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ABSTRACT

Currently, predictive translation tuning of regulatory
elements to the desired output of transcription fac-
tor (TF)-based biosensors remains a challenge. The
gene expression of a biosensor system must ex-
hibit appropriate translation intensity, which is con-
trolled by the ribosome-binding site (RBS), to achieve
fine-tuning of its dynamic range (i.e. fold change
in gene expression between the presence and ab-
sence of inducer) by adjusting the translation level
of the TF and reporter. However, existing TF-based
biosensors generally suffer from unpredictable dy-
namic range. Here, we elucidated the connections
and partial mechanisms between RBS, translation
level, protein folding and dynamic range, and pre-
sented a design platform that predictably tuned the
dynamic range of biosensors based on deep learn-
ing of large datasets cross-RBSs (cRBSs). In doing
so, a library containing 7053 designed cRBSs was
divided into five sub-libraries through fluorescence-
activated cell sorting to establish a classification
model based on convolutional neural network in deep
learning. Finally, the present work exhibited a power-
ful platform to enable predictable translation tuning
of RBS to the dynamic range of biosensors.

INTRODUCTION

Biosensors have gained major attention in the field of
biotechnology (1) especially for monitoring metabolite for-
mation (2,3). The existing biosensors included RNA- and
protein-based biosensors (4). Wherein, RNA aptamers were

used as building blocks for designing small molecule RNA-
based biosensors (5). And we focused on the protein-based
biosensors in this work. Genetically encoded biosensors de-
rived from small-molecule inducer responsive transcription
factors that produce fluorescence intensity proportional to
the target metabolite concentration in the detection range
have attracted substantial research attention (3,6). How-
ever, the existing genetically encoded biosensors generally
have the drawback of inappropriate dynamic range (i.e. fold
change in gene expression between the presence and absence
of inducer) (7–11). Dynamic range is an important indica-
tor for fine-tuning biosensors, and a high dynamic range
can help to distinguish the small difference in the inducer
concentrations. The gene expression in biosensor systems
driven by small molecule responsive transcription factors
can achieve the desired output at appropriate translation
level. One of the key elements to regulate the translation
level is the ribosome-binding site (RBS), which tunes the
dynamic range of the biosensor by adjusting the transla-
tion level and protein folding (12) of the transcription factor
and reporter. Promoter, terminator, and plasmid copy num-
ber are also important factors in defining gene expression.
They mainly focus on regulating the transcriptional level
or stability of mRNA, far away from translation and pro-
tein folding. Thus, we chose RBS as the target in this work.
However, the existing genetically encoded biosensors usu-
ally suffer from unpredictable translation tuning of regula-
tory elements to dynamic range. Many attempts have been
made to tune the dynamic range of biosensors. For instance,
Levin-Karp et al. used six RBSs ranging from strongest to
weakest to achieve 20–200-fold dynamic range of protein
expression (13). Wang et al. tuned the dynamic range of
device input and output using five various-strength RBSs
(RBS30–RBS34) from the Registry of Standard Biological

*To whom correspondence should be addressed. Tel: +051085328539; Email: dengyu@jiangnan.edu.cn
Correspondence may also be addressed to Shenghu Zhou. Tel: +051085328539; Email: zhoush@jiangnan.edu.cn

C© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://orcid.org/0000-0002-7058-430X
http://orcid.org/0000-0002-1909-7223


Nucleic Acids Research, 2020, Vol. 48, No. 18 10603

Parts, and showed that RBS could be used as a linear am-
plifier to regulate protein expression levels (14). Although
these methods might help to regulate the dynamic range of
gene expression, the dynamic range of regulatory elements
involved in gene expression could not been predicted. For
example, if the RBS was changed, then obtaining the ap-
propriate dynamic range of gene expression required time-
consuming and laborious research.

Establishment of a predictable and robust method can
quickly achieve tuning of the biosensor dynamic range. In
a previous report, Salis et al. calculated the Gibbs free en-
ergy difference (�Gtot) between the initiation and termina-
tion states of protein translation initiation based on a ther-
modynamic model, and presented RBS calculator for de-
signing and synthesizing the RBSs of genes of interest, en-
suring the rational control of protein expression levels (15).
This significant contribution had accelerated the construc-
tion and optimization of complex genetic systems as well
as promoted the development of synthetic biology. How-
ever, synthesis of the RBS through the calculation of free en-
ergy lacked experimental support. Therefore, design of the
RBS by using a large amount of experimental data could
make research on the RBS synthesis more robust. However,
a large RBS database must rely on powerful analysis tools
for better utilization of their application value, which can be
solved by using mathematical models such as deep learning.
Deep learning is an algorithm that uses artificial neural net-
works as a framework to characterize and learn databases.
Deep learning models based on sequence levels have broad
application prospects in the field of synthetic biology. For
example, Chen et al. established Selene, a PyTorch-based
deep learning library, which enables researchers to easily
train the existing models to process biological problems of
interest based on new databases and can be applied to any
biological sequence data, including DNA, RNA, and pro-
tein sequences (16). Nielsen and Voigt used a deep learn-
ing based convolutional neural network (CNN) containing
42 364 plasmid DNA sequences datasets from Addgene to
predict the lab-of-origin of a DNA sequence, and achieved
70% prediction accuracy and rapid analyses of DNA se-
quence information to guide the attribution process and un-
derstand the measures (17). While these studies provide a
window for translation tuning of the RBS to biosensor dy-
namic range, the ability to design biosensors with reason-
able dynamic ranges still remains a challenge (18–20).

