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Considerable controversy exists about which hypotheses and variables best
explain mammalian brain size variation. We use a new, high-coverage data-
set of marsupial brain and body sizes, and the first phylogenetically imputed
full datasets of 16 predictor variables, to model the prevalent hypotheses
explaining brain size evolution using phylogenetically corrected Bayesian
generalized linear mixed-effects modelling. Despite this comprehensive
analysis, litter size emerges as the only significant predictor. Marsupials
differ from the more frequently studied placentals in displaying a much
lower diversity of reproductive traits, which are known to interact exten-
sively with many behavioural and ecological predictors of brain size. Our
results therefore suggest that studies of relative brain size evolution in
placental mammals may require targeted co-analysis or adjustment of repro-
ductive parameters like litter size, weaning age or gestation length. This
supports suggestions that significant associations between behavioural or
ecological variables with relative brain size may be due to a confounding
influence of the extensive reproductive diversity of placental mammals.
1. Introduction
Brain size relative to body size is extremely variable across vertebrates [1,2], with
mammals having both an extremely oversized brain for their body size and
substantial variationwithin their clade. Evolutionary increases in relative mamma-
lian brain sizes (‘brain size’ herein) arewidely considered to arise from selection for
larger brains [3,4], under the assumption that this confers better cognitive abilities
and therefore greater fitness [5]. However, the kind of cognition targeted by selec-
tion has been a matter of extensive debate and has been researched using a large
diversity of approaches. Three explanatory frameworks—social, ecological and
cognitive—roughly summarize different schools of thought about brain size
evolution [6–12]. The ‘social brain’ hypothesis suggests that an increase in social
complexity (such as social or foraging group size and mating system) can select
for larger brain sizes, and specifically larger neocortex size [13], because social inter-
actions can be computationally complex. On the other hand, the ‘ecological brain’
hypothesis focuses on cognitive demands related to ecological factors (diet, home
range, predation pressure) [7,11] because of the individual costs of dealing with
these pressures. Lastly, the cognitive buffer hypothesis is a much more general
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hypothesis regarding the evolution of brain variation, which
does not associate relative size increase with particular behav-
ioural parameters. Rather, it posits that larger brains generally
improve fitness and survival, due to advantages related to nego-
tiating novel or unpredictable environments and situations
[6,14]. This ‘buffer’ function of the brain could generate positive
feedback processes accelerating brain size evolution [14].

The debate about which of the three hypotheses best
explains brain size evolution coincides with controversy over
what specific variables select for the evolution of larger brains.
This situation is exacerbated by poor data availability for
many important variables, particularly behavioural data, such
that only small subsets of species have a complete collection of
variables and therefore confidence in the analyses is low [15–18].

In addition, it is widely recognized that relative brain
size is probably antagonized by the high expense of brain
growth and maintenance. Among other constraints, repro-
ductive parameters and energetic maintenance are probably
particularly important [19–25]. Because all selection-based
hypotheses generally invoke traits tied to reproduction, it is
difficult to dissect energetic reproductive effects from a selec-
tion [26,27] in cases where relative brain size is associated
with a selection-based but reproduction-confounded vari-
able. For example, home range and social group sizes are
related to mating systems [28]; social group sizes are related
to predation pressure [29], which in turn is highly correlated
with reproduction and maternal investment [30]; energy
availability for both maternal investment and maintenance
is dependent on the ecological factor of diet [7].

