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Abstract

Non-human primates harbour diverse microbiomes in their guts. As a part of the China Microbiome Initiatives, we cultivated
and characterized the gut microbiome of cynomolgus monkeys (Macaca fascicularis). In this report, we communicate the char-
acterization and taxonomy of eight bacterial strains that were obtained from faecal samples of captive cynomolgus monkeys.
The results revealed that they represented eight novel bacterial species. The proposed names of the eight novel species are
Alkaliphilus flagellatus (type strain MSJ-5'=CGMCC 1.45007"=KCTC 15974"), Butyricicoccus intestinisimiae MSJd-7" (MSJd-
7"=CGMCC 1.45013"™=KCTC 251127), Clostridium mobile (MSJ-11"=CGMCC 1.45009"=KCTC 25065"), Clostridium simiarum (MSJ-
4"=CGMCC 1.45006"™=KCTC 15975"), Dysosmobacter acutus (MSJ-2"=CGMCC 1.32896™=KCTC 15976"), Paenibacillus brevis MSJ-6"
(MSJ-6"=CGMCC 1.45008"=KCTC 15973"), Peptoniphilus ovalis (MSJ-1"=CGMCC 1.31770"=KCTC 15977") and Tissierella simiarum
(MSJ-40T=CGMCC 1.45012"=KCTC 25071").

INTRODUCTION

Gastrointestinal tracts accommodate diverse microbes, and those microbes together in a host gastrointestinal tract are called
gut microbiomes (GMs) [1]. Many efforts have been made to characterize the microbial diversities of human [2-6] and animal
GMs [7, 8], by culture-dependent and/or -independent methods [9-11]. Non-human primates (NHPs) are the most biologically
relevant animal models for human studies [12]. The compositions and dynamics of NHP GMs were evaluated, and members of
the genera Bacteroides, Bifidobacterium, Eubacterium, Fusobacterium, Lactobacillus and Streptococcus were cultivated and reported
from the gastrointestinal tract of NHPs [13-17]. Based on analyses of major and large-scale investigations of human GMs [2-6],
there are 5000-6000 bacterial species associated with humans. An exploration of cultivated human gut bacterial species diversity
revealed that about 1500 bacterial species are recorded with valid and correct names, and that more gut bacterial species have been
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The NCBI/NMDC accession numbers of the 165 rRNA gene and genome sequences for the eight type strains are: (i) MSJ-17, 16S rRNA sequence:
MZ310594 and NMDCNOOOONQV; genome sequence: JAHLQO000000000/NMDC60018343; (i) MSJ-2T, 16S rRNA sequence: MZ310595/
NMDCNOOOONRGO; genome sequence: JAHLQNOOOOO0000/NMDC60018344; (iii) MSJ-4T, 165 rRNA sequence: MZ310597/NMDCNOOOONR?2;

genome sequence: JAHLQLO0O0000000/NMDC60018346; (iv) MSJ-5T, 16S rRNA sequence: MZ310598/NMDCNOOOONR3; genome sequence:
JAHLQK000000000/NMDC60018347; (v) MSJ-6T, 16S rRNA sequence: MZ310599/NMDCNOOOONR4; genome sequence: JAHLQJ000000000/
NMDC60018348; (vi) MSJd-7T, 16S rRNA sequence: MZ310600/NMDCNOOOONRS5; genome sequence: JAHLQI000000000/NMDC60018349; (vii) MSJ-
117, 16S rRNA sequence: MZ310603/NMDCNOOOONRS; genome sequence: JAHLQF000000000/NMDC60018352; (viii) MSJ-40T, 16S rRNA sequence:
MZ310625/NMDCNOOOONRU; genome sequence: JAHLPM00O0000000/NMDC60018374.

Three supplementary figures are available with the online version of this article.
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cultivated but not characterized or nominated [2]. Those cultivated but unnamed bacterial species have remained as ‘uncultivated’
in databases such as s1Lva [18] and the Genome Taxonomy Database [19], and they are repeatedly claimed as ‘novel bacteria’ in
later studies. Bacterial cultivation, characterization with polyphasic methods, and deposits in culture collections are essential
to nominate a bacterial name following the rules of International Code of Nomenclature of Prokaryotes. Considering the large
numbers (usually more than thousands) of bacterial isolates from one microbiome study, it is a challenge to characterize and
nominate all bacterial isolates from microbiome studies.

Members of the family Clostridiaceae [20], such as Clostridium and Alkaliphilus, are frequently detected in guts and they play
important roles in host health. Clostridium species, a group of 153 validly published and correct specific names (https://lpsn.dsmz.
de/genus/clostridium) and represented by the type species Clostridium butyricum [21], are Gram-positive, obligately anaerobic
rods and form oval or spherical endospores. The genus Alkaliphilus is also a member of family Clostridiaceae [22] and contains
seven validly published and correct specific names (https://lpsn.dsmz.de/genus/alkaliphilus). Alkaliphilus species are strictly
anaerobic and their cells are usually straight to slightly curved rods. The genus Paenibacillus of the family Paenibacillaceae [23]
is one of the largest genera of prokaryotes and members are widely distributed in natural environments and animal and human
GMs. At the time of writing, 270 species names are validly published (https://lpsn.dsmz.de/genus/paenibacillus). Paenibacillus
species are usually straight to slightly curved rods and motile with flagella. The type species is Paenibacillus polymyxa and was
isolated from decomposing plant materials and humus-rich soils. The genus Peptoniphilus is a member of the family Pepton-
iphilaceae [24]. Peptoniphilus species are non-spore-forming, Gram-positive, obligately anaerobic cocci, and the type species is
Peptoniphilus asaccharolyticus. At the time of writing, 20 species of the genus Peptoniphilus have been validly published (https://
Ipsn.dsmz.de/genus/peptoniphilus). The genera Dysosmobacter and Butyricicoccus are members of the family Oscillospiraceae and
were proposed by Le Roy et al. [25] and Eeckhaut et al. [26], respectively. So far, only the type species Dysosmobacter welbionis
is described (https://Ipsn.dsmz.de/genus/dysosmobacter). D. welbionis is an obligately anaerobic, non-spore-forming and non-
motile rod. The genus Butyricicoccus has four validly and correctly named species (https://lpsn.dsmz.de/genus/butyricicoccus),
and they were isolated from human or animal faeces. Cells of the genus Butyricicoccus are anaerobic, non-motile and coccoid;
the type species is Butyricicoccus pullicaecorum. The genus Tissierella belongs to the family Tissierellaceae [27]. Tissierella species
are obligately anaerobic, Gram-negative, non-spore forming rods. At the time of writing, five specific names have been validly
published (https://lpsn.dsmz.de/genus/tissierella), and the type species is Tissierella praeacuta.