In general, the RBS controls the translation level of a
protein (15). Therefore, in the study of biosensors, the RBS
tunes the dynamic range of biosensors by regulating the ex-
pression of reporter and regulatory protein. In this study,
the glucarate biosensor was used as an example to explore
the regulation mechanisms of RBS. In doing so, the RBS
design principles for carbohydrate diacid activator (cdaR)
and ‘superfolder’ green fluorescent protein (sfgfp) (21) in
glucarate biosensors were established. Subsequently, a li-
brary containing 12 000 cross-RBSs (cRBSs, combining
RBSs of cdaR and sfgfp in glucarate biosensors) was con-
structed by using DNA microarray, which was divided into
five sub-libraries through fluorescence-activated cell sort-
ing (FACS). Finally, a CNN on the cRBSs libraries was
trained and a classification model between cRBSs and aver-
age dynamic range of each sub-library was developed and

was termed CLM-RDR, which performed well in predict-
ing biosensors dynamic range (Figure 1). The CLM-RDR
used large RBS library data to provide a knowledge base for
precise adjustment of biosensors dynamic range, thus help-
ing researchers to better characterize biosensors dynamic
range by using RBS datasets. Given the availability of a
large number of RBSs library, the CLM-RDR classification
model can be extended to other similar biosensors to fine-
tune their dynamic ranges, thereby significantly simplifying
the workload of the design–build–test–learn cycle for de-
signing biosensors with moderate dynamic ranges in bacte-
ria and accelerating intelligent fine-tuning of biosensor dy-
namic range.

MATERIALS AND METHODS

Strains and culture conditions

All strains used in this study are listed in Supplementary
Table S1. Escherichia coli JM109 and E. coli BL21 (DE3)
cells were used for plasmid cloning and protein expression,
respectively. M9 minimal medium, consisting of Na2HPO4
(6.78 g/l), KH2PO4 (3.0 g/l), NaCl (0.5 g/l), MgSO4·7H2O
(0.5 g/l), CaCl2 (0.011 g/l), NH4Cl (1.0 g/l) and glu-
cose (5 g/l), was used for fluorescence intensity assess-
ment. The final concentrations of ampicillin, kanamycin,
and spectinomycin employed in this study were 100, 50 and
50 �g/ml, respectively. The final concentration of isopropyl
�-D-thiogalactoside (IPTG) was 1 mM.

Plasmid construction

All plasmids and primers used in this study are listed in Sup-
plementary Tables S1 and S2, respectively. The pJKR-H-
cdaR plasmid for glucarate biosensor was purchased from
Addgene (#62557). Wherein, the cdaR (Gene ID, 944860) is
originally from E. coli K12 strain (22). In addition to RBS
and g10RBS, we selected seven RBSs: RBS3, RBS7, RBS8,
MCD2, MCD10, BBa J61100 and BBa J61106 (Supple-
mentary Table S3). The primer design was based on the
different RBS sequences, and the pJKR-H-cdaR plasmid
was used as the template for plasmid PCR. Plasmids
pJKR-H-RBSs-cdaR-RBSs (RBSs are represented as R,
R3, R7, R8, G10, M2, M10, BJ00 or BJ06) were con-
structed through DpnI digestion, and the digestion prod-
ucts were introduced into E. coli JM109 cells for screening
by colony PCR and Sanger sequencing. The plasmids li-
braries NGS-RBSn-RBSm-I, NGS-RBSn-RBSm-II, NGS-
RBSn-RBSm-III, NGS-RBSn-RBSm-IV and NGS-RBSn-
RBSm-V were constructed through XbaI/SpeI digestion
and T4 ligation. The plasmids pJKR-H-R-cdaR-G10-lacZ-
his, pJKR-H-R-cdaR-M10-lacZ-his, pJKR-H-R-cdaR-R8-
lacZ-his, and pRSF-groEL-groES were constructed us-
ing with Gibson assembly (23). The plasmid pHS-AVC-
LW1125 was synthesized by Beijing Syngentech Co., Ltd in
china. through DNA microarray technique.

Plasmids containing the glycolate biosensor pUC-glcC-
ffs and arabinose biosensor pUC-araC were constructed
through Gibson assembly methods. In both of the biosen-
sors, the rrnB strong terminator, antibiotic resistance gene,
and origin of replication were derived from the glucarate
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Figure 1. Workflow of CLM-RDR development. First, the dynamic range of biosensors and the sequences of their related cRBSs were analyzed to establish
an RBS design principle (Step 1). Based on this principle, a cRBSs library was designed and synthesized (Step 2) using DNA microarray. Subsequently, the
library was divided into five sub-libraries (I–V) based on the fluorescence intensity of sfGFP measured by FACS (Step 3). Finally, to predict the dynamic
range of biosensors with the given cRBSs, NGS and CNN model were employed to analyze the sequences of cRBSs in sub-libraries I–V and establish the
CLM-RDR, respectively (Step 4). RBSn (NNNAGNNN), RBSs of cdaR; RBSm (NNGGAGNN), and RBSs of sfgfp; N = A, T, C, G.

biosensor (pJKR-H-cdaR) (6). All the sequences of tran-
scriptional regulators and their promoters are provided in
Supplementary Table S3. To evaluate the general perfor-
mance of the CLM-RDR, we randomly selected eight RBSs
to engineer three biosensors using plasmid PCR method:
RBScdaR (Rc) and g10RBS derived from the glucarate
biosensor; BBa J61104 (BJ04) and BBa J61108 (BJ08) ob-
tained from the Anderson RBS library; MCD10 gener-
ated from the monocistronic design by Mutalik, et al (24);
RBSglcC (Rg) obtained from the glycolate biosensor; and
RBSpRSF (RpR) and RBSpTrc99a (RpT) derived from plasmids
pRSF and pTrc99a, respectively (Supplementary Table S3).
The plasmid construction methods for each biosensor had
been described earlier.