The confounding of reproductive investment and selection
agents on larger brains poses a particular problem for research
into placental mammals, which attract most research interest
because humans and other large-brained mammals belong to
this clade. Placentals have highly varied life histories, with
variation along the neonatal maturity spectrum (e.g. altricial
versus precocial) being particularly implicated in the evolution
of mammalian brain size [31]. By contrast, the sister radiation
of placentals—the marsupials—does not have an altricial-pre-
cocial spectrum; neonates are all born at early developmental
stages after a short gestation period (12–30 days) and the
brain develops nearly entirely postnatally in all species [32].
In addition, placentals displaywidely differing types of placen-
tation, gestation lengths and milk composition, which may
increase the risk of confounding constraints of reproduction
with selection on behavioural and ecological traits [33]. In
marsupials, reproductive variation is lower: they have a
three-phase lactation period that seems to be complex in its
varying milk composition during lactation [34] but similar
across species [35]. In addition, overall maternal investment
time (pregnancy and weaning combined) is drastically more
variable in placentals compared to marsupials [36]. Reproduc-
tive or developmental traits that might be associated with both
socio-ecological behavioural variables and relative brain size
are therefore minimized to lactation traits (mainly duration)
and litter size [19,36,37]. Despite this, marsupials exhibit a
diverse array of social and mating systems, diet types, home
ranges and cognitive abilities compared to placentals [38],
and are distributed in habitats with various levels of seasonal-
ity (NewGuinea, Australia and the Americas). Moreover, aside
from the lack of a corpus callosum, marsupial brains do not
appear to differ from those of placentals in its cell-level or
macromorphological organization [39,40]. This combination
of relative developmental and reproductive homogeneity and
ecological, behavioural and social diversity therefore makes
marsupials perfectly suited for testing hypotheses about
brain size evolution [19,36,37].

Previousworkonmarsupial brain size evolution [19], focus-
ing on the Australasian radiation, has yielded little support for
any of the main hypotheses of behavioural complexity. It
instead identified reproductive constraints of litter size, which
is a well-known effect across mammals and also birds [41,42].
However, this study suffered the common issue of low sample
sizes for models, due to high numbers of missing values and
a lack of broad phylogenetic representation—particularly
with a view to American marsupials. Lastly, the study used a
commonly employed statistical approach of phylogenetic gen-
eralized least squares (PGLS)—which is sensitive to
topological errors in phylogeny, incompatible with a parallel
analysis of multiple imputed datasets, and assumes a single
mode of Brownian evolution throughout the whole tree [43].

In the current study, we expand existing marsupial brain
size data by a third and use several novel analytical approaches
providing themost comprehensive test of themain hypotheses
of brain evolution. This involves the first use of phylogeneti-
cally informed multiple imputations (MI) through chained
equations of missing data in brain size studies [18,44,45], fol-
lowed by phylogenetically corrected Bayesian generalized
linear mixed-effects modelling—MCMCglmm [46].

We first ask whether this more comprehensive approach
improves inference for previously developed models of behav-
ioural complexityand its relation to brain size inmarsupials.We
also add three additional important hypotheses of brain size
evolution, namely whether play behaviour and conservation
status (both cognitive buffer-related hypotheses) or hibernation
(a brain maintenance-related hypothesis) are associated with
brain size variation. To better understand the evolutionary pat-
terns leading to relative brain size variation in marsupials, we
compare the evolutionary models—early burst (EB), Brownian
motion (BM) and Ornstein–Uhlenbeck (OU)—of relative brain
size increase in the three landmasses (Australia, New Guinea
and the Americas) and test whether evolutionary mode shifts
had occurred as a result of invasion in a novel landmass.
2. Material and methods
All analyseswere conducted in R [47]. The code to replicate all ana-
lyses, including all data, can be found on https://github.com/
orlinst/Marsupial-brain-evo. Packages that were used for the
analysis: phytools [48], caper [49], MCMglmm [46], mulTree [50],
mice [51], phylomice [52], geiger [53]. For plotting, ggplot2 [54]
and hdrcde [55] were used.

(a) Dataset
We use body mass as an estimate for body size, while endocranial
volume (ECV)was used as an estimate for brain size. Data on brain
volumes were obtained from measurements of ECV and were
obtained from several different sources [19,39]. Most ECV volumes
were obtained from Ashwell [39], which included: 472 skulls from
52 species of dasyuromorph (carnivorous/insectivorous) marsu-
pials and the marsupial mole, 146 skulls from 14 species of
Peramelemorphia (bilbies and bandicoots) and 639 skulls from
116 species of Diprotodontia (koala, wombats, gliders, possums,
kangaroos and wallabies) from the collection of the Australian
Museum in Sydney. Twenty-nine skulls from 16 species of
Ameridelphian marsupials were from the Museums of Victoria
and Queensland. We had added 62 new species of American
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Figure 1. Schematic of the pipeline employed for MI and data analysis.
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marsupials to the dataset,whose brain volumeswere collected from
museum collections using glass beads by James Peters. These data
were collected in a similar way to that employed by Ashwell et al.
[39].Bodyweightdatawere taken from[56]but thoroughlyupdated
using the latestdatafrom[57].Asa result,we collated the largest and
most comprehensive dataset on marsupial brain size and body
weight to date comprising 176 species.

