implying that VEGF-A is necessary but not always sufficient
to produce FasL (90). These results have been corroborated by
findings in four distinct murine cancer models: ovarian, skin,
colon, and renal cancer (90). Treatment of these tumors with

FIGURE 7 | RT modulates fibroblasts, ECM, and endothelial cells resulting in

an immunosuppressive environment. RT increases the number and activity of

cancer associated fibroblasts (CAFs) increasing the production of CXCL12,

blocking CD8+ T cell recruitment and increasing the amount of ECM proteins

produced by fibroblasts physically blocking immune cells from entering the

TME. This is countered by RT’s ability to increase the expression of MMPs that

break down the ECM, increasing cancer spread and metastasis. Finally, RT is

able to increase the expression of Delta, Jagged, Notch, and FasL, thus

reducing CD8+ T cell recruitment and promoting tumor growth and survival.

anti-VEGF-A combined with a COX 1 inhibitor, salicylic acid,
resulted in depletion of FasL expression on tumor endothelial
cells, an increase in CD8+ T cells infiltrating the TME, and a
reduction in tumor growth (90). Targeting VEGF-A alone has
had modest effects on overall survival in clinical trials (92–94).
Of note, aspirin has also been associated with prevention of
colorectal cancer and a reduction in colorectal cancer mortality
(106). Combining VEGF-A inhibitors with daily aspirin use may
present a potential therapeutic combination to improve upon
these modest anti-VEGF-A effects.

RT can also modulate the vascular TME to enhance tumor
metastasis, which is in part mediated by upregulation of
various genes involved in migration/metastasis. Tumor cell
dissemination via blood vessels requires tumor cells to undergo
transendothelial migration. This occurs at sites where leukocytes
and macrophages are in direct contact with tumor cells and
endothelial cells. The best studied proteins at these sites
are Jagged, Delta, and Notch (107). Activated Notch1 has
been shown to inhibit apoptosis and enhance radioresistance
(108), while downregulation of Notch1 expression can induce
radiosensitization and alleviate radiation-induced epithelial-
mesenchymal transition (EMT) (109–111). Activation of the
Notch signaling pathway upregulates E-selectin expression on
endothelial cells that shields tumor cells in the blood stream from
anoikis (112). In breast cancer models, inhibition of the Notch
signaling pathway blocked macrophage-induced intravasation in
vitro and the dissemination of tumor cells from the primary
tumor in vivo (113). The association between EMT and
radioresistance and the prominent role of Notch signaling as a
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driving force in the EMT process, suggest that Notch inhibition
will result in radiosensitization of tumors that underwent EMT.

Targeting the fibrotic TME can be challenging. Kalluri et al.
found that when myofibroblasts were eliminated from the TME
using transgenic mice, cancer progression and outcome were
worse (113). Deletion of myofibroblasts was also associated
with a reduced Teff/Treg ratio and elevated CTLA-4 expression
(113). This could be because certain structure is needed to
allow for normal functioning of immune cells and to keep
the tumor in place. However, some tumor types are known
to be highly fibrotic, hence reducing, but not eliminating,
fibrosis may be important for enhancing anti-tumor immunity.
As treatment with RT can result in a significant increase in
fibrosis in these tumors (114–118), it may also be important
to use anti-fibrotic agents to reduce fibrosis to pre-RT levels.
Some available drugs are being tried pre-clinically to reduce
fibrosis. For example, Pirfenidone, which inhibits TGF-induced
fibrosis by targeting the TGF-β1/Smad/CTGF pathway (119) has
been shown to reduce RT-mediated fibrosis in a murine lung
carcinoma model (120) and increase survival (121). Another
avenue to increase T cell infiltration is targeting CXCL12 or its
receptor, CXCR4. Targeting both has been shown to reduce RT-
associated lung fibrosis (122), and anti-CXCL12 therapy alone
increases T cell infiltration into tumors (104). Although directly
targeting FAP+ cells represents an attractive therapeutic strategy,
thus far targeting FAP alone has shown no benefit in clinical
trials (115).

CONCLUSION

There is now considerable evidence that single-agent immune
therapies have limited response in various cancer sites (123–
126). Radiation therapy has been shown to synergize with
immune modulating therapy through several mechanisms
including exposure of neo-antigens, STING activation and PD-
L1 upregulation (31, 59, 127). In addition to synergy where
each component contributes to tumor response, radiation
therapy can transform tumors and sensitize them to immune
therapies (7, 9, 12, 17). However, in both cases the response
to combination RT and immune therapy can be transient.
The challenge ahead is to determine why the combination
of RT and immune therapy provides a durable response in
some patients and a limited response in others. Specifically,
future studies should focus on identification of how RT’s

paradoxical effects manifest in responders and non-responders.
The response to RT and immune modulating therapy can be
suppressed through additional mechanisms of immune-evasion
and immune-suppression including chronic IFN-γ activation,
conversion of ATP to adenosine, ECM remodeling and secretion
of immunosuppressive factors that promote infiltration of
Tregs, MDSCs and macrophages. These mechanisms are likely
activated by tumor-intrinsic factors that should be identified
and targeted to develop effective therapies. It is conceivable
that such factors will affect RT response differently between
patients with the same cancer type and across different cancer
types. Therefore, identifying diagnostic biomarkers for these

factors is an important next step. Tumor staining for PD-
L1 expression has been successfully implemented in NSCLC
and melanoma patients to identify candidates who will benefit
from anti-PD-1/anti-PD-L1 therapy. Additional markers are
warranted to identify candidates such as immune checkpoint
receptors such as TIM-3, LAG-3, CTLA-4, as well as assessment
of intratumoral Tregs, MSDCs and macrophages are warranted.
Furthermore, assessment of secreted factors will be important for
identifying patients who can benefit from therapies that target
recruitment and homing of immune suppressive cell populations.
Such factors include TGF-β, ATP, CCL2, CCL20, and CCL22.
Another challenge of integrating RT with immunotherapy
is identifying the RT dose and fractionation resulting in
optimal synergy. Most evidence suggests that hypofractionated
RT is better suited for integration with immunotherapy, but
there is also evidence that conventional fractionation can
achieve similar results. Consideration for when certain immune
cell populations are more abundant may be beneficial in
determining an optimal dosing schedule (128, 129). It is
important to design clinical trials that address RT’s effects
on the TME, as well as dosing and fractionation when
combined with immunotherapy. Selecting rational combinations
of therapies based on both forward and reverse translation,
rigorous preclinical studies, and careful analysis of trial
specimens is needed to generate a mechanistic understanding
of the effects of treatment on the tumor and the associated
microenvironment.
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