ANOVA model for cRBSs:glucarate combinatorial datasets

To understand the contribution and interaction between
cRBSs and glucarate in the precise regulation of biosensors,
we performed ANOVA (24) on the following linear model,
using fluorescence data from sfGFP (21)

Fluorescencei jk = μ + Ci + G j + (C : G)i j + εi jk

for i = (1 − 81); j = (1 − 12)

where Fluorescenceijk is the fluorescent output signal mea-
sured from the translation element, Ci, and induced sub-
strate glucarate, Gj; (C:G)ijrepresents any interaction be-
tween the ith translational element and jth concentration
of glucarate; � is the overall average signal; and εijk is the
error term for each C:G combination. The analysis output
is presented in Supplementary Table S4.

�-Galactose activity assays

The process of gene deletion in E. coli BL21 (DE3) cells was
performed as described by Jiang et al. (25). The sgRNA of
lacZ is shown in Supplementary Table S3. An appropriate
amount of fermentation broth was centrifuged at 8000 × g
for 10 min at 4◦C, the supernatant was discarded, and the
cells were collected. The cells were washed twice with cold
lysis buffer (Tris–HCl; 0.01 M, pH 7.5). Then, the cells were
resuspended in 2.5 ml of 0.01 mol/l Tris–HCl buffer (pH
7.5), and glass beads (26) and 50 �l of PMSF stock solu-
tion were added to the cell culture. The cell culture was os-
cillated six times at high speed for 15 s each and placed on
ice intermittently. Subsequently, 2.5 ml of Tris–HCl buffer
were added to the culture, and the supernatant collected
after centrifugation at 8000 × g for 15 min at 4◦C was
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the crude enzyme solution. Next, 1 mM o-nitrophenyl-�-
D-galactopyranoside (oNPG) solution was prepared with
50 mM oNPG. Approximately 10 �l of the diluted crude
enzyme solution and 20 �l of the oNPG solution were
added to 70 �l of Z-buffer (16.1 g/l Na2HPO4

.7H2O, 5.5
g/l NaH2PO4

.H2O, 0.75 g/l KCl, 0.246 g/l MgSO4
.7H2O

and 2.7 mL �-mercaptoethanol; pH 7.0, stored at 4◦C) for
10 min at 30◦C. Then, 120 �l of 1 mol/l pre-cooled Na2CO3
were immediately added to stop the reaction and develop
color. Finally, the absorbance was measured with a spec-
trophotometer at a wavelength of 420 nm. One unit of en-
zyme activity was defined as the amount of enzyme cat-
alyzing the production of 1 �mol o-nitrophenol (oNP) per
minute (27,28).

Bovine serum albumin (BSA) was dissolved in Z-buffer
at different dilutions (0.0–0.2 mg/ml BSA), and standard
curves were generated. Crude enzyme (20 �L) was added
to 200 �L of Bradford reagent, mixed, and its absorbance
was determined at a wavelength of 595 nm. The crude en-
zyme concentration was calculated with a standard curve.
The formula for calculating the enzyme activity was as fol-
lows. U/mg protein = OD420 × 1.7/(0.0045 × protein con-
tent × crude enzyme volume × time), where OD420 is the
optical density of the product o-NP at 420 nm, coefficient
1.7 is the corrected value of the reaction volume, coefficient
0.0045 is the optical density (OD) of 1 mM oNP solution,
protein content is expressed in mg/ml, crude enzyme vol-
ume is expressed in ml, and time is shown in min.

Fluorescence assays

The cells were grown overnight to stationary phase before
being diluted into fresh LB medium at a ratio of 1:100
and incubated at 250 rpm and 37◦C. After 3 h, 100 �l
of log-phase cells were transferred to 96-well plates and
stock inducers were respectively added to achieve the de-
sired induction concentrations. Different concentrations of
glucarate, glycolate, and arabinose were obtained by dilut-
ing 100 g/l glucarate, 1 M glycolate, and 1 M arabinose
mother liquor in 96-well plates. Before measurements, the
cultures were diluted into 0.01 M phosphate buffered saline
(PBS; pH 7.4) to ensure that the OD600 value was about
0.5. Measurements were performed using a Biotek HT plate
reader (Winooski, VT, USA) under excitation wavelength
of 485/20 nm and emission wavelength of 528/20 nm at
37◦C and rapid shaking. Fluorescence intensity was mea-
sured in arbitrary units (AU), and the OD was determined
by absorbance. For a given measurement, normalized flu-
orescence was determined by dividing the fluorescence by
OD. The ratio of fluorescence to absorbance at 600 nm was
used to compensate for the changes in cell density over time
and between experiments (AU/OD).