While endocranial volumes are a reliable proxy for brain size
[1] they do suffer from certain drawbacks. For example, in mar-
supials, the koala’s (Phascolarctos cinereus) endocranial cavity
might be exceptionally large compared to the brain contained
in it, comprising only around 60% of the total ECV [58]. There-
fore, using ECV without correction in such species might lead
to the misleading observation that they have very large brains.
To our knowledge, no other species in our dataset has such a
potential stark discrepancy between ECV and actual brain size.

Moreover, the dataset includes 16 traits chosen to allow for
testing most of the hypotheses about brain size variation (see
table with data sources in the electronic supplementary material
for traits and sources). The final dataset comprises 176 species of
marsupials from all three continents inhabited by the infra-class.
Those comprise around 53% of all marsupial species, approxi-
mated to be around 330 in total. The full dataset used can be
found in the electronic supplementary material.

Brain size, body size, origin and activity cycle had no missing
values, while the other traits had around 25% missing values on
average (see MI section and electronic supplementary material
for the pattern of the missing data).

For a detailed description and rationale for inclusion and
sources of the data, see the table with data sources.

(b) Phylogeny
We included information on phylogenetic non-independence in
all our analyses using an ultrametric phylogenetic tree of 175
extant marsupial species (with exception of the extinct Thylacine)
obtained from Time Tree [59]. This was deemed appropriate
because the tree provided full coverage of all species investi-
gated, using for most taxa the recent marsupial phylogeny of
Mitchell et al. [60].

The tree had 12 branches with the length of 0 (used as a means
for resolving polytomies), which due to the requirements of some
of the approaches had to be resolved.We did that by adding 0.01%
of the median branch length and then ultrametricized the tree
again using the extension, with the package phytools [61].

(c) Statistical methods
The framework used is presented in the schematic view in figure 1.

(d) Multiple imputations
For imputation of missing data, we used the R package
phylomice. It is an extension for the package mice [51], which
allows for MI with the addition of taking the phylogenetic
non-independence of the data into account. We use the method
of predictive means matching (see [62,63] for a detailed descrip-
tion of the non-phylogenetically corrected version of the method
used), a semi-parametric stochastic regression method in which a
small set of candidate values (donors) is found for each missing
data point based on a Brownian motion PGLS regression model,
whose predicted regression score is closest to the missing value
and predictions are produced as if the species comes off the
root of the tree with equal probability from five donors. Because
the beta coefficient values in the regression models are chosen
at random from the (approximate) joint posterior distribution,
such model introduces considerable stochastic variation in the
imputed data, simulated by a Markov chain Monte Carlo
procedure. We have imputed 25 such datasets.

This imputationmethodhas the advantage thatmissingdata are
imputed based on several values observed elsewhere in the set, so
theyareusually realistic. Thepatternofmissingvalues in ourdataset
is reported in the electronic supplementary material. We have vari-
ables with no missing values—brain size, body size, origin and
activity period—and others with more than half of the values miss-
ing, i.e. play (68%or 120missing) and torpor (53%or 94missing).On
average, the dataset contained 25% missing values, which we used
as a reference for the number of MI (see electronic supplementary
material for detailed analysis on missing data—analysis of the
pattern of missingness using the package naniar [64], the phyloge-
netic signal in missing data using the phylo.d function in caper
[49], collinearity ofmissingness and validation of imputed datasets).
Following published recommendations from White, Royston &
Wood [65], the number of datasets we imputed was equal to the
percentage of missing data—25.

We ran the imputations for 500 iterations each, on natural
log-transformed continuous variables, and raw values of categ-
orical variables (see strip plot of imputations). As predictors for
the imputation, only traits with less than 35% missing values
were used, which rendered 13 predictors in total. The conver-
gence of the chained equations was assessed visually on the
diagnostic plots of mice, using both strip plots and density plots.