The China Microbiome Initiatives (CMI) integrated multiple studies of human and animal GMs and environmental microbiomes
[28]. As a part of the CMI, we cultivated and characterized the GM of cynomolgus monkeys (Macaca fascicularis). In this
report, we present the characterization and taxonomy of eight bacterial strains that were obtained from faecal samples of captive
cynomolgus monkeys. The eight bacterial strains are affiliated with five families and were identified as new members of the genera
Peptoniphilus, Dysosmobacter, Clostridium, Alkaliphilus, Paenibacillus, Butyricicoccus and Tissierella.

METHODS
Sample collection and treatment

All faecal samples were from cynomolgus monkeys (M. fascicularis) at the experimental animal centre of the Institute of Neurosci-
ence, Chinese Academy of Sciences, Suzhou, PR China. Fresh faecal samples were collected and maintained in airtight bags on
dry ice, and were delivered immediately to the laboratory. The samples were diluted with sterile PBS and filtered through a 40 um
cell strainer and were treated with 70% ethanol or heated at 85 °C for 30 min, as described in the literatures [29, 30].

Culture media, bacterial isolation and cultivation

The following media were used for bacterial cultivation: FAB (Fastidious anaerobe broth) medium (LA4550, Solarbio) and YCFA
(yeast extract, casein hydrolysate, fatty acids) medium [31], modified GAM (Gifu anaerobic medium) medium (mGAM) [2, 32],
and modified R-medium named by Dione N et al [33]. The mGAM medium (per 1 1) contained 10g casitone, 3 g soya peptone,
15 g proteose peptone, 13.5 g digested serum, 5 g yeast extract, 2 g beef extract powder, 1.2 g liver extract, 0.3 g soluble starch, 0.5g
L-cysteine, 0.5 g L-arginine, 0.3 g L-tryptophan, 2g NaHCO,, 2.5g KH,PO,, 3g NaCl, 0.15g CH,(SH)COONa, 2.46 g CH,COONa,
0.01 g haemin, 0.001 g resazurin, 0.3 g glucose, 0.3 g D-galactose, 0.3 g cellobiose, 0.3 g mannose, 0.3 g fructose, 0.3 g rhamnose,
0.3 g palatinose, 0.3 g inulin, 15 g agar, adjusted pH to 7.2, sterilized at 115 °C for 25 min. The modified R medium was prepared
from two solutions that were prepared, sterilized and separated: solution A (per 900 ml) consisted of 6 g casein hydrolysate, 5g
peptone, 5 g yeast extract, 1 g glucose, 1 g inulin, 1g D-fructose, 1g cellobiose, 1.5g NaCl, 0.1g MgSO4. H,O, 5ml haemin (0.1%,
w/v), 1l ml resazurin (0.1%, w/v), 20 ml (2%, v/v) rumen fluid, 15 g agar, adjusted pH to 7.2, sterilized at 112°C for 15 min. Solution
B (per 100 ml) consisted of 0.4 g L-cysteine, 1 g ascorbic acid, 0.1 g glutathione, 2 g a-ketoglutarate, 0.45g K, HPO,, 0.9g KH_PO,,
adjusted pH to 7.2, filtered using a 0.2 um micro filter.

Sterilized agar plates were inoculated with dilutions of pretreated faecal samples and incubated at 37 °C under strictly anaerobic
conditions with N, (85 %), H, (10 %) and CO, (5 %) in an anaerobic chamber (Electrotek AW400SG workstation). Colonies
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appeared after cultivation for 2, 5 and 10 days were picked and re-streaked on agar plates of same media. Bacterial purity was
evaluated by observation of morphology, 16S rRNA gene and genome sequencing.

Cell morphology observation and chemotaxonomic determinations

Cell morphology was determined by transmission electron microscopy (JEM-1400, jeoL). The utilization of carbon sources
was determined using the 96-well Biolog AN MicroPlate that contained 95 different carbon substrates [34]. Bacteria strains
were cultured in liquid mGAM medium for 2 days, then cells were harvested. Cellular fatty acids were extracted and methylated
according to the standard m1p1 protocol (Sherlock Microbial Identification System, version 6.0). The identification was performed
by GC (HP 6890 Series GC System; Agilent) [35]. Polar lipids were separated by two-dimensional thin-layer chromatography (TLC
plates coated with silica gel, 1010 cm; Merck). Chromatography was performed using chloroform-methanol-water (65:25:4, by
vol.) for the first dimension, followed by chloroform-methanol-acetic acid-water (80:12:15:4, by vol.) for the second dimension
[36]. Total lipids were detected with 10% ethanolic molybdatophosphoric acid (Sigma). Aminolipids were detected with 0.4%
solution of ninhydrin (Sigma) in butanol. Phospholipids were detected with Zinzadze reagent (molybdenum blue spray reagent,
1.3%; Sigma) and glycolipids were detected with 0.5% a-naphthol sulphuric acid reagent.

Fermentative production of short-chain fatty acids

Bacterial strains were cultivated for 72h in mGAM broth at 37°C under strictly anaerobic conditions. Short-chain fatty acids
(SCFAs) were measured using GC-MS. Culture (1 ml) was extracted with 1 ml ethyl acetate. The supernatant liquid was prepared
for GC-MS analysis, which was performed on a GCMS-QP2010 Ultra with an auto sampler (Shimadzu) and the DB-wax capillary
column (30m, 0.25mm i.d., 0.25 um film thickness, Agilent Technologies). The temperature of oven was programmed from 35
to 130 °C at 5°Cmin™ gradient, to 230°C at 30°Cmin™' gradient, with 16 min hold. Injection of 2 ul sample was performed at
230°C. The carrier gas, helium, flowed at 1.0 mlmin ™. Electronic impact was recorded at 70eV.

16S rRNA gene sequencing and phylogenetic analysis

Complete 16S rRNA gene sequences of isolates were obtained using the universal primers 27F (5-AGAGTTTGATCCTG-
GCTCAG-3') and 1492R (5'- GGTTACCTTGTTACGACTT-3") [37]. 16S rRNA gene sequences similarities were determined
using the EzBioCloud server [38]. Multiple alignments of sequences were performed using the Clustal W [39]. The phylogenetic
trees were reconstructed by the neighbour-joining method [40] according to Kimura’s two-parameter model [41] in MEGA X [42],
by the maximum-likelihood method [43] based on the Tamura—Nei model, and the maximum-parsimony method [44] based
on the subtree-pruning-regrafting search method. The statistical reliability of the trees was calculated by bootstrap analysis with
1000 replications [45].