Escherichia coli BL21 (DE3) cells containing the plasmid
libraries were cultured to saturation, and then incubated
at a concentration of 1% into 250-ml flasks containing LB
medium at 250 rpm and 37◦C. After 2 h, inducers were
added to the desired final concentration, and incubation
was resumed for 12 h. The induced cultures were diluted
into cold PBS and kept on ice until evaluation with a BD
FACS AriaII cell sorter (Becton Dickinson) (29). At least

100 000 events were captured for each sample. BD FACS-
Diva software was used to divide the gate for sfGFP (21)
(bandpass filter, 530/30 nm; blue laser, 488 nm). The mis-
or un-folded sfGFP would be repaired to a correct folded
protein by chaperonin GroEL/S. Wherein, repair rate is
calculated as: (Flu (GroEL/S+) − Flu (GroEL/S−))/Flu
(GroEL/S+). Where Flu (GroEL/S+) indicates fluores-
cence intensity with GroEL/S protein; Flu (GroEL/S−)
indicates fluorescence intensity without GroEL/S protein.
GroEL/S and sfGFP were expressed upon the addition of
1 mM IPTG and 20 g/l glucarate, respectively.

Design of the RBS library

The cRBSs with the dynamic ranges over 2 were selected,
which were R, G10, R7, M2, M10, BJ00 for CdaR and R3,
R8, G10, M2 and M10 for sfGFP. Then, multiple sequence
alignments were performed for RBSs of CdaR and sfGFP
by using ClustalW in MEGA7.0 (30), whose processed files
were uploaded to WebLogo 3 for analyzing the conserva-
tiveness, preference, and base frequency of the RBSs se-
quence. Sequence logos provided a precise description of
sequence similarity and could rapidly reveal significant fea-
tures of the alignment (31). Each logo consisted of stacks
of bases (31). The overall height of each stack was propor-
tional to the degree of sequence conservation at that po-
sition (measured in bits), whereas the height of each base
within the stack was proportional to the relative frequency
of the corresponding nucleotide at that position (31,32).

Sorting of the RBS library

In total, 12 000 cRBS sequences were synthesized using
DNA microarray, amplified by PCR, and were cloned into a
glucarate biosensor plasmid backbone (pHS-BVC-LW274
and pHS-BVC-LW276) via two-step Golden Gate assem-
bly (23) (completed by Synbiotic Gene Company) to ob-
tain the glucarate biosensor plasmid library. Next, the plas-
mid library was transformed into E. coli BL21 (DE3) cells,
which were cultured for 8 h in LB medium with or with-
out 20 g/l glucarate supplementation. Then, the cells in-
duced with 20 g/l glucarate were divided into five non-
adjacent sub-libraries (I–V). To ensure the reliability of flu-
orescence intensity, cell adhesion was removed by executing
FSC-A/FSC-H and SSC-A/SSC-H operation. Finally, the
cells from each sub-library were obtained.

NGS library preparation, sequencing and data processing

Cells from each sub-library were collected and their plas-
mids were extracted. The distance between the two RBSs
in the glucarate biosensor was 2208 bp. However, the NGS
was able to measure only up to 250 bp. Therefore, the
isoschizomers XbaI/SpeI and T4 ligase were used to mod-
ify the plasmids of the five sub-libraries. The modified sub-
libraries contained 152 bp between two RBSs (Supplemen-
tary Figure S3B), and the mixed PCR products of the
five modified sub-libraries were linked with 10 barcodes
(pink marked in Supplementary Table S2) and sequenced
by NGS. The sequencing library was prepared following the
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manufacturer’s protocol (TruSeq DNA PCR-Free Sample
Preparation Kit for Illumina). Library quality assessment
and quantification was performed with Agilent Bioanalyzer
2100 system (Agilent Technologies, CA, USA) and Q-PCR.
Finally, all sub-libraries were pooled together and Nova-
Seq 6000 Sequencer were used for pairing and sequencing
the read length of 150 bp.

Raw reads for all sequenced sub-libraries were quality
controlled using fastp v0.20.1 with default settings. After
production of clean data, fastq-multx v0.20.1 with default
settings was used to split the data according to barcode.
Then, pairs of paired-end data were merged by FLASH (33)
v1.2.11 with default setting and the polymorphism statis-
tics were performed on merged reads of each sub-library.
Subsequently, Raw reads were processed from bulk FASTQ
data. Sequences for the read counts of 1 in each sub-library
were eliminated. Next, the cRBSs were extracted from the
raw reads by removing their sounding sequences. Further-
more, we removed the cRBS sequences that not include
in the 12 000 libraries. For repeated cRBSs in different
sub-libraries, only maintain the reads that have the highest
counts. If the repeated cRBSs have the same counts in dif-
ferent sub-libraries, all these cRBSs were removed. Finally,
7053 cRBSs were obtained (Supplementary Table S9).

Deep learning

First, 7053 cRBSs and corresponding seven features, i.e. the
frequency of GC, A, T, C, G of cRBS, GC of SDn and GC
of SDm, were combined to create datasets for subsequent
deep learning. Then, the fluorescence intensity was divided
into five levels for evaluating the biosensor corresponding
to the RBS. To classify the RBS sequences, one-hot cod-
ing was initially employed. A neural network model (34,35)
consisting of three convolutional layers and three full con-
nection layers was proposed to accurately classify the RBS
sequences. The convolutional layers comprised stride 1 and
the pooling layers were non-overlapping. The convolution
layer included two functions: feature extraction and fea-
ture mapping. On the one hand, the input of each neuron
was connected to the local receptive field of the previous
layer, and the local features were extracted. After the lo-
cal features were extracted, the positional relationships be-
tween them and other features were also determined. On
the other hand, each computing layer of the network was
composed of multiple feature maps, each feature maps into
a plane, and all the neurons on the plane exhibited the same
weight. The feature map used the ReLU function with a
small kernel of the influence function as the activation func-
tion of the convolution network, so that it had an invariance
of displacement. Deep learning was performed with SciPy
(1.0.0), NumPy (1.14.0) and TensorFlow (1.9.0) Python
packages.