All subsequent analysis conducted on variables containing
missing values were done on all 25 imputed datasets, and final
results were pooled from all 25 imputations using Rubin’s rule [66].
(e) Evolutionary model variation
To assess the suggestion of Weisbecker et al. [19] that switches to
different landmassesmay change patterns of marsupial brain evol-
ution (via a change in seasonality, predation, diet), we assessed if
differences in the evolutionary model on brain/body mass evol-
ution regimes occurred in Australia, New Guinea and America.
To investigate if such changes (i.e. whether Brownian motion or a
specific optima-driven model best explains the tip data) and par-
ticularly, if the deepest split in the marsupial tree (Ameri- versus
Australidelphia) resulted in different evolutionary patterns, we



Table 1. Tested models with β, standard error, posterior distribution above zero and calculated mean DIC and heritability. The values of the intercept are not
included and models significantly deviating from zero are highlighted in italics.

model β s.e. posterior distribution > 0 (%) mean DIC/phylogenetic heritability

developmental −245/0.981
weaning age 0.03 0.03 77.5

litter size −0.09 0.05 95.88

environmental −259.5/0.981
diurnal 0.03 0.08 67.4

crepuscular −0.05 0.04 9.99

shelter safety—intermediate 0.03 0.04 80.89

shelter safety—open 0.05 0.07 76.06

terrestrial −0.05 0.04 13.96

diet—2 0.05 0.06 79.89

diet—3 −0.07 0.07 14.41

diet—4 −0.03 0.08 33.62

home range 0.01 0.01 81.21

social −270.7/0.982
group living 0 0.05 47.68

parental care −0.02 0.07 34.07

mating system 0.03 0.05 77.07

populations density 0 0.01 54.85

metabolic −275.5/0.982
FMR 0.04 0.08 68.95

torpor −271.3/0.982
yes −0.13 0.15 19.22

play −248.1/0.98
play—2 0.1 0.18 70.37

play—3 0.08 0.17 69.36

vulnerability −278.3/0.983
status—2* 0.02 0.01 96.94

status—3* 0.06 0.06 84.72

origin −282/0.984
origin—2 −0.03 0.02 4.74

origin—3 −0.05 0.04 12.15
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investigated which model best fitted our data—BM versus OU
versus EB. Best-fitting models were assessed using the function
fastBM from the geiger package. It simulates trait values given
knownphylogeny under the assumption of one of the evolutionary
modes and then compares the simulated values to the actual ones.
The fit of the models was evaluated using the Akaike information
criterion (AIC). BM is a type of ‘random walk’ model where trait
values change randomly in any direction. The EB model is a
time-varying version of BM, where the Brownian rate parameter
(σ2) slows down over time (i.e. random variation decreases after
an early ‘burst’). OU incorporates both random variation and stabi-
lizing selection by assuming that besides ‘random walk’, traits
evolve towards a given optimum (adaptive evolution).