Genome sequencing and analysis

Genomic DNA was extracted using the Wizard Genomic DNA Purification Kit (Promega) and the genomic DNA library was
sequenced on an Illumina Hiseq X-ten platform. All good-quality paired reads were assembled using SPAdes software (version
3.9.0) [46]. The average nucleotide identity (ANI) values with closely related and available genomes were calculated using OAT
software at www.ezbiocloud.net/sw/oat along with teh UPGMA dendrogram (unweighted pair group method with arithmetic
mean) [47]. The genomic distances, digital DNA-DNA hybridization (dDDH), were calculated by using the Genome-to-Genome
Distance Calculator (http://ggdc.dsmz.de/) [48]. Genome analysis using the Check M indicated that the genomes of eight strains
were not contaminated [49].

Culture preservation

Bacterial strains were cultured in liquid medium for 2 days. We stored our own cultures (1 ml) in the lab by addition of an equal
volume of 65% (v/v) glycerol (1 ml), and was storing at —80 °C for long-term preservation. All type strains assigned by this study
were deposited at China General Microbiological Culture Collection Center (CGMCC) and the Korean Collection for Type
Culture (KCTC), and strain numbers are included in the species descriptions.

RESULTS AND DISCUSSION

Source and isolation of the bacteria

Strains MSJ-17, MSJ-2%, MSJ-47, MSJ-5", MSJ-6", MSJd-77, MSJ-11" and MSJ-40" were isolated from faeces samples of Macaca
fascicularis. Strain MSJ-1" was obtained from the sample after enrichment, strains MSJ-4" and MSJ-5" were obtained from samples
after heat treatment (85 °C for 30 min), and strains MSJ-27, MSJ-67, MSJd-7%, MSJ-11T and MSJ-40" were obtained from samples
after 70% ethanol treatment for 30 min. Strains MSJ-17, MSJ-2", MSJ-4" and MSJ-11" were successfully cultivated first with FAB,
strain MSJ-5" first from YCFA, strain MSJd-7" first from modified mGAM, and MSJ-40" first from modified R media. However,
we later demonstrated that they all grew with mGAM medium.
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Fig. 1. Cellular morphology (transmission electron microscopy) of eight bacteria isolated from M. fascicularis. The names of each bacterium and the
size of bars are showed in each picture.

Bacterial growth and cell morphology

Strains MSJ-17, MSJ-2", MSJ-4", MSJ-5", MSJ-6', MS]d-77, MSJ-11" and MSJ-40" were strictly anaerobic bacteria. They grew on
mGAM agar at 37 °C and formed visible colonies after 1-10 days. Colonies of MSJ-27, MSJ-4", MSJd-7" and MSJ-40" were white,
colonies of MSJ-5, MSJ-6 and MSJ-11 were grey, and colonies of MS]J-2 were tiny and translucent. No pigments were observed.
Additional features are provided in the species description. Cellular morphology was examined with transmission electron
microscopy and are shown in Fig. 1. Cells of strains MSJ-1" and MS]d-7" were spherical-shaped. Cells of strains MS]J-2", MSJ-47,
MSJ-5T, MSJ-67, MSJ-11" and MSJ-40" were rod-shaped. Flagella were observed for strains MSJ-47, MSJ-57, MSJ-6", MSJ-11" and
MSJ-407, but not for MSJ-1T and MSJd-7". Additional features of those strains are detailed in the species description.

Assimilation of carbon sources and fermentative production of SCFAs

The assimilation of 95 carbon sources were tested with Biolog AN MicroPlates and the results are recorded in Fig. 2(a). The eight
bacteria showed different carbon source spectra, and in total 75 out of the 95 carbon sources were metabolized. We found that
mono- and di-saccharides were preferred by the strains, which are extensively found in guts [50]. The eight bacteria all assimilated
five carbon sources, i.e. D-fructose, L-fucose, b-galacturonic acid, palatinose and pyruvic acid.

Many gut microbes produce SCFAs that are related to host health [50, 51]. We determined the production of SCFAs in an mGAM
broth that contained glucose, D-galactose, cellobiose, mannose, fructose, rhamnose, palatinose and inulin. The results showed
that each strain produced unique profiles of SCFAs (Fig. 2b). Butyric acid was produced by MSJ-1%, MSJ-4", MS]-5", MSJ-67,
MSJ-11" and MSJ-40". Propionic acid was produced MSJ-4", MSJ-117, MSJ-6" and MS]J-40". Acetic acid was produced by MSJ-17,
MSJ-27, MSJ-4%, MSJ-5", MSJ-6", MSJ-11" and MSJ-40". In addition to the above SCFAs, strains MSJ-6" and MSJ-11" produced also
branched SCFAs of isobutyric acid and/or isovaleric acid. Strain MSJd-7" did not produce the six SCFAs detected in this study.

Cellular fatty acid and polar lipid profiling

The chemotaxonomic cellular fatty acid and polar lipid profiles for the eight bacteria were determined and are summarized. As
shown in Tables 1 and 2, the eight bacteria had different cellular fatty acid profiles, but they allhad C, ,C _, C and anteiso

14:0° 16:0° 18:0
Taking 10% as cutoff value for predominant cellular fatty acids, MSJ-1"had C _  (19.9%), MSJ-2" had C,  (20.1%), MS]-4"

C15:0° H :
had C,, , (15.2%) and C,, , (24.5%), MS]-5" had C,__ (10.6%) and iso-C,  (11.3%)/anteiso-C,_ (14.5%)/anteiso-C,  , (15.7%)/iso-
C,,., (16.8%), MSJ-6"had C,,  (20.6%)/C,, , (10.5%) and iso-C, (17.1%)/anteiso-C ,  (25.6%), MSJd-7"had C ,  (10.9%)/C,

(26.8%)/C,, , (22.0%) and iso-C | w5c (12.8%), MSJ-11"had C,,  (19.8%)/C, , (37.4%)/C ,  (11.7%), and MSJ-40" had mainly
iso-C,,  (62.2%). Polar lipid profiling showed that all eight bacteria had diphosphatidylglycerol and phosphatidylglycerol, but
were different from each other in terms of the presence or not of phosphatidylethanolamine, phosphatidylmethylethanolamine,
unknown phospholipids, unknown lipids and unknown glycolipids, as detailed in Tables 1 and 2, and Fig. S1 (available in the

online version of this article).

