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Abstract

Background: Various epigenetic factors are responsible for the non-genetic regulation on gene expression. The
epigenetically dysregulated oncogenes or tumor suppressors by miRNA and/or DNA methylation are often
observed in cancer cells. Each of these epigenetic regulators has been studied well in cancer progressions;
however, their mutual regulatory relationship in cancer still remains unclear. In this study, we propose an integrative
framework to systematically investigate epigenetic interactions between miRNA and methylation at the alternatively
spliced mRNA level in bladder cancer. Each of these epigenetic regulators has been studied well in cancer
progressions; however, their mutual regulatory relationship in cancer still remains unclear.

Results: The integrative analyses yielded 136 significant combinations (methylation, miRNA and isoform). Further,
overall survival analysis on the 136 combinations based on methylation and miRNA, high and low expression groups
resulted in 13 combinations associated with survival. Additionally, different interaction patterns were examined.

Conclusions: Our study provides a higher resolution of molecular insight into the crosstalk between two epigenetic
factors, DNA methylation and miRNA. Given the importance of epigenetic interactions and alternative splicing in
cancer, it is timely to identify and understand the underlying mechanisms based on epigenetic markers and their
interactions in cancer, leading to alternative splicing with primary functional impact.
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Background
Cancer is a complex disease that is caused by alterations
in the genome and epigenome. The alterations in cancer
are different in each person as the tumor accumulates

additional changes occur. As a result, the genetic and
epigenetic changes in the same tumor could be different
among diverse cells. Precision medicine is an emerging
approach to the treatment of cancer by developing tar-
geted therapies taking into account patients’ environ-
mental, lifestyle and genomic variabilities [1] . To apply
a precision medicine approach to cancer, the fundamen-
tal understanding of genomic and epigenetic abnormal-
ities that cause carcinogenesis and drive its progression
is essential. Understanding the epigenetic abnormalities
is very challenging, as various epigenetic machinery in-
teracts with each other in an integrated manner to
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maintain global expression pattern [2]. Thus, many large-
scale collaborative initiatives have been undertaken to gen-
erate large multi-omics datasets in cancer like The Cancer
Genome Atlas (TCGA) and The International Cancer Gen-
ome Consortium (ICGC), and multiple data integration
methods have been developed to understand multi-omics
markers associated with clinical outcomes [3–13].
Many abnormalities in cancer are caused by epigenetic

changes in DNA methylation and microRNA (miRNA)
[14, 15]. Previously, we identified interactions with
methylation and miRNA that were associated with gene
expression and survival outcome [13]. However, methy-
lation and miRNAs are also known to play a role in iso-
form usage in cancer [16]. In another study, we looked
at the effects of alternative splicing (AS) on miRNA
binding sites in bladder cancer to conclude that under-
standing transcript isoforms is essential to understand
gene regulatory mechanisms mediated by miRNA [17].
Alternative splicing is an underlying contributor to

biological complex and differences. Each gene in
eukaryote cell is composed of two distinct blocks of se-
quences, exons and intron. As exon is the region encod-
ing segments of the protein, exon is included, and
introns are removed by alternative splicing mechanism
during transcription. Some exons are also selective,
which means that some exons may also be removed
from the nascent mRNA, leading to a different combin-
ation of exons in the final transcript and are also impli-
cated in a variety of human diseases [18–20]. ~ 95% of
human genes are alternatively spliced. Conservative esti-
mates of AS show that at least 50% of exons are alterna-
tively spliced [21]. That is, most genes can each produce
an entire array of potentially unique proteins. Even if the
same genes are actively transcribed in two different cells,
their proteins can be different depending on how those
genes are spliced.
As the regulatory molecules (i.e., miRNA and methyla-

tion) are a type of epigenetic factors affecting gene expres-
sion [22], gene regulation and biological complexity may be
more complicated when alternative splicing interact with
these regulatory molecules (i.e., methylation and miRNA).
Cancer genes are down- or up-regulated by the methylation
status in promoter regions, hyper- methylations in pro-
moter regions of oncogenic genes and hypo-methylated in
promoter regions of tumor suppressor genes, respectively
[23]. Due to the nature of GC contents; higher in exon
compared to intron and higher in constitutive exon com-
pared to alternative splicing exon, methylation may be dif-
ferentiated across exons and introns by splicing status [24–
26]. Furthermore, hypo-methylated intron has been shown
to be more retained in breast cancer patients [27]. In the
purpose of integrating methylation with genetic regulation,
EpiMethEx [28] is one of the well-developed tools that
directly associate methylation with transcript isoform.

