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Abstract: In 2020, approximately 191,930 new prostate cancer (PCa) cases are estimated in the United
States (US). Hispanic/Latinos (H/L) are the second largest racial/ethnic group in the US. This
study aims to assess methylation patterns between aggressive and indolent PCa including DNA
repair genes along with ancestry proportions. Prostate tumors classified as aggressive (n = 11) and
indolent (n = 13) on the basis of the Gleason score were collected. Tumor and adjacent normal
tissue were annotated on H&E (Haemotoxylin and Eosin) slides and extracted by macro-dissection.
Methylation patterns were assessed using the Illumina 850K DNA methylation platform. Raw data
were processed using the Bioconductor package. Global ancestry proportions were estimated using
ADMIXTURE (k = 3). One hundred eight genes including AOX1 were differentially methylated in
tumor samples. Regarding the PCa aggressiveness, six hypermethylated genes (RREB1, FAM71F2,
JMJD1C, COL5A3, RAE1, and GABRQ) and 11 hypomethylated genes (COL9A2, FAM179A, SLC17A2,
PDE10A, PLEKHS1, TNNI2, OR51A4, RNF169, SPNS2, ADAMTSL5, and CYP4F12) were identified.
Two significant differentially methylated DNA repair genes, JMJD1C and RNF169, were found.
Ancestry proportion results for African, European, and Indigenous American were 24.1%, 64.2%,
and 11.7%, respectively. The identification of DNA methylation patterns related to PCa in H/L men
along with specific patterns related to aggressiveness and DNA repair constitutes a pivotal effort for
the understanding of PCa in this population.

Keywords: prostate cancer; DNA methylation; aggressive prostate cancer; indolent prostate cancer;
Gleason score; Hispanic/Latino; DNA repair; ancestry

1. Introduction

Since 1984, prostate cancer (PCa) has been the most commonly diagnosed cancer in
the United States (US), currently accounting for 19% of all cancers in men. Approximately
12.1% of men will be diagnosed with PCa in their lifetime [1]. In 2020, approximately
191,930 new PCa cases and 33,330 deaths are estimated in the US [2]. Hispanic/Latinos
(H/L) are the second largest racial/ethnic group in the US after non-Hispanic Whites
(NHWs). Chinea et al. (2017) reported that H/L subgroups have different prostate cancer-
specific mortality (PCSM) rates when compared to NHWs and non-Hispanic Blacks (NHBs)
using data from 2000–2013 that included 486,865 men. PCa incidence and mortality rates in
H/L men were similar to NHWs [3]. However, these data may be overgeneralized because
all H/L subgroups are aggregated into one broad group. Data from the Puerto Rico (PR)
Cancer Registry show that PCa is the leading cancer type, both in terms of incidence (39.9%
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of all cancer cases) and in terms of mortality (18.3% of all cancer deaths) [4]. A recent study
reported that Puerto Rican H/L (PR H/L) men have a higher rate of survival and treatment
outcomes than NHWs [3]. However, PR H/L men had significantly higher PCSM than
NHBs and the highest mortality among Hispanic subgroups [3].

PCa diagnosis is mainly based on the evaluation of biopsied tissue by a pathologist
that produces a Gleason score of disease severity. This is associated with an average error
of 25–30% in the case of under-detection and an average error of 1.3–7.1% in the case of
over-detection [5,6]. The accuracy of a Gleason score is estimated to be 61% [7,8]. Although
PCa is normally characterized by a slow progression, about 20–30% of cases are associated
with an aggressive phenotype that could lead to metastasis and death. A key molecular
feature of this aggressive phenotype is the dysregulation of tumor suppressor genes and
DNA repair genes. Defects in DNA repair pathways in PCa can be effectively targeted
using PARP1 inhibitors. Prostate tumors with deficiencies in BRCA1 or BRCA2 DNA repair
genes are highly sensitive to these drugs [9]. Although alterations of these genes in prostate
tumors have been studied [10,11], little is known about the epigenetic regulation of DNA
repair genes in PCa. No published data are currently available regarding DNA methylation
in PR H/L PCa patients.