Statistics

All statistical T tests are paired and two-tailed (36). Details
about the statistical tests are described in the correspond-
ing figure legends. AUC of receiver operating characteristic
(ROC) curves was calculated using the metrics.auc function
of the ‘sklearn’ python package.

RESULTS

RBS plays a crucial role in the regulation of biosensor dy-
namic range

Although recent advances in synthetic biology have shed
light on the importance of fine-tuning of biosensor dynamic
range in various fields, the ability to design biosensors with
moderate dynamic ranges remains limited (11,37–39). To in-
vestigate the key factors in biosensor dynamic range regula-
tion, we used glucarate biosensor and explored its response
strength by employing diverse concentrations of glucarate
for induction (Supplementary Figure S1A and B). A carbo-
hydrate diacid activator (CdaR) is inactivated in the absence
of glucarate, making the biosensor to be in the ‘OFF’ state.
In the presence of glucarate, CdaR is activated and simulta-
neously increases the expression level of its own and PgudP
controlled genes and making the biosensor to be in the ‘ON’
state (22,40) (Supplementary Figure S1A).

Addition of 20 g/l glucarate biosensor presented the
highest nine-fold dynamic range. However, the fluorescence
intensity presented a downward trend when the glucarate
concentration exceeded 20 g/l (Supplementary Figure S1B).
Similar observations have also been noted for other biosen-
sors, such as acuR-based 3-hydroxypropionate biosensor
(3), which also exhibited downward trend of fluorescence
intensity when cerulenin concentration exceeded a certain
threshold value. This phenomenon may be owing to the
rapid translation and transcription of sfGFP, which not
only cause metabolic burden (slow growth) (Supplementary
Figure S1C) to the living cells, but also affect the natural
folding of sfGFP (41), thus resulting in low fluorescence in-
tensity. Faure et al. indicated that the occurrence of misfold-
ing proteins increases with the increasing translation speed
(12). Thus, although the amount of expressed sfGFP in-
creased (Supplementary Figure S1D), the fluorescence in-
tensity per protein molecule significantly decreased when
glucarate concentration exceeded 20 g/l, owing to excessive
misfolding. Therefore, it can be assumed that the most crit-
ical challenge for fine-tuning the dynamic range of biosen-
sors might be to balance the translation level of regulator
and reporter to simultaneously achieve the desired total flu-
orescence intensity with the highest fluorescence intensity
per protein molecule (Figure 2A). These findings suggested
that RBS might probably be a key element affecting the dy-
namic range of biosensors.

To investigate the correlation between RBS and biosen-
sor dynamic range, nine RBSs covering a wide range of
translation level from weak to strong were randomly se-
lected for combinatorial replacement of the RBSs of cdaR
and sfgfp (Figure 2B). The nine RBSs selected were RBS
(R) and G10RBS (G10) derived from the plasmid pJKR-H-
cdaR (6); RBS3 (R3), RBS7 (R7), and RBS8 (R8) designed
with an RBS calculator (15); MCD2 (M2) and MCD10
(M10) derived from the monocistronic design by Muta-
lik et al. (24); and BBa J61100 (BJ00) and BBa J61106
(BJ06) obtained from the Anderson RBS library. Finally,
81 cRBS glucarate biosensors were obtained and their re-
sponse strength and dynamic range were significantly im-
proved when induced with various concentrations of glu-
carate (Figure 2C, Supplementary Table S5). In doing this,
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the detection deviation would significantly influence the cal-
culated dynamic range, especially when the fluorescence at
a very low level. To eliminate the detection deviation, we
defined that the cRBS is non-functional when the ON state
fluorescence was lower than 2-fold of that of wild type E.
coli BL21 (DE3), whose dynamic range was defined as 1.
In the cRBSs of R7M10 and RM10, 208-fold and 114-fold
dynamic ranges were observed, respectively, when induced
by 20 g/l glucarate, which were higher than that of the nat-
urally existed cRBS RG10 (9-fold), indicating that the RBS
played a very important role in fine-tuning biosensor dy-
namic range.

To validate whether the effect of cRBSs on the biosensor
dynamic range was independent of reporter genes, we se-
lected three cRBS biosensors with distinct dynamic ranges
(RG10, RR8 and RM10) to replace sfgfp with lacZ. Fi-
nally, we found that the three cRBSs showed the same dy-
namic range trend regardless of the reporter gene (sfgfp or
lacZ) (Figure 2D). This finding indicated that the cRBSs
could consistently fine-tune the dynamic range of biosen-
sor irrespective of the reporter. Subsequently, we analyzed
the datasets with and without 20 g/l glucarate to assess
the significance of differential expressions of genes with 81
cRBSs. We found that 63% of the 81 cRBSs had significant
(P < 0.05), and that 24.7% of the cRBSs showed signifi-
cant differential expression of sfGFP (Figure 2E). To verify
whether RBS was the most critical factor affecting the dy-
namic ranges of glucarate biosensors, we performed analy-
sis of variance (ANOVA) on cRBSs and glucarate datasets
(Figure 2F). The results suggested that cRBSs and glucarate
contributed 84% and 13% to biosensor fine-tuning, respec-
tively. In addition, an interaction (2%) between the two fac-
tors was also noted (Supplementary Table S4, see methods).
These results indicated that the RBS is a key element for
tuning the dynamic range of biosensors. However, it is still
unclear on how the RBS fine-tunes the biosensor dynamic
range.