In addition to methylation, splicing occurring in 3′
UTR may affect regulatory effect of miRNA [29]. When
exon encompassing miRNA binding site is skipped (i.e.,
exon skipping event) or partial exon is alternatively
spliced (i.e., 5′ or 3′ splice site event), given mRNA
maybe not be repressed by miRNA [17]. Reversely, in-
clusion of new exon or intron (i.e., retained intron event)
may potentially provide additional miRNA binding site
resulting in a reduced amount of mRNA product [17].
In our study, we seek to study epigenetic interactions

(i.e., miRNA and methylation) in gene regulation
through alternative splicing. We classified the interaction
into two terms, synergistic and antagonistic in conjunc-
tion with alternative splicing status. We then evaluated
whether the differences in isoform expression resulting
from epigenetic interactions are associated with survival
(Fig. 1). Thus, in this study, we put forward a method to
identify the effects of methylation and miRNA inter-
action associated with isoform expression and its further
association to survival.

Results and discussion
Methylation and miRNA interaction associated with
isoform expression
After applying the likelihood ratio (LRT) test on the full
and reduced model, 136 out of 2,561,305 combinations
were found to be significant (Bonferroni adjusted p-value
< 0.05). Altogether, there were 61 unique isoforms, 105
methylation probes and 51 miRNAs across 56 genes.
The number of samples varied across each combination,
with a minimum of 294 and mean of 388.3, due to miss-
ing values. All the significant combinations, number of
samples, beta values from the full model, correlation be-
tween isoform, methylation, miRNA pairs, and Cox re-
gression p-values are provided in Table S1. The
distribution of the direction of effect determined by beta
values is shown in Table 1. It can be noted from Table 1
that 59 methylation probes have a negative direction of
effect, and 77 methylation probes have a positive direc-
tion of effect, holding 43%. However, in the case of
miRNA about 76% (103/136) of miRNAs have the nega-
tive direction of effect, indicating most of them down-
regulate isoform expression. Additionally, Amuran et al.
compiled a list of 106 miRNAs associated with bladder
cancer by reviewing the literature and about 71% (97/
136) miRNAs in the combinations were present in the
list of miRNAs deregulated in bladder cancer [30].

Patterns of methylation and miRNA interaction associated
with isoform expression
We stratified the interaction pattern according to
methylation probe’s location; promoter, gene body,
and 3’UTR. 44 methylations (19 unique transcripts),
66 methylations (32 unique transcripts) and 10
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Fig. 1 Overview of the study. The diagram illustrates various steps in the study - formation of isoform, miRNA and methylation pairs, data quality
control, LRT and survival analysis
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methylations (8 unique transcripts) were located in
the promoter, gene body and 3’UTR regions, respect-
ively. In general, 3′ UTR is considered part of gene
body, but we separated 3′ UTR region from gene
body as miRNA can directly interact with methylation
in 3′ UTR region only, as miRNA binds to 3’UTR re-
gion. The interaction is first defined as a methylation-
dominant or miRNA-dominant (See Methods). As
shown in Fig. 2B, interactions in promoter region
(i.e., a location of methylation probe) was more likely
to have miRNA-dominant regulation. Notably, very
few interactions had methylation -dominant cases
(less than 10%). However, interestingly methylation
exerted dominant regulation effect in gene body. We
then further stratified the interactions, synergetic- or
antagonistic- effect. Interestingly, the antagonistic

effect was observed little more than synergetic in the
promoter and 3′ UTR region. On the other hand, a
higher number of synergetic effect combinations were
observed in the gene body (Fig. 2C).