General features of genome and genomic DNA G+C contents

The eight bacteria had different genome sizes, MSJ-1" was the smallest (2.1 Mbp) and MS]J-6 T was the largest genome (5.2 Mbp).
Genome sequencing data and some basic features of coding density and G+C contents are listed in Table 3. The genomic DNA
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Fig. 2. Assimilation of the carbon sources on Biolog AN MicroPlates (a, purple indicates positive and white indicates negative) and production of short-
chain fatty acids in mGAM medium (b). The mixed standards contain six short-chain fatty acids. 1, Acetic acid; 2, propanoic acid; 3, isobutyric acid; 4,
butyric acid; b, isovaleric acid; 6, valeric acid.

G+C molar contents of MSJ-17, MSJ-2T, MSJ-4T, MSJ-5", MSJ-6", MSJd-7", MSJ-11T and MSJ-40" were 30.65, 58.27, 30.46, 31.71,
49.3,50.29, 30.38, 44.49 and 30.39 mol%, respectively.

The eight bacterial strains represent novel taxa

Based on the 16S rRNA gene and genomic data, we further investigated the phylogenetic and phylogenomic relationships of the
eight bacteria to their closely related and currently validly nominated bacterial taxa (Figs 3, S2 and S3). ANI scores based on
whole genomes were used to generated UPGMA dendrogram trees (Fig. 4). Combining the results from DNA molecule analysis
and the phenotypic characterization, we concluded that MSJ-1%, MSJ-2", MSJ-4", MSJ-5%, MSJ-6", MSJd-7%, MSJ-11" and MSJ-40"
represented novel species of the currently known genera (for details, see the following sections).
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Table 1. Cellular fatty acids and polar acid compositions of strains MSJ-1T, MSJ-4T, MSJ-11T, MSJ-5T, MSJ-40T and closely related type strains of the
families Peptoniphilaceae, Clostridiaceae and Tissierellaceae

Strains: 1, MSJ-1T: 2, P asaccharolyticus CCUG 9988 [55]; 3, P gorbachii WAL 10408 [55]; 4, MSJ-4T; 5, MSJ-11T; 6, C. liquoris DSM 1003207 [20]; 7, C.
lundense DSM 44747 [20]; 8, MSJ-5T; 9, A. halophilus CGMCC 1.51247 [63]; 10, A. oremlandii DSM 217617 [63]; 11, MSJ-40"; 12, T. praeacuta DSM 180957
[27]. Major fatty acid components are indicated with bold text. — Not detected; TR, trace amount (<1.0%).

Strains 1 2 3 4 5 6 7 8 9 10 11 12
Fatty acids
(>10% of total
fatty acids):
Cm:D 19.9 14.4 24.0 24.5 374 17.7 194 10.6 5.0 8.5 7.2 20.0
Chen 6.8 - - 3.8 11.7 13.1 3.1 7.7 13 44 5.1 15
Cyio 49 54 2.9 15.2 19.8 10.8 434 5.4 32 49 9.0 8.0
C,,, w9¢ 42 20.2 22.6 1.1 222 13 - - 4.0 42 - -
anteiso-C , | 4.0 - - 4.1 2.1 - - 15.7 14 33 2.3 -
anteiso-C,_, 3.1 1.6 - 0.9 1.0 13 L5 14.5 - - 0.8 -
iso-C, 2.1 - - 0.9 - - - 16.8 - - - TR
iso-C,_, 12 2.6 - 9.8 11 - - 9.6 414 27.9 62.2 445
iso-C,,., - - - 9.3 - - - 11.3 9.7 10.5 45 -
C,y, 06,9¢/ 3.6 22.0 21.1 0.6 - - - - - - - -
ante-C . |
Polar lipids* DPG, - - DPG, DPG, PG, PG, PE, PL - DPG, PG, - - DPG, PG, -
PG, PE, PG,PE, PE,PL], PE, PME, GL1, GL2,
PL1, PL2, PL1,PL2, PL2,PL3, PL,L GL3,PL1,
PL3, L PL3,L L, APL PL2

*APL, aminophospholipid; DPG, diphosphatidylglycerol; PG, phosphatidylglycerol; PE, phosphatidylethanolamine; PME,
phosphatidylmethylethanolamine; PL, unknown phospholipids; L, unknown lipid; GL, unknown glycolipid.

Strain MSJ-17

The phylogenetic trees revealed that strain MSJ-17 clustered within the previously described genus Peptoniphilus clade, supported
by a 100% bootstrap value (Fig. 3d, S2d and S3d). Strain MSJ-1" was closely related to Peptoniphilus gorbachii WAL10418" (96.82%
identity), Peptoniphilus lacydonensis DSM 100661" (95.93 %) and Peptoniphilus harei DSM 10020" (95.64%) [24, 52, 53]. In the
phylogenomic tree, strain MSJ-1" also formed a separate branch located in the genus Peptoniphilus clade (Fig. 4). The ANI and
dDDH values between strain MSJ-17 and its closest neighbour P. lacydonensis DSM 100661" (GCA 900106515.1) were 78.79 and
20.50%, respectively (Fig. 4). At the time of writing, the genus Peptoniphilus contains 20 species with validly published names
[54]. Cells of Peptoniphilus members are non-spore-forming, obligately anaerobic and coccus-shaped. In addition to its unique
165 rRNA gene and genome sequences, MSJ-1" contains the predominant fatty acid of C,, , which is consistent with most species
of the genus Peptoniphilus (Table 1), although the fatty acids of other members in the genus Peptoniphilus are more diverse [55].
Based on phenotypic, chemotaxonomic and phylogenetic results, as well as phylogenomic and genome data, we suggest that strain
MSJ-17 represents a novel species affiliated with the genus Peptoniphilus and the name Peptoniphilus ovalis sp. nov. is proposed.

DESCRIPTION OF PEPTONIPHILUS OVALIS SP. NOV.

Peptoniphilus ovalis sp. nov. (o.va'lis. L. masc. adj. ovalis, pertaining to an egg, egg-shaped).