The RBS fine-tunes biosensor dynamic range by controlling
protein translation and folding

To explore the relationship between translation level and
dynamic range, the actual translation levels of the two vari-
ables, RBSn and RBSm, were respectively analyzed by SDS-
PAGE. Under the same RBSn, the optimal translation lev-
els of RBSm produced the highest biosensor dynamic range,
and similar trend was also found for the translation level
of RBSn under the same RBSm (Figure 2G, Supplemen-
tary Figure S2A, B), suggesting that the maximum dynamic
range can be achieved at optimal protein translation level.
However, translation level higher or lower than the optimal
translation level could cause low biosensor dynamic range,
which could be due to the rapid or slow expression of sfGFP
resulting in misfolding or unfolding, thus affecting the nat-
ural folding of sfGFP (12,29). Therefore, we hypothesized
that the RBS could affect protein folding by regulating the
translation level of protein.

To examine the relationship between dynamic range and
protein folding, the reported wild-type chaperone ring com-
plex, GroEL/S, which has the ability to assist in the fold-
ing of heterologous protein in E. coli (42), was used to ver-

ify the effect of the RBS on sfGFP folding. Five cRBSs
(RR8, RM10, RR3, RM2 and RG10) with different trans-
lation levels were used to investigate the misfolding and
repair of sfGFP. SDS-PAGE revealed that the increase in
fluorescence intensity of each cRBS was not caused by
different expression levels of sfGFP, but was caused by
GroEL/S repairing misfolded or unfolded sfGFP to a nat-
ural folded state (Supplementary Figure S2C). The fluores-
cence changes with and without GroEL/S overexpression
were explored by FACS upon addition of 20 g/l glucarate
(Supplementary Figure S2D, E). Furthermore, the repair
rate (which was defined as the enhancement rate of fluo-
rescence intensity after the chaperone GroEL/S (42) repair
the mis- or un-folded sfGFP into a folded state.), dynamic
range, and sfGFP expression levels were calculated, which
indicated that sfGFP expression was positively correlated
with repair rate, while optimal translational level of sfGFP
was more beneficial for achieving higher biosensor dynamic
range (Figure 2H, Supplementary Figure S2D–F). In ad-
dition, CdaR had a similar trend (Supplementary Figure
S2G). This finding was consistent with our hypothesis, im-
plying that strong RBSs have high translation level, which
results in high misfolding rate and repair rate of sfGFP. Al-
though dynamic range is a comprehensive phenomenon in-
dicating the amounts and folding state of sfGFP, it is dif-
ficult to establish a quantitative equation to define the re-
lationship between the RBS, translation level, folding, and
dynamic range, which severely hinders the development of
rational design of biosensors.

Design of the RBS library to fine-tune biosensor dynamic
range

Owing to the lack of quantitative relation between the RBS,
translation level, folding, and dynamic range, it is possi-
ble to simulate and predict the biosensor dynamic range
by mathematical models. As an alternative method, deep
learning could predict complex biological relationships with
simple neural network models, thereby circumventing the
steps to understand the complicated biological mechanisms
and achieving the expected effects of simulation and predic-
tion. To obtain large data to train CNN model, we first ac-
complished designing of the RBS library and further tuned
the dynamic range of the biosensor. On the basis of the
81 cRBSs datasets, the conserved sequences of the RBSs
in cdaR and sfgfp were generated by using the online soft-
ware WebLogo (31) (see methods). The engineered RBSs
included a consensus sequence defined as upstream and
downstream of the Shine-Dalgarno (SD) sequence (RBSn:
TAACCATGCATA-SDn-GACTT for cdaR; RBSm: TC
TTAATCATG-SDm-GGTTTC for sfgfp) and an SD pref-
erence sequence (SDn: NNGGAGNN for cdaR; SDm: NN
NGANNN for sfgfp; N = A, T, C, G) (Figure 3A, B).

To evaluate the reliability of this design of RBS library,
we randomly constructed 400 cRBSs (20 × 20 RBSs, 20
RBSs of cdaR and sfgfp) (Supplementary Table S6). The
fluorescence intensity and dynamic range of the 400 cRBSs
biosensors with glucarate inducer showed a significant im-
provement, when compared with those without the inducer
(Supplementary Table S7). In addition, the cRBSs biosen-
sors presented an improved dynamic range upon addition
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of 20 g/l glucarate (Supplementary Table S7). These find-
ings implied that design of cRBSs library was more reliable
and robust in improving the biosensor dynamic range. We
further analyzed the datasets with and without glucarate to
assess the differential expression of sfGFP, and found that
up to 98% of the 400 cRBSs had significant (P < 0.05) and
85.3% of the cRBSs showed significant differential expres-
sion of sfGFP (Figure 3C). These results indicated that the
design of cRBSs library considerably contributed to the im-
provement of biosensor dynamic range.