Differential isoform expression and association with
survival outcome
We were interested in understanding how the low/high
expression of methylation and miRNA expression in
pairs significantly associated with isoform expression al-
tered the isoform expression. So, we split samples were
split into LL and HH groups. To further understand the
implication of these changes on survival of the patients
we performed Kaplan Meier survival analysis between
the groups. The differential isoform expression between
HH and LL (2-group test) was significant for 100

Table 1 Distribution of direction of effect of methylation, miRNA and interaction term. (+) for synergistic and (−) for antagonistic
effect

Methylation miRNA Interaction # combinations # Cox-regression

– – – 10 2

– – + 34 2

– + – 11 1

– + + 4 1

+ – – 8 0

+ – + 51 4

+ + – 16 3

+ + + 2 0

Fig. 2 Categorization of interactions based on methylation probes and correlation coefficient. A Our criteria for categorizing interactions. B
Distribution of interactions according to the methylation probe position. C Distribution of synergistic or antagonistic interaction
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combinations (out of 136) at (t-test P < 0.05). Further,
the differential expression between 4 groups HH, LL,
HL, and LH (4-group test) were also examined, and 98
combinations were significant at (ANOVA P < 0.05). In
addition to that, 126 combinations were significant in ei-
ther 2-group test or 4-group test, and 76 combinations
were significant in both 2-group test and 4-group test.
The results show that for most of the combinations that
have significant interaction between methylation and
miRNA, the differential expression can be observed be-
tween HH, LL, HL, and LH groups. Subsequently, the
samples were split into HH and LL groups to determine
if there is any difference in survival of patients between
the groups. Cox regression was run on 136 significant
combinations. Out of 136 combinations, 13 were associ-
ated with survival outcome at Cox p-value threshold <
0.05 (Table 2). Of the 13 combinations that were signifi-
cantly associated with survival outcome, isoforms from
11 combinations were differentially expressed between
HH and LL groups and the other two isoforms between
the LL, HH, LH and HL groups. The isoform expression
was significantly higher in LL group in 7 of the 13 com-
binations and lower expression in the four remaining
combinations (Fig. S1-S13).

Case study: CAV1, TGFBR3, and RND3
Figure 3 shows plots for isoform ENST00000341049 in
gene CAV1. CAV1 is known to be associated with high-
grade bladder cancer as an oncogenic membrane pro-
tein, and its overexpression is known to be associated
with bladder cancer progression [31, 32]. As observed in
Fig. 3c, the isoform has significantly higher expression in
the LL group (Fig. 3a, red points) than in the HH group

(Fig. 3a, cyan points). Since higher expression of CAV1
is associated with cancer progression, the survival rate
should be lower for LL group. As anticipated, the sur-
vival rate was significantly lower (Cox p-value < 4.9 ×
10− 3) for LL group (Fig. 3b). That is, disruption in regu-
lation of methylation (i.e., cg04474049) and miRNA (i.e.,
hsa-let-7c-5p) may contribute to bladder cancer
progression.
One of the isoforms, ENST00000212355 (gene

TGFBR3) from a combination associated with survival,
is targeted by miRNA - hsa-let-7c-5p, which is known
to be a tumor suppressor and acts by downregulating
TGFBR3 post transcriptionally [33] (Fig. 4a). More-
over, TGFBR3 knockout is known to reduce tumor
size. From the interaction plot in Fig. 4b, it can be
observed that the isoform expression is low when
methylation and miRNA are both low. However,
when methylation is higher (+ 1 sd), the isoform ex-
pression decreases with an increase in miRNA expres-
sion, but the slope is comparatively smaller. Thus, the
LL group has lower isoform expression than the HH
group as seen in Fig. 4c. Consequently, LL group has
a higher survival rate as compared to the HH group
(Fig. 4d). The other isoforms ENST00000425042 and
ENST00000263895 of HID1 and RND3 respectively
are part of combinations that are associated with sur-
vival. HID1 and RND3 are known to be downregu-
lated in various cancers [34, 35]. The loss of function
of HID1 is known to be associated with the develop-
ment of cancer [34]. Consistent with the literature, it
was observed that the LL group has a significantly
lower expression of isoform ENST00000425042 and
also a lower rate of survival (Fig. S5).