( f ) Model assessment
Due to its convenient wrapper functions, we used mulTree [50] to
conduct analysis using the R packageMCMCglmm [46] on each of
the 25 imputed datasets. We ran the MCMC for 1 000 042 iter-
ations, with a burn in of the first 150 000 iterations, and the
sampling rate of 250. All priors were set to uniform and uninfor-
mative, which assumes that all values of the parameters are
equally likely. Eachmodelwas run on two chainswhich produced
an effective sample size of at least 3000 and all converged success-
fully (Gelman-Rubin criterion less than 1.1). Subsequently, the
results from all 50 model runs (25 datasets on two chains) were
pooled using Rubin’s rules [66]. A full description of the models
used can be found in the electronic supplementary material.
Finally, the fit of all models to explain brain size variation was
compared using phylogenetic heritabilities and the deviance
information criterion (DIC). The phylogenetic heritability used
in phylogenetic mixed models (PMM), measures the proportion
of phenotypic variance in the sample, which is attributable
to heritable factors (i.e. genes), as opposed to non-
heritable factors (i.e. environmental factors or measurement
error) [67]. The DIC is an estimator of prediction error like
the AIC, where the estimate is based on the posterior mean.
Only models with substantial posterior distribution above 0,
defined as at least 95% above or below 0, were selected as being
significant.
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3. Results
(a) MCMCglmm models
Eight models were investigated. In each model, body size was
included as a covariate (see model description in the electronic
supplementary material). Environmental model—Predictors:
activity period, shelter safety, arboreality, diet and home
range. We did not find any effect of any of the predictors on
brain size. Social model—Predictors: group living, parental
care, mating system and populations size. None of them had
any effect on brain size. Metabolic model—The model revealed
no effect of fieldmetabolic rate on brain size, including no inter-
action between body size and metabolic rate. Hibernation
model—Torpor had no effect on brain size, including no inter-
action between body size and torpor. Play model—Species
with larger brain sizes did not exhibit more or more complex
play behaviour compared to smaller brained species. The inter-
action between bodysize andplay behaviour also did not reveal
any effect of brain size.Developmental model—The developmen-
tal model included litter size and weaning age as predictors.
Weaning age did not show a pronounced effect on brain size,
but litter size had a negative effect (95.88% of the posterior
distribution below zero, β =−0.086, s.e. = 0.052; figure 2). Vul-
nerability model—Vulnerable, endangered, rare, declining or
species with very limited habitats were shown to have larger
brains within larger bodied marsupials, but smaller brains
within small bodied ones (96.94% of the posterior distribution
above zero, β = 0.023, s.e. = 0.012 for the interaction between
vulnerability and body size; figure 3). Origin model—Species
from New Guinea were shown to have larger brains within
small and average body-sizedmarsupials, compared to Austra-
lian or American (4.74% of the posterior distribution above
zero, β =−0.031, s.e. = 0.019).

We also ran a complete-case only-analysis using PGLS
confirming all the results, with the exception of the develop-
mental model, which was due to missing data included only
117 cases (see electronic supplementary material).
(b) Evolutionary models
Our analysis of themost probablemodels of continuous charac-
ter evolution suggested that marsupials in Australia have
undergone early burst evolution of both brain and body size.
By contrast, in New Guinea, we detected EB of the brain only
but Brownianmotion for bodysize evolution. InAmericanmar-
supials, we determined that BM is the best fit for both brain and
body size evolution. See the table of evolution models in the
electronic supplementary material for more details.

A phylogenetic ANCOVA showed that a model including
‘origin’ as an interaction term was significantly better than
a model including marsupials from all origins (F = 5.07,
p = 0.0072 on 4 (full model) versus 2 (reduced model) degrees
of freedom), while the variance inflation factor (VIF) was less
than 2, indicating no significant multicollinearity.
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4. Discussion
We found an intriguing lack of selection-related brain size cor-
relates across the radiation of marsupial mammals, which we
are highly confident in due to our dense phylogenetic coverage
and the large datasets that our phyloMICE imputation per-
mitted. The only unambiguous association of brain size was
with litter size, which is possibly the best-known negative cor-
relate of relative brain size across mammals [19,25,68], and
beyond [20,69]. This emphasizes the high importance of repro-
ductive investment for the evolution of relatively larger
mammalian brains. Because of the conspicuous lack of associ-
ation between brain size and behavioural traits that are
otherwise known to associate with brain size in placentals,
our suspicion is confirmed that many of these associations
may have an ultimate cause in the much more diverse range
of placental developmental modes and reproductive invest-
ment [19,21,23,25,36,70–72]. At a minimum, our results
demonstrate that the factors we have analysed here, and prob-
ably others, either haveweak effects on relative brain size or are
‘noisy’ due to their high variation across radiations [19,73]. The
latter conclusion is also consistent with differential models of
brain and body mass evolution in marsupials of different
landmasses we had detected.

Consistent with a previously established lack of association
between basal metabolic rate and brain size [36], we find no
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association between brain mass and field metabolic rate
(a more accurate reflection of metabolic expenditure after all
constitituent costs are accounted for [74]). This suggests that
the ongoing energetic maintenance of the brain is unlikely to
be impacted by evolutionary variation in metabolic rates, at
least in marsupials. It also explains why we found no relation-
ship between hibernation/torpor and brain size, which have
been hypothesized to represent times of brain starvation
related to extreme temperatures [75]. However, the dataset of
fieldmetabolic rateswas extensively based onphylogenetically
informed estimations, rather than empirical values [76], so that
a larger empirical dataset might lead to a different result.