Establishment of CLM-RDR for precise prediction of biosen-
sor dynamic range

To further extend the dataset for CNN model training,
we constructed a much larger cRBS library through the
RBS library, and generated 100 RBSs for cdaR and 120
RBSs (Supplementary Table S6) for sfgfp (Figure 3A, B).
Then, a combinatorial library of 12,000 cRBSs as oligonu-
cleotides was developed with DNA microarray (see meth-
ods). To verify the homogeneity of the 12 000 cRBSs, next-
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generation sequencing (NGS) was performed. The coverage
of the 12 000 cRBSs was 100%, and the 10-fold variation
reached a quality control value of 99.92% (Supplementary
Figure S3A, Supplementary Table S8, NCBI Accession No.
SRR9301216). This cRBS library was used in the following
pooled screening experiment to characterize the dynamic
range of the glucarate biosensor.

The 12 000 cRBS plasmid libraries were transformed into
E. coli BL21 (DE3) cells, which were cultured for 8 h in
Luria–Bertani (LB) medium supplemented with 0 or 20
g/l glucarate. Then, by using FACS, we divided the cells
induced with 20 g/l glucarate into five non-adjacent sub-
libraries I–V according to the expression intensity of sfGFP
(Figure 4A). Five non-overlapping bins were chosen with a
gap to reduce cross contaminations between the bins (29).
Subsequently, the average single cell fluorescence intensity
and average dynamic range of the sub-library I–V with and
without glucarate were calculated, and a 13-fold, 29-fold,
53-fold, 106-fold and 247-fold average dynamic range were
accomplished for the sub-libraries I–V, respectively (Figure
4B). These results further demonstrated that the cRBS li-
brary was highly effective in tuning the dynamic range of the
glucarate biosensor, and helped to establish a high-quality
element library in synthetic biology and construct an ap-
proach for designing complex genetic circuits to fine-tune
gene expression (43–45).

To determine the cRBS sequences of the glucarate
biosensors in each sub-library, we first obtained the as-
sorted biosensor plasmids of the five sub-libraries. Then,
the mixed PCR products of the five modified sub-libraries
were linked with 10 barcodes and sequenced by NGS (46)
(NCBI Accession No. SRR12384447-SRR12384461). Box
plots showed the distribution of each cRBS count of five
sub-libraries, and separate points indicated that the cRBS
counts ranged from 160 to 106 (Figure 4C, Supplementary
Table S9). In addition, the diversity of cRBSs in each sub-
library was analyzed, and there were 3592, 980, 944, 596 and
941 cRBSs in sub-libraries I–V, respectively (Figure 4D).
Finally, the sequenced 7053 cRBSs were used as the data
sources for further data processing.

Although the cRBSs sequences of each sub-library were
obtained, it was extremely crucial to determine the func-
tional relationships between the cRBSs sequences and av-
erage dynamic range of glucarate biosensor. Functional
relationships could help to quickly analyze the dynamic
range of a corresponding cRBS biosensor, which could re-
duce the burden of the design–build–test–learn cycle. There-
fore, CNNs of deep learning was chosen to establish a
classification model between cRBSs and the average dy-
namic range of each sub-library (CLM-RDR). First, 85%
of the cRBSs and their sequence characteristics in each sub-
library were selected as datasets to train the CNN model
(Supplementary Figure S4). Next, we evaluated how well
CLM-RDR predicted the average dynamic range of the
glucarate biosensor from the remaining 15% of cRBSs se-
quences and their sequence characteristics in each sub-
library (Figure 4E). The results indicated that CLM-RDR
predicted the dynamic range of the glucarate biosensor with
high accuracy, yielding an area under the curve (AUC) of
0.81, 0.91, 0.64, 0.75 and 0.77 for sub-libraries I–V, respec-
tively, and an average AUC of 0.86.

Applications of the CLM-RDR to other biosensors

The CLM-RDR is expected to tune the dynamic range
of different biosensors. Therefore, to further evaluate the
performance of the CLM-RDR, we randomly selected 18
cRBSs to modify the glucarate biosensor, glycolate biosen-
sor, and arabinose biosensor (see methods). We first pre-
dicted the average dynamic range of 18 cRBSs by using
CLM-RDR and then performed an experiment to detect
the dynamic ranges of the biosensors via FACS (Supple-
mentary Figure S5). By analyzing the predicted and experi-
mentally observed dynamic ranges, CLM-RDR was found
to have good predictive performance for three biosensors.
Predicted accuracy rates of 72.2% (Figure 5A), 61.1% (Fig-
ure 5B) and 50% (Figure 5C) were obtained for glucarate,
arabinose (Figure 5D), and glycolate (Figure 5E) biosen-
sors, respectively. These results indicated that the CLM-
RDR had a certain degree of universality in predicting the
dynamic ranges of biosensors in E. coli. The CLM-RDR
can probably be further improved by providing additional
training datasets.