Table 2 Combinations associated with survival between HH and LL group

Isoform Methylation miRNA LRT p-value Cox p-valuea Higher expressionb Higher survival ratec

SGCD_ENST00000435422 cg19748027 hsa-miR-409-3p 5.24E-10 0.0013 HH LL

PLS1_ENST00000457734 cg05652551 hsa-miR-142-5p 9.10E-10 0.0014 LL LL

CAV1_ENST00000341049 cg04474049 hsa-miR-194-5p 1.45E-08 0.0049 LL HH

PLS1_ENST00000457734 cg05652551 hsa-miR-155-5p 7.07E-12 0.0060 LL LL

HID1_ENST00000425042 cg07430967 hsa-miR-125a-5p 1.50E-12 0.0072 HH HH

TGFBR3_ENST00000212355 cg08648138 hsa-let-7c-5p 9.24E-13 0.0076 HH LL

PMEPA1_ENST00000341744 cg01515444 hsa-miR-200a-5p 2.20E-10 0.0117 LL HH

H2AFY_ENST00000304332 cg01874869 hsa-miR-100-5p 1.24E-08 0.0139 – HH

THBS2_ENST00000366787 cg19681793 hsa-miR-105-5p 1.29E-09 0.0186 LL HH

RND3_ENST00000263895 cg17730764 hsa-miR-200c-3p 9.19E-09 0.0196 – LL

ACOT7_ENST00000377855 cg16429975 hsa-miR-155-5p 1.82E-08 0.0271 HH HH

TMTC3_ENST00000266712 cg07537152 hsa-miR-98-5p 6.13E-09 0.0342 LL HH

SCD5_ENST00000319540 cg09031823 hsa-miR-200a-3p 2.56E-11 0.0385 LL HH
aThe p-value from cox regression between LL and HH groups
bThe group which has significantly higher isoform expression (t-test P < 0.05)
cThe group which has higher survival rate (Cox regression P < 0.05)
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RND3 is known to be downregulated by its target
miRNA, hsa-miR-200c-3p, in the combination. The
downregulation of RND3 leads to higher expression of
CCND1, which can lead to oncogenesis and tumor pro-
gression [35]. Besides, some of the genes could also
show oncogenic properties in cancer. Two other genes
that are part of combinations associated with survival,
PMEPA1 and THBS2 are known to be upregulated in
cancer [36, 37]. Moreover, PMEPA1 knockout is known
to impair tumor growth, and THBS2 overexpression is
known to be associated with vascular invasion, advanced
primary tumor status and nodal metastasis [37]. Fatty
acids play an important role in cancer cells, as cancer
cells need large amounts of fatty acids to grow [38].
Thus, fatty acid metabolism is involved in cancer

progression. Two of the genes, ACOT7 and SCD5, with
isoforms ENST00000377855 and ENST00000319540 re-
spectively, are part of the “Biosynthesis of unsaturated
fatty acids” pathway (KEGG 2019 Human). The pathway
was also significantly enriched (p-value = 0.00011 and
adjusted p-value = 0.035) based on the enrichment test
run using genes of all isoforms from combinations that
were associated with survival, using Enrichr [39, 40].

Methylation and miRNA interaction patterns
Many different interaction patterns of miRNA and
methylation associated with isoform expression were ob-
served. Especially, more miRNA dominant interactions
were observed in promoter region, and more methyla-
tion dominant interactions were observed in gene body

Fig. 3 Plots for combination of CAV1_ENST00000341049, cg04474049 and hsa-miR-194-5p. a) The samples were divided into 9 groups based on
3 quintiles of methylation and miRNA. b) Kaplan-Meier survival curve between groups LL and HH. The survival among the groups was
significantly different with Cox regression p-value 1.51 × 10−10. c) Boxplot showing isoform expression of group LL and HH, which are significantly
different (t-test p-value 1.78 × 10− 11). d) Boxplot of isoform expression between groups LL, HH, LH, HL. e) Kaplan-Meier survival curve for groups
LL, HH, LH and HL. The Kaplan-Meier log rank p-value for the combination was 6.43 × 10−02
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region. In fact, methylation within promoter region al-
ters gene expression by affecting binding of transcription
factors, and its regulation prior to that of miRNA. In
other words, mRNA expression may be susceptible to be
regulated by miRNA which is a next step of the methyla-
tion regulation. That is, the basis of this knowledge may
contribute to more observation of dominant miRNA
regulation with interactions with methylation within
promoter region. Unexpectedly, in methylation within
gene body, we found more methylation dominant inter-
action. The Methylation within gene body is known to
relate to splicing processing, cause a temporal pause of
the transcription process that help correct splicing [25].
Splicing regulation is very complex and occur generally
at the mRNA processing after gene expression regula-
tion [41]. Thus, these methylations may affect mRNA
expression regulation more constantly than methylation
in promoter. Although we separated methylation in 3′
UTR from gene body to understand patterns when inter-
action of miRNA and methylation occurred in the same
location, we did not find distinct characteristics. How-
ever, it may be caused by a small number of interactions
in the case. In addition, there was also different patterns
of synergistic and antagonistic effect between methyla-
tion in promoter and gene body (Fig. 2B).
As we discussed above, we observed the uneven distri-