Cells are non-mobile cocci with diameters of approximately 0.6-0.8 m, and no flagellum. Strictly anaerobic, heterotrophic growth
at 37°C and pH 7.0. Produces butyric acid and acetic acid from fermentation. After 2 days of cultivation on mGAM agar plate, colo-
nies are 1-2 mm in diameter, white, circular, entire, opaque and smooth. Cells metabolize dextrin, p-fructose, L-fucose, D-galactose,
D-galacturonic acid, gentiobiose, a-D-glucose, glucose-6-phosphate, lactulose, b-mannose, melibiose, 3-methyl-D-glucose, pala-
tinose, L-rhamnose, glyoxylic acid, a-hydroxybutyric, p-hydroxybutyric, a-ketobutyric acid, a-ketovaleric acid, p- and L-lactic
acid, p-lactic acid methyl ester, D-malic acid, pyruvic acid, pyruvic acid methyl ester, urocanic acid, L-alanyl-L-histidine, L-glutamic
acid, L-glutamine, L-serine, 2'-deoxy adenosine, inosine, thymidine, uridine, thymidine-5’-monophosphate and uridine-5'-
monophosphate. The predominant cellular fatty acid is C,, . The polar lipids are diphosphatidylglycerol, phosphatidylglycerol,
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Table 2. Cellular fatty acids and polar acids compositions of strains MSJ-2T, MSJ-6T, MSJd-7T and closely related type strains of the families
Oscillospiraceae and Paenibacilaceae

Strain: 1, MSJ-2": 2, D. welbionis DSM 1068897 [25]; 3, 0. valericigenes DSM 180267 [25]; 4, MSJ-6T; 5, P apis JCM 316207 [65]; 6, P puldeungensis DSM
276037 [65]; 7, MSJd-7T; 8, B. porcorum ATCC TSD-1027 [66]; 9, B. pullicaecorum DSM 232667 [66]. Major fatty acid components are indicated with bold
text. —, Not detected; TR, trace amount (<1.0%).

Strains 1 2 3 4 5 6 7 8 9

Fatty acids (>10% of

total fatty acids):
Cioo 20.1 TR 14.3 20.6 29.7 7.3 26.8 10.2 -
Cpo 8.7 TR 17 10.5 2.4 17 22.0 23 15
Co 7.7 2.4 115 52 3.4 15 10.9 15.7 6.4
C,,, @9¢ 45 R - - - 14.7 2.51 14.7 -
anteiso-C 8.5 15.2 3.0 25.6 16.7 53.4 46 - -
iso-C - TR - 17.1 3.5 18.9 7.3 - -
iso-C,_, 3.4 242 83 83 3.9 33 - 23 15
iso-C ., 1.6 TR 11.8 - - - - 1.6 13.8
iso- C w5c - - - - - - 12.8 - -
Polar lipids DPG, PG, - = DPG, PG, PE, DPG, PG, PE, DPG,PG,PE, DPG,PG, N -
GL1, GL2, GL1,GL2,L PL, APL,L APL PL1, PL2, PL3,
GL3,PL GL1, GL2,
GL3,L1,12

*APL, aminophospholipid; DPG, diphosphatidylglycerol; PG, phosphatidylglycerol; PE, phosphatidylethanolamine; PL, unknown phospholipids; L,
unknown lipid; GL, unknown glycolipid.

phosphatidylethanolamine, three unknown phospholipids and an unknown lipid. Genome size is 2102036 bp and the G+C
content is 30.65 mol%.

The type strain is MSJ-1T (=CGMCC 1.31770"=KCTC 15977") and was isolated from faecal samples of M. fascicularis.

Strain MSJ-27

MSJ-27 was closely related to Dysosmobacter welbionis DSM 106889" (95.78% 16S rRNA gene identity) [25], Oscillibacter valeri-
cigenes DSM 18026 (95.15%) and Oscillibacter ruminantium JCM 18333T (94.72%) [56, 57]. The phylogenetic tree indicated that
MS]J-2" formed a heterogeneous cluster with members of Dysosmobacter and Oscillibacter (Figs 3b, S2b and S3b). The OrthoANI
tree clearly separated MSJ-2" and D. welbionis from O. valericigenes and O. ruminantium (Fig. 4). Furthermore, the G+C molar
content of strain MSJ-2" (58.27 mol%) was closer to that of D. welbionis (58.9mol%) than to O. valericigenes (53.2%) and O.
ruminantium (55.0%). Thus, MSJ-2" was more likely a member of genus Dysosmobacter. ANI and dDDH values between strain
MSJ-2" and the closest cultivated neighbour D. welbionis DSM 106889 (GCA 005121165.1) were 74.09 and 21.20%, respectively
(Fig. 4), suggesting they represented different species within the genus Dysosmobacter. Cells of strain MSJ-2" were long rods,

Table 3. Genome features of the eight bacterial strains from M. fascicularis

Genome features MSJ-1" MSJ-2" MSJ-4" MSJ-5" MSJ-6" MS)d-7" MS§J-11" MSJ-40"
Genome Size (bp) 2102036 3161374 3811517 3614516 5239947 2711934 4014245 4088863
G+C content (mol%) 30.65 58.27 30.46 31.71 49.3 50.29 30.38 30.39
Completeness (%) 98.6 94.63 99.19 97.87 98.66 99.33 100 99.13
Contamination (%) 0.7 0.67 0.93 0.24 0 0.67 0.57 1.98
Number of contigs 14 2 70 51 64 27 18 53
N50 of contigs (bp) 300523 3156307 406816 534169 198601 357991 1137742 199075
Gene number 2037 3296 3532 3591 4800 3023 4017 4177
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Fig. 3. Phylogenetic trees of the eight bacteria strains based on 16S rRNA gene sequences and using the neighbour-joining algorithm showing the
relationships between the eight novel bacteria and their closely related micro-organisms. (a) The phylogenetic tree of strains MSJ-5T, MSJ-4T, MSJ-
117, closely related species in the genera Alkaliphilus and Clostridium, and the type species of the other genera in the family Clostridiaceae. (b) The
phylogenetic tree of strains MSJ-2T, MSJd-77, closely related species in the genera Dysosmobacter and Butyricicoccus, and the type species of the
other genera in the family Oscillospiraceae. (c) The phylogenetic tree of strain MSJ-67, closely related species in the genus Paenibacillus, and the type
species of the other genera in the family Paenibacilaceae. (d) The phylogenetic tree of strain MSJ-407, closely related species in genus Tissierella,
and the type species of the other genera in the family Tissierellaceae. (e) The phylogenetic tree of strain MSJ-1T, closely related species in the genus
Peptoniphilus, and the type species of the the other genera in the family Peptoniphilaceae. GenBank accession numbers are given in parentheses.
Bootstrap percentages (>50%) based on 1000 replicates are shown at the nodes. Phylogenetic trees based on the maximum-likelihood method (Fig.
S2) and the maximum-parsimony method (Fig. S3) are available as supplementary materials with the online version. Verrucomicrobium spinosum DSM
4136 (X90515) was used as an outgroup. Bar, 0.05 substitutions per nucleotide position.
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Peptoniphilus ovalis Agathobaculum butyriciproducens
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with no flagella. The predominant fatty acid of MSJ-2" was C,  (20.1%), which distinguished this organism from D. welbionis
DSM 106889" (C,, ,<1%) [25] (Table 2). Based on the chemotaxonomlc, phylogenetic and genomic results described above, we
conclude that strain MS]J-2T represents a novel species affiliated to the genus Dysosmobacter and the name Dysosmobacter acutus
sp. nov. is proposed.