DISCUSSION

Genetically encoded biosensors derived from transcription
factors responding to small-molecule inducers are receiving
increasing research attention (3). The currently available ge-
netically encoded biosensors usually have the major prob-
lem of inappropriate dynamic range (8,10). Although many
valuable works, such as promoter modification studies, have
attempted to tune the dynamic range of biosensors, univer-
sality may be difficult to achieve owing to small datasets
and insufficient analysis tools. Therefore, fine-tuning of the
biosensor dynamic range remains a huge challenge (7,20).
In general, RBS controls the translation rate (15,24) of reg-
ulatory proteins and reporters, which can control the dy-
namic range of biosensors. Previous reports had indicated
that the dynamic ranges of device input or output were not
well tuned by replacing the RBS (13), mainly because the
RBS datasets were limited. Therefore, to fine-tune the dy-
namic range of biosensors, in the present study, we estab-
lished the design principle of the RBS in biosensors through
ANOVA and online WebLogo processing. Accordingly, 12
000 cRBSs were designed based on the library, and five aver-
age dynamic ranges were calculated by dividing the cRBSs
into five sub-libraries using FACS. Most importantly, we de-
veloped CLM-RDR, a classification model between cRBSs
and average dynamic range of five sub-libraries. The CLM-
RDR showed accurately predictive performance and was
able to quickly determine the average dynamic range of
a biosensor corresponding to a cRBS and their sequence
characteristics. In addition, the CLM-RDR also had good
predictive ability toward glycolate and arabinose biosen-
sors, thus indicating that this model can be extended to
other biosensors. Besides, the developed model significantly
simplified the workload of the design–build–test–learn cycle
of fine-tuned biosensor dynamic range in bacteria and ac-
celerated intelligent fine-tuning of biosensor dynamic range.

RBSs play a role in fine-tuning genetic components and
determining the translation level of proteins (15,24). Pro-
teins usually present tight and loose structures. The mRNA
structure affects the translation rate of a protein, and fast
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translation prevents the formation of compact structures,
which affects protein folding (12). Thus, we hypothesized
that the RBS might also affect the conformations of pro-
teins by controlling translation level, thereby achieving fine-
tuning of gene expression. Low translation level results in
the low expressions of CdaR and sfGFP, causing the low
dynamic range. Although the high translation level results
in high protein expression, too many mis- or un-folded pro-
teins are caused by the too fast translation rate, resulting in
less correct-folded CdaR and sfGFP, causing low dynamic
range. To further explore the relationship between trans-
lation level, protein folding, and biosensor dynamic range,
a wild-type chaperone GroEL/S, which could assist in the
folding of recombinant sfGFP in E. coli, was combined with
a set of constructed biosensors (42). When compared with
optimal protein expression, low and high protein expression
produced more misfolded proteins, which in turn resulted in
a higher repair rate of sfGFP by GroEL/S (Figure 2A, H).
In addition, a positive correlation trend was observed be-
tween the expression level of sfGFP and repair rate. There-
fore, appropriate protein expression level and protein fold-
ing state achieved the optimal biosensor dynamic range,

thus further implying that RBS is one of the key factors af-
fecting the dynamic range of biosensors.

Sequence-based deep learning models had been reported
to show good predictive performance for biological phe-
notypes (16,34,35). Deep learning models can accurately
establish the correspondence between genotypes and phe-
notypes through large datasets, thus making investigations
more universal. The present study found that one of the key
factors affecting the dynamic range of biosensors was RBS.
However, the mechanism of the RBS tuning the dynamic
range of biosensors was complex (Figure 2A), not only re-
quiring exploration of the mechanism of RBS tuning trans-
lation and folding of regulators and reporter, but also exam-
ination of the binding mechanism of regulators and opera-
tor sites and further investigation of the effects on down-
stream reporter transcription. Therefore, analysis of these
mechanisms using current technology is a huge challenge.
However, deep learning models do not require understand-
ing of specific mechanisms to establish the relationship be-
tween RBS and biosensor dynamic range, and can be ex-
tended to other biosensors research. Hence, to develop a
universal tool to fine-tune the dynamic range of biosensors,
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we developed CLM-RDR, a classification model based on
deep learning between cRBSs and average dynamic range.
The CLM-RDR showed good prediction performance for
the dynamic range of the biosensor using only 7053 cRBSs
datasets. More importantly, it could be extended to other
biosensors, achieving the same prediction effects, imply-
ing that CLM-RDR has certain universality in predicting
the dynamic range of biosensors in E. coli. Nevertheless, it
is difficult for most mathematical models built with large
datasets to achieve 100% prediction accuracy (46). So, inac-
curate results will occur when using the model to predict the
dynamic range of non-functional cRBSs. It should be noted
that the present study only examined the effect of the RBS
on biosensor dynamic range. The results of this study, along
with further research on promoters, plasmid copy numbers,
and regulatory protein evolution, could propel fine-tuning
of the dynamic range of biosensors into the era of intelli-
gence.

DATA AVAILABILITY

Raw data of NGS for DNA microarray and cRBSs of five
sub-libraries have been deposited to the NCBI Short Read
Archive, with Accession No. BioProject: SRR9301216
(https://dataview.ncbi.nlm.nih.gov/object/PRJNA548649)
and SRR12384447-SRR12384461 (https://dataview.ncbi.
nlm.nih.gov/object/PRJNA650172), respectively.

To encourage experimental biologists to use CLM-RDR,
we uploaded the model to GitHub, which converted an
RBS sequence directly into biosensor dynamic range. The

code for predicting biosensor dynamic range can be found
at https://github.com/YuDengLAB/CLM-RDR. Flow cy-
tometry data for this study has also been deposited at Flow
Repository (47), where it is directly accessible at http://
flowrepository.org/id/FR-FCM-Z2TW.
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