bution of the interactions across gene regions (Fig. 2B).
To verify if this difference may be due to the unique en-
richment of underlying distribution of methylation in
certain gene regions for interactions with miRNA or not,

we counted the number of underlying methylation
probes in each gene region; promoter, gene body, and 3′
UTR. The methylation was most counted in gene body
region (325,147 probes), which is followed by promoter
(205,175 probes) and 3′ UTR region (26,228 probes)
(Fig. S14), in which the underlying distribution can be
biased by the length of each region: gene body is the lon-
gest in length. Taken together, we found that the 3′
UTR has the smallest number of the underlying methy-
lation but the most enrichment of the interaction with
miRNAs, suggesting that methylations interacting with
miRNA may be enriched in 3′ UTR which they are co-
localized.
Out of 13 significant combinations associated with

survival, seven combinations were synergetic interaction
and remaining six combinations were antagonistic inter-
actions. Particularly in synergetic combinations, three
combinations had positive methylation and miRNA cor-
relation, and the remaining four combinations had nega-
tive methylation and miRNA correlation. Figure 5
summarizes all the combinations into synergetic and an-
tagonistic categories. Additionally, if the four groups
were divided based on synergetic and antagonistic effect,
it can be observed in Fig. 5 that most of the isoform ex-
pression between groups LL, HH, LH, and HL are simi-
lar in the same group. For instance, SGCD_
ENST00000435422, HID1_ENST00000425042 and
TGFBR3_ENST00000212355 have synergetic effect with
methylation and miRNA being positive. The isoform ex-
pression between LL, HH, LH, and HL groups are

Fig. 4 ENST00000212355 (gene TGFBR3) isoform, hsa-let-7c-5p miRNA and cg08648138 methylation probe interaction and survival outcome

Shivakumar et al. BMC Genomics          (2021) 22:754 Page 7 of 12



similar. Specifically, all three had lower isoform expres-
sion in LL group and higher isoform expression in other
groups. The opposite also holds true in case of 2nd
group with negative synergetic interaction where isoform
expression is higher in LL group for all four combina-
tions as compared to other groups.
As we showed that a combination of methylation and

miRNA could provide an improved knowledge of the
genetic regulation underlying bladder cancer and the
methylation in this study and miRNA pattern is a unique
characteristic across cancer types [42, 43], our ap-
proaches could be expanded to other cancers if the
matched data (methylation and miRNA) is available.

Conclusion
In this study, we considered the use of TCGA bladder
cancer data to show epigenetic interactions between
methylation and miRNA associated with survival in
bladder cancer. The method used successfully identified
136 significant methylation and miRNA interactions that
were associated with isoform expression. Further, out of
136 significant interactions, 13 were significantly associ-
ated with survival. Further, it also observed that a greater
number of miRNA dominant interactions were observed
in the promoter region whereas, a greater number of
methylation dominant interactions were observed in the
gene body. Additionally, isoform expression patterns

Fig. 5 Synergetic and antagonistic interactions. The blue arrow shows the correlation between miRNA and isoform and yellow arrow shows
correlation between methylation and isoform. The x-axis for the line plot represents miRNA expression and y axis represents isoform expression.
The lighter of the 3 lines is methylation − 1 SD, the dark solid line is +1SD and the medium one is the Mean methylation. The boxplot shows
plot of groups LL, HH, LH and HL from left to right
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were also observed with synergetic and antagonistic in-
teractions. This shows that miRNA, methylation and iso-
form expression data can be used to study interactions
between methylation and miRNA that are associated
with survival outcome. Further, this study also shows
different categorizations and patterns of interaction at
various sites. The findings in this study could elucidate
some of the complex epigenetic mechanisms involved in
carcinogenesis and cancer progression, which could aid
in the development of new targeted therapies and be
valuable when applied to precision medicine.