DESCRIPTION OF DYSOSMOBACTER ACUTUS SP. NOV.

Dysosmobacter acutus (a.cu’tus. L. masc. adj. acutus, sharp, pointed referring to atypical cell shape).

Cells are non-mobile long rods with sharp ends. No flagellum. The cell size is approximately 0.5-0.6x2.7-2.9 pum. Strictly anaerobic,
heterotrophic growth at 37°C and pH 7.0. Colonies are <1 mm in diameter after 5days of incubation at 37°C on mGAM agar
plates and flat, circular, entire, translucent and smooth. Fermentative production is isovaleric acid, isobutyric acid and acetic acid.
Cells metabolize cellobiose, dextrin, D-fructose, L-fucose, D-galactose, D-galacturonic acid, gentiobiose, a-D-glucose, glucose-
6-phosphate, lactulose, D-mannose, melibiose, 3-methyl-D-glucose, palatinose, L-rhamnose, acetic acid, formic acid, glyoxylic
acid, a-ketobutyric acid, propionic acid, pyruvic acid and pyruvic acid methyl ester. The predominant cellular fatty acid is C .
The major lipids are phosphatidylglycerol and two unknown glycolipids. Genome size is 3161374 bp and the G+C content is
58.27 mol%.

The type strain is MSJ-2" (=CGMCC 1.32896"'=KCTC 15976"), which was isolated from a faecal sample of M. fascicularis.

Strains MSJ-4T and MSJ-117

Based on the phylogenetic and phynogenomic trees (Figs 3 and 4, S2a, S3a), strains MSJ-4" and MSJ-11" formed a cluster that
was well-separated from the valid members of the genus Clostridium [21]. MS]-4" was closely related to Clostridium algidicarnis
DSM 150997 (96.85% 16S rRNA gene identity) and Clostridium putrefaciens NCTC 9836" (96.78 %) [58, 59] MSJ-11" was closely
related to Clostridium malenominatum ATCC 25776" (98.33%) [60]. The ANI and dDDH values of strain MSJ-47 to its closest
neighbour Clostridium putrefaciens NCTC 9836" (GCA900461105.1) were 78.07 and 22.10%, respectively. The ANT and dDDH
values of strain MSJ-117 to its closest cultivated neighbour Clostridium beihaiense KCTC 15555 T (GCA 900626095.1) were
74.93 and 18.50%, respectively. Our results revealed that the major fatty acids of strains MSJ-4" and MSJ-11" were C,_ and C , ,
which is consistent with the majority of species within genus Clostridium [61, 62] (Table 1). Strains MSJ-4" and MSJ- 1 1T belonged
to genus Clostridium and could be differentiated from each other and from other species of genus Clostridium. Therefore, we
conclude that strain MSJ-4" represents a novel species and the name Clostridium simiarum sp. nov. is proposed, and that strain
MS]J-11" also represents a novel species for which the name Clostridium mobile sp. nov. is proposed.

DESCRIPTION OF CLOSTRIDIUM SIMIARUM SP. NOV.

Clostridium simiarum (si.mi.arum. L. gen. pl. n. simiarum, of monkeys).

Cells are fat rods with blunt ends, 0.5-0.9x1.4-2.0 um, and have peritrichous flagella. Strictly anaerobic, heterotrophic growth
at 37°C and pH 7.0. Produces white, flat, circular, entire, opaque, smooth colonies with a diameter of 2-3 mm after 2 days of
incubation at 37 °C on mGAM agar plates. Cells produce butyric acid, propanoic acid and acetic acid, isovaleric acid and isobutyric
acid during fermentation. Assimilates the following carbon sources: dextrin, p-fructose, L-fucose, b-galacturonic acid, palatinose,
acetic acid, formic acid, pyruvic acid and pyruvic acid methyl ester. The predominant cellular fatty acids are C _  and C, .. The

polar lipids are diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unknown phospholipids and an
unidentified lipid. Genome size is 3811517 bp and the G+C content is 30.46 mol%.

The type strain is MSJ-4" (=CGMCC 1.45006"'=KCTC 15975") and was isolated from faecal samples of M. fascicularis.

DESCRIPTION OF CLOSTRIDIUM MOBILE SP. NOV.

Clostridium mobile (mo’bi.le. L. neut. adj. mobile, motile).

Cells are rods with size of approximately 0.4-0.7x2.9-9.9 um, and have flagella at both ends. Strictly anaerobic, with growth at
37°C and pH 7.0. Colonies are grey, convex, circular, entire, and opaque with a diameter of 2-3 mm after 2 days of incubation at
37°C on mGAM agar plates. The SCFAs produced by anaerobic fermentation are butyric acid, propanoic acid and acetic acid.
Cells metabolize cellobiose, dextrin, p-fructose, L-fucose, b-galactose, D-galacturonic acid, gentiobiose, a-D-glucose, glucose-
6-phosphate, D-mannose, melibiose, 3-methyl-D-glucose, palatinose, L-rhamnose, turanose, glyoxylic acid, a-ketobutyric acid,
pyruvic acid and pyruvic acid methyl ester. The predominant cellular fatty acids are C, , C,, and C . The polar lipids are

diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, unidentified aminophospholipid, three unknown
phospholipids and an unidentified lipid. Genome size is 4014245 bp and the G+C content is 30.38 mol%.