We confirm previous reports that marsupials from
New Guinea have the largest brains among marsupials, but
this relationship only exists for small body masses and is
mainly due to an increased intercept. This might be due to
several reasons—the relationship between vulnerability and
brain size (see below), or the effects of seasonality, where
the more uniform, stable tropical climate in NG can facilitate
the evolution of larger brains [6,77], or the effects of predation
pressure in NG, both of human and non-human animals
[78–80] (but see [81]).

Similar to previous studies [82,83], we did not find any
clear-cut evidence that play behaviour and its complexity is
related to marsupial brain size. However, our play data con-
tained 68% imputed values, emphasizing the need for more
rigorous data collection, which has been show to be related
to brain size in primates [84].

We also show for the first time that larger brained marsu-
pials are more vulnerable to extinction. This effect, again, was
dependent on body size [85,86]. Vulnerable, endangered,
rare, declining species or species with limited habitats had
larger brains than expected, among species with larger
body sizes, but smaller brains than expected among species
with smaller body sizes. This is possibly because larger mar-
supials with larger brains tend to be more prosocial [86] and
may more easily fall prey to introduced predators in areas
with human activity (such as cats). On the other hand,
smaller bodied marsupials with larger-than-expected brains
might be more adaptable to human-modified environments
due to increases in behavioural plasticity [6,14,87]. Their
small sizes may facilitate the ability to avoid predation risks
related to human activities and introduced predators [88].
However, the interaction between brain and body size in
relation to vulnerability might again also be heavily influ-
enced by reproductive traits. For example, preweaning
predation vulnerability in placental mammmals is a major
determinant of whether a species produces a few large and
many small offspring within a litter, and also between a
few large litters and many small ones during a reproductive
season [89,90]. As such, larger-bodied marsupials, which pro-
duce smaller litters and carry their young until maturation
will be at the highest risk of vulnerability.

Originally, the social brain hypothesis pointed to the
relationship between cortex size and social group size in pri-
mates [13] was supported in other lineages like birds and
cetaceans [9,91] and also in regard to brain substructures
like the hippocampus [12]. This hypothesis had also been
contested [11], and one possible reason behind the lack of
relationship with social behaviour in marsupials might be
the fact that in our study we used whole-brain size, and
not exclusively cortex size, where the effect of reproductive
constraints might be the only explanatory variable [19].
Methodologically, we were able to overcome a pervasive
issue in comparative studies, namely the problemwithmissing
data. We show that, using multiple imputation techniques and
a Bayesian statistical approach, it is possible to avoid omitting
whole cases due to the missingness of single datapoints. By
imputing multiple datasets while conserving the mean and
variance of variables with missing values and subsequently
pooling the results of the statistical analysis using Rubin’s
rules, we were able to use the whole dataset of 176 species in
all models. This is an approach that unequivocally can be
useful in any comparative study, and we strongly recommend
the use of the proposed pipeline and urge for further develop-
ment of software tools that allow for this technique to become
more widely used both with phylogenetic and non-phyloge-
netic data. The approach is more complicated to execute as
compared to the now classical PGLS, but allows for running
of stochastic models on multiple trees and datasets, and as
such increases the confidence in the results.
5. Conclusion
Overall, our study emphasizes the possibility that many—if
not most—potential explanations of relative brain size have
their root in reproductive parameters, particularly those related
to maternal investment. Our results also slightly favour the
‘cognitive buffer hypothesis’, but it is noteworthy that there
is still no real clarity on what determines large brain size.
There aremanyother,more confined and structural parameters
such as (partitions, neuronalmorphology and cell density) that
remain unexplored andmay bemore important than brain size
[19]; the relationship between large brains and the capacity of
the skull to accommodate these is also not well-resolved and
might require further study [92]. Future studies should focus
on collecting more behavioural and cognitive data in the line-
age in question, as this might be used not only in studies
related to brain size, but also in diverse inquiries related to
neuronal numbers, morphology and genetics.

Our methodological pipeline also provides a basis for an
improved approach to comparative phylogenetic studies,
where most tools needed for (i) phylogenetic imputations,
(ii) stochastic modelling and (iii) pooling are readily availa-
ble and constitute a rigorous framework for executing
comparative studies.
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