Methods
Dataset and quality control
The Cancer Genome Atlas (TCGA) data was obtained
from Xena browser (http://xena.ucsc.edu). Xena browser
provides pre-compiled datasets derived from NCI’s Gen-
omic Data Commons (GDC) public resource for further
bioinformatics analysis [44]. The normalized isoform ex-
pression data using RSEM FPKM was downloaded from
the TCGA Pan-Cancer (PANCAN) section of Xena
browser. Further, the clinical data was also downloaded
from the PANCAN section, as it contains the latest up-
dated survival data. However, the methylation and
miRNA data were obtained from TCGA Bladder Cancer
(BLCA) section. The subset of BLCA patients was ob-
tained for the isoform expression data using sample IDs
from the clinical file. After excluding samples from
“Solid tissue normal” as defined by TCGA sample type
code “11”, there were 407 BLCA samples with isoform
expression data, 415 with methylation data and 410 with
miRNA data. Additionally, five samples were removed
from clinical data because of missing, age at diagnosis,
survival time, AJCC pathologic tumor stage, or histo-
logical grade, resulting in 409 samples. Consequently,
the common samples between all four datasets were ex-
tracted, leading to a total sample count of 399. The clin-
ical demographics for 399 samples are shown in Table 3.
Further quality control (QC) steps were applied to each
dataset. Initially, before QC, there were 198,619 iso-
forms, 485,577 methylation probes and 2588 miRNAs.
Only isoforms that have FPKM threshold ≥0.1 in more
than 50% of samples and genes with at least two tran-
script isoforms were selected for the analysis. Further,
methylation probes with all ‘NA’ values were removed,
and miRNAs with expression value missing in more than
75% of samples were removed. Finally, 67,627 isoforms,
396,065 methylation probes, and 706 miRNAs passed
the QC criteria. Table 4 shows the data types, platform
and number of features for each data type after QC. To
better interpret the interactions, the isoform expression,
methylation and miRNA expression values were cen-
tered by subtracting with respective mean. Additionally,
any isoform, methylation and miRNA expression values

that were not in the range [Q1–3 × IQR, Q3 + 3 × IQR]
were considered outliers and were removed. Further in-
formation and links to the files used from Xena browser
are listed in “Availability of data and materials” section.

Isoform, methylation and miRNA binding sites
Most of miRNA target predictions are dependent on se-
quence similarity between mature miRNA and 3’UTR of
mRNA. These predictions have enormous false-positive
rate due to lack of experimental validation. Thus, in
order to obtain comprehensive and reliable miRNA tar-
get site information, reducing the false-positive rate, we
combined miRNA target predictions from databases
generated using two different prediction methods and
one experimentally validated data set: 1) TargetScan (re-
lease 7.0) [45], 2) MicoRNA.org [46] which computa-
tionally predicted miRNA target sites based on
conserved complementarity and the miRanda algorithm
between targets of miRNAs and mRNAs, respectively
and 3) miRTarBase that identified relations between
miRNA and mRNA based on experimental validations