The type strain is MSJ-11" (=CGMCC 1.45009"=KCTC 25065") and was isolated from faecal samples of M. fascicularis.
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Strain MSJ-57

Strain MSJ-5" was closely related to Alkaliphilus halophilus CGMCC 1.5124" (96.29% 16S rRNA gene identity) and Alkaliphilus
oremlandii DSM 217617 (96.14%) [63, 64] (Figs 3a, S2a and S3a). Phylogenetic and phylogenomic trees revealed that strain
MSJ-5" was in the genus Alkaliphilus clade. The ANI and dDDH values of strain MSJ-5" to its closest neighbour A. oremlandii
DSM 21761" (GCA 000018325.1) were 75.27 and 21.20%, respectively (Fig. 4). Strain MSJ-5" had rod-shaped and motile cells,
which was consistent with the description of the genus Alkaliphilus, and had G+C content of 31.71 mol%, within the range
of 28-36 mol% for the genus Alkaliphilus [63]. The predominant fatty acid compositions vary among Alkaliphilus species but
iso-C ., is0-C , , C,. and C,, are the major components in most of species, as detected in strain MSJ-5". Anteiso-C .  and

anteiso-C,  were detected in strain MS]-5" and distinguish this isolate from other Alkaliphilus species (Table 1). Based on the
polyphasic analysis, strain MSJ-5T should be classified as representing a novel species of the genus Alkaliphilus for which the

name Alkaliphilus flagellatus sp. nov. is proposed.

DESCRIPTION OF ALKALIPHILUS FLAGELLATUS SP. NOV.
Alkaliphilus flagellatus (fla.gella'tus. L. neut. n. flagellum, a whip; L. part. adj. flagellatus, flagellated).

Cells are rods, 0.7-1.0x2.2—4.2 um, and have bundled flagella at both ends. Strictly anaerobic, heterotrophic growth at 37°C and
pH 7.0, . Produces grey, low convex, circular, entire, opaque colonies with a diameter of 1-2 mm after 2 days of incubation at 37°C
on mGAM agar plates. Fermentative products are butyric acid and acetic acid. Cells metabolize dextrin, p-fructose, L-fucose,
D-galactose, D-galacturonic acid, gentiobiose, p-glucosaminic acid, a-D-glucose, glucose-6-phosphate, lactulose, D-mannose,
melibiose, 3-methyl-D-glucose, palatinose, L-thamnose, a-ketobutyric acid, a-ketovaleric acid, pyruvic acid, pyruvic acid methyl
ester, L-alanyl-L-glutamine, L-glutamic acid, L-glutamine, glycyl-L-glutamine, L-methionine, L-serine, L-threonine, 2'-deoxy
adenosine, inosine, thymidine and uridine. The predominant cellular fatty acids are iso-C, _, anteiso-C,, , anteiso-C,_ ,iso-C ,

and C _ . The polar lipids are diphosphatidylglycerol, phosphatidylglycerol, phosphatldylethanolamme, phosphaudylmethyletha-

16:0°
nolamine, an unknown phospholipid and an unknown lipid. Genome size is 3614516 bp and the G+C content is 31.71 mol%.

The type strain is MSJ-57 (=CGMCC 1.45007'=KCTC 15974") and was isolated from faecal samples of M. fascicularis.

Strain MSJ-6"

Strain MSJ-6" was closely related to Paenibacillus apis JCM 316207 [65], with 96.94% 16S rRNA gene sequence identity. The
phylogenetic and phylogenomic analysis showed that strain MSJ-6" was in the Paenibacillus clade (Figs 3 and 4, S2¢, S3¢). The
genome size of MSJ-6" was 5239947 bp. The ANI and dDDH values of strain MSJ-6" to its closely related neighbour Paenibacillus
faecis DSM 23593" (GCA 008084145.1) were 72.99 and 19.50%, respectively. The unique 16S rRNA and genome sequence is one
of the characteristics of MSJ-6". The predominant cellular fatty acids of Paenibacillus species are anteiso-C , ,, C,. ,is0o-C,  and
iso-C,_ . Strain MSJ-6" shared this profile, but the presence of C ,  differentiates it from other Paenibacillus species (Table 2). In
addition to diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine, which is shared by Paenibacillus species,
MSJ-6T had two unknown glycolipids (Fig. S1). In terms of phenotypic, chemotaxonomic, phylogenetic and genomic features,
strain MSJ-6" should be classified as representing a novel species of the genus Paenibacillus for which the name Paenibacillus

brevis sp. nov. is proposed.

DESCRIPTION OF PAENIBACILLUS BREVIS SP. NOV.

Paenibacillus brevis sp. nov. (bre'vis. L. masc. adj. brevis, short, denoting the formation of short rods).

Cells are ovoid to short rods with size of approximately 0.3-1.42x2.57-3.57 um, have 1-2 flagella. Strictly anaerobic, hetero-
trophic growth at 37°C and pH 7.0. After 5days of incubation at 37 °C on mGAM agar plates, colonies are 1-2mm in diameter,
grey, circular, entire and translucent. The SCFAs produced by anaerobic fermentation are acetic acid, valeric acid, propanoic
acid, butyric acid and isobutyric acid. Cells metabolize amygdalin, cellobiose, a-cyclodextrin, f-cyclodextrin, dextrin, dulcitol,
i-erythritol, p-fructose, L-fucose, D-galactose, D-galacturonic acid, gentiobiose, D-glucosaminic acid, a-D-glucose, glucose-1-
phosphate, glucose-6-phosphate, m-inositol, lactose, lactulose, maltose, maltotriose, b-mannitol, D-mannose, melezitose, meli-
biose, 3-methyl-D-glucose, methyl a-D-galactoside, methyl p-p-galactoside, palatinose, raffinose, L-rhamnose, salicin, p-sorbitol,
stachyose, sucrose, trehalose, turanose, acetic acid, fumaric acid, glyoxylic acid, a-ketobutyric acid, a-ketovaleric acid, propionic
acid, pyruvic acid, pyruvic acid methyl ester, urocanic acid, L-alanine, glycyl-L-methionine, L-methionine, L-phenylalanine,
L-serine, L-valine and L-valine plus L-aspartic acid. The predominant cellular fatty acids are anteiso-C,, ,C,  ,is0-C and Ceor
The polar lipids are diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unknown glycolipids and an
unknown lipid. Genome size is 5239947 bp and the G+C content is 49.3 mol%.

The type strain is MSJ-6" (=CGMCC 1.45008 "=KCTC 15973") and was isolated from faecal samples of M. fascicularis.