Table 3 Clinical demographics of samples after QC

Sex

Male 301

Female 108

Age at diagnosis

Mean 68.04

Standard deviation 10.63

AJCC pathologic tumor stage

Stage I 2

Stage II 130

Stage III 141

Stage IV 136

Histological grade

High 388

Low 21

Vital Status

Diseased 229

Alive 180

Average survival days

Diseased 1021.43

Alive 553.78

Table 4 Data types, platform and number of features used

Data Platform # of features after QC

Isoform expression Illumina HiSeq miRNA-Seq 67,627

Methylation Infinium HM450 BeadChip 396,065

miRNA expression Illumina HiSeq RNA-Seq 706
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through reporter assay, western blots, and etc. [47]. In
particular, we only included predictions with high confi-
dence scores (alignment score ≥ 120 and binding energy ≤
− 7.0) of miRanda algorithm from the MicoRNA.org data-
base in this study. We carried out data quality control in
three steps as follows: first, we tabulated miRNA and
mRNA pairs using miRTarBase. Second, for these pairs,
we obtained genomic coordinates of mRNA-target sites in
3′ UTR by matching miRNA IDs (i.e., hsa-miR-199) with
TargetScan and MicroRNA.org databases. Third, we then
annotated 3′ UTR regions of each mRNA with Ensembl
reference (release version 75, (http://ftp.ensembl.org/pub/
release-75/gtf/homo_sapiens/, September 2016). The total
of 439,404 pairs of miRNAs and their target sites were ob-
tained, and these pairs are 2.7% of the total predictions
(16,228,619 pairs) reported in the MicroRNA.org. Further,
the methylation probe ids from Xena were mapped to iso-
forms using gene names in the ID/Gene mapping file pro-
vided by Xena browser. Totally, there were 6,571,851
combinations which were further filtered to include only
67,627 transcripts from isoform dataset and 706 miRNAs
from miRNA expression dataset. Finally, we ended up
with 2,561,305 combinations that had isoform, methyla-
tion and miRNA expression data.

Methylation and miRNA interaction
To identify the interactions between methylation and
miRNA with respect to isoform expression, two linear
models were used. The full model consisted of a linear
combination of methylation, miRNA and an interaction
term, whereas the reduced model only contained a linear
combination of methylation and miRNA. However, both
models were adjusted for the same covariates - age at
diagnosis, gender, AJCC pathologic tumor stage, and
histological grade. The covariates were obtained from
the clinical dataset and, their distributions are shown in
Table 3. Specifically, the full model was defined as:
isoform-expression ~ methylation + miRNA + methyla-
tion * miRNA + covariates and the reduced model was
defined as: isoform-expression ~ methylation + miRNA
+ covariates. The significance of the interaction was de-
termined by applying LRT between the full and reduced
model. Further, the LRT p-values were adjusted for mul-
tiple testing using Bonferroni correction, and any com-
bination with Bonferroni corrected p-value < 0.05 was
considered significant.

Categorization of miRNA and methylation pairs based on
methylation probe location
As shown in Fig. 2A, for the significant miRNA and
methylation pairs, we divided them into three categories
according to the location of methylation probes in intra-
genic regions, promoter (upstream 2000 bp), gene body
(exons and introns), or 3’UTR. Then, for each category,

we defined miRNA, methylation, or both dominant
regulation of isoform expression based on the correl-
ation coefficient value between either of miRNA or
methylation and isoform expression. In other words, as
shown in Fig. 2A, an absolute correlation coefficient
value of miRNA greater than 0.3 and methylation less
than 0.3 with isoform expression was considered as
miRNA dominant regulation; on the other hand, the
correlation coefficient value of miRNA less than 0.3 and
methylation more than 0.3 with isoform expression was
considered as methylation dominant. In addition, if an
absolute correlation coefficient value of both miRNA
and methylation have more than 0.3 or less than 0.3
with isoform expression, it was defined as strong effect
and weak effect respectively.

Determination of synergetic or antagonistic effect of
methylation and miRNA interaction on mRNA expression
We defined as a synergistic or antagonistic effect of
methylation and miRNA pairs on isoform expression
based on correlation coefficient values. Synergistic effect
on isoform expression is the case when the both has the
same direction of correlation with isoform expression
(i.e. positive/positive or reverse/reverse correlation),
whereas antagonistic effect is the case when they have
different directions (i.e., a positive/reverse).

Survival analysis and differential isoform expression
To further investigate differential isoform expression
and difference in survival of the patient groups with
high/low methylation and miRNA expression, the sam-
ples were split into nine groups based on methylation
and miRNA expression values together. The groups were
created by splitting the methylation data into three
quantiles and miRNA data into three quantiles, as shown
in Fig. 2A. The two extreme groups – a group with high
methylation and high miRNA expression (HH) and
group with low methylation and low miRNA expression
(LL) were selected to run overall survival analysis. The
survival analysis was run using Cox regression, adjusting
for covariates - age at diagnosis, gender, AJCC patho-
logic tumor stage, and histological grade. Any combin-
ation with cox regression p-value < 0.05 was considered
significant. Further, the differential isoform expression
was also analyzed between HH and LL group using the
t-test. Additionally, differential isoform expression be-
tween HH, LL, LH, and HL groups were also analyzed
using ANOVA. Any p-value from t.test and ANOVA
below 0.05 was considered significant.
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