11


http://doi.org/10.1601/nm.20255
http://doi.org/10.1601/nm.14224
http://doi.org/10.1601/nm.14224
http://doi.org/10.1601/nm.4062
http://doi.org/10.1601/nm.14224
http://doi.org/10.1601/nm.4062
http://doi.org/10.1601/nm.4062
http://doi.org/10.1601/nm.4062
http://doi.org/10.1601/nm.4062
http://doi.org/10.1601/nm.4062
http://doi.org/10.1601/nm.4062
http://doi.org/10.1601/nm.4062
http://doi.org/10.1601/nm.4062
http://doi.org/10.1601/nm.30222
http://doi.org/10.1601/nm.5109
http://doi.org/10.1601/nm.27872
http://doi.org/10.1601/nm.27872
http://doi.org/10.1601/nm.5109
http://doi.org/10.1601/nm.5109
http://doi.org/10.1601/nm.5109
http://doi.org/10.1601/nm.5109
http://doi.org/10.1601/nm.5109
http://doi.org/10.1601/nm.5109
http://doi.org/10.1601/nm.5109

Li et al., Int. J. Syst. Evol. Microbiol. 2022;72:005276

Strain MSJd-77

Strain MSJd-7" was closely related to Butyricicoccus porcorum ATCC TSD-102" [66], with 97.15% 16S rRNA gene sequence
identity. The genome size of MSJd-7" is 2711934 bp. The phylogenetic and phylogenomic analysis revealed that strain MSJd-7" was
a member of the genus Butyricicoccus clade (Figs 3 and 4, S2b, S3b). The ANT and dDDH values of strain MSJd-7 to its closest
neighbour B. porcorum ATCC TSD-102" (GCA 002157465.1) were 75.88 and 21.10%, respectively. Butyricicoccus species have
diverse cellular fatty acid compositions, but the predominant componentsare C,, , C,. and C,_ in most species of the genus. The
presence of iso-C | w5c is characteristic of MS]Jd-7" and distinguished it from other Butyricicoccus species (Table 2). According
to the phenotypic, chemotaxonomic, phylogenetic and genomic data, strain MSJd-7" should be classified as representing a novel

species of the genus Butyricicoccus for which the name Butyricicoccus intestinisimiae sp. nov. is proposed.

DESCRIPTION OF BUTYRICICOCCUS INTESTINISIMIAE SP. NOV.

Butyricicoccus intestinisimiae (in.tes.ti.ni. simi.ae. L. neut. n. intestinum, intestine; L. fem. n. simia, a monkey; N.L. gen. n.
intestinisimiae, of the monkey intestine, where the type strain dwells).

Cells are cocci with a diameter of approximately 1.46-1.85um, and no flagellum. Strictly anaerobic, heterotrophic growth at
37°Cand pH 7.0, respectively. Colonies are 2-3 mm in diameter after 2 days of incubation at 37 °C on mGAM agar plates, white,
convex, circular, entire, opaque and smooth. Anaerobic and fermentative production of valeric acid. Cells metabolize i-erythritol,
D-fructose, L-fucose, D-galactose, D-galacturonic acid, gentiobiose, D-glucosaminic acid, a-p-glucose, glucose-6-phosphate,
Dp-mannose, melibiose, 3-methyl-p-glucose, palatinose, L-rhamnose, b-malic acid, pyruvic acid, succinamic acid, succinic acid
and succinic acid mono-methyl ester. The predominant cellular fatty acids are C,, , C,. ,iso-C,_ w5cand C , . The polar lipids
are diphosphatidylglycerol, phosphatidylglycerol, four unknown phospholipids, three unknown glycolipids and two unknown
lipids. Genome size is 2711934 bp and the G+C content is 50.29 mol%.

The type strain is MSJd-7" (=CGMCC 1.45013=KCTC 25112) and was isolated from faecal samples of M. fascicularis.

Strain MSJ-407

Strain MSJ-40" was closely related to Tissierella carlieri DSM 23816" (94.2% 16S rRNA gene sequence identity), Tissierella praeacuta
DSM 18095" (94.13%) and Tissierella pigra DSM 105185" (92.9%) [27, 67, 68]. According to the phylogenetic and phylogenomic
trees (Figs 3 and 4, S2e, S3e), MSJ-407 clustered with members of genus Tissierella. Thus, strain MSJ-40" was likely a member of the
genus Tissierella. As previously reported for Tissierella species [27], cells of strain MSJ-40" were rod-shaped. The ANT and dDDH
values of strain MSJ-40" to its closest related neighbour T. pigra DSM 105185" (GCA 009695605.1) were 74.61 and 22.40% (Fig. 4).
The predominant fatty acid of MSJ-40" was iso-C,, ,, which is a characteristic of the genus Tissierella [27, 68] (Table 1). At the
time of writing, the genus Tissierella has five described species with validly published names, and strain MSJ-40" is different from
them according to phenotypic, chemotaxonomic, phylogenetic and genomic features. Thus, strain MSJ-40" should be classified
as representing a novel species of the genus Tissierella and the name Tissierella simiarum sp. nov. is proposed.

DESCRIPTION OF TISSIERELLA SIMIARUM SP. NOV.

Tissierella simiarum (si.mi.a'rum. L. gen. pl. n. simiarum, of monkeys).

Cells are rod-shaped, approximately 0.6-0.8x1.0-3.3 um, and have flagella at both ends. Strictly anaerobic, heterotrophic growth at
37°Cand pH 7.0. Colonies are 3-5mm in diameter after 2 days of incubation at 37 °C on mGAM agar plates, white, flat, circular,
entire, opaque and smooth. The SCFAs produced by fermentation are isovaleric acid, butyric acid, isobutyric acid, propanoic
acid and acetic acid. Cells metabolize cellobiose, dextrin, p-fructose, L-fucose, D-galactose, D-galacturonic acid, gentiobiose,
a-D-glucose, glucose-6-phosphate, lactulose, D-mannose, melibiose, 3-methyl-p-glucose, palatinose, L-rhamnose, glyoxylic acid,
a-ketobutyric acid, pyruvic acid and pyruvic acid methyl ester. The predominant cellular fatty acid is iso-C , .. The polar lipids
are diphosphatidylglycerol, phosphatidylglycerol, three unknown glycolipids and two unknown phospholipids. Genome size is
4.09 Mb and the G+C content is 30.4 mol%.

The type strain is MSJ-40" (=CGMCC 1.45012"=KCTC 25071") and was isolated from faecal samples of M. fascicularis.
The type strain is MSJ-40T (=CGMCC 1.45012'=KCTC 25071") and was isolated from faecal samples of M. fascicularis.
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