Epigenetic changes and modifications represent critical components of initiation
and progression of carcinogenesis [12]. Abnormal epigenetic programs, including DNA
methylation may inactivate large groups of genes. Hundreds of epigenetically silenced
genes may exist in tumor tissues [13]. DNA methylation has been extensively studied,
and hypermethylation has been linked with gene silencing of tumor suppressor genes in
PCa and with adverse clinical outcomes [12,14–16]. DNA methylation is an epigenetic
process that affects transcriptional regulation of genes. DNA methylation occurs when a
methyl branch is added to position 5 of cytosine, and normally 3–4% of all cytosines are
methylated [13]. Methylation only occurs at cytosine nucleotides located 5′ to guanine
nucleotides forming CpGs or their clusters, termed CpG islands. DNA methylation is part
of a cluster of molecular processes that initiate tumorigenesis and drive its early evolution
by altering other molecular processes.

We previously reported that numerous studies have investigated DNA methylation
in PCa [17,18]. These studies reported a number of differentially methylated genes in
PCa compared to adjacent normal tissues. Most of these studies used a candidate gene
approach advantage to increase statistical efficiency of the study association analysis
while narrowing the possibilities of assessing methylation effects related to multiple genes.
Several studies used an epigenome-wide methylation microarray to cover a wide range of
genes. All studies identified a large number of differentially methylated CpGs, but these
findings have not been confirmed in independent validation datasets [19–21]. Since DNA
methylation changes may drive racial and ethnic disparities in PCa [22], there is a need to
study these patterns from different small cohorts to identify potential candidates to further
conduct representative validation studies.

This study aimed to investigate epigenetic differences in terms of DNA methylation
between tumor and adjacent normal prostate tissues. Moreover, we aimed to assess
differences in DNA methylation patterns in aggressive (high risk) and indolent (low risk)
PCa in order to identify specific biomarkers for the aggressive phenotype in PR H/L men.
A secondary aim was to characterize the ancestry component of men in this study group.
PR has an admixed population consisting of three main components: European, African,
and Indigenous American.

2. Results
2.1. Clinicopathological Characteristics of Study Group

As shown in Table 1, PR H/L men in the aggressive (high-risk) group had a mean
age of 65.5 and were significantly older than those in the indolent (low-risk) group, with a
mean age of 59.4 years. As expected, because of the selection criteria used, the high-risk
group showed significant differences in Gleason scores as compared with the low-risk
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group. No differences between the two groups were evident in terms of prostate-specific
antigen (PSA) levels, ethnicity, vital characteristics, biochemical recurrence, tumor stage,
surgical margins, and family history of prostate cancer (p > 0.05).

Table 1. Clinicopathological characteristics of Puerto Rican men with aggressive (high-risk) (n = 11)
and indolent (low-risk) (n = 13) prostate cancer in the study group.

Risk
High Low

p-Value 1
n = 11 n = 13

Age at diagnosis 65.5 ± 4.1 59.4 ± 10.5 0.006
PSA 8.3 ± 6.59 9.23 ± 9.33 0.350

Vital status 0.500
Deceased 1 0

Alive 10 11
Missing 0 2

Gleason score <0.0001
6 0 8

7 (3 + 4) 0 5
7 (4 + 3) 7 0

8–9 4 0
Biochemical recurrence (BCR) 0.160

Yes 3 1
No 7 12

Missing 1 0
Clinical Stage 0.330

T2a 1 3
T2c 6 9
T3a 1 0
T3b 3 1

Surgical margins 0.480
Yes 1 0
No 8 11

Missing 2 2
Family history of prostate cancer 0.830

No 3 5
Yes 3 3

Missing 5 5
1 p-Values were obtained from Student’s t, chi-square, or Fisher exact tests. PSA, prostate-specific antigen.

2.2. Differences in Methylation Levels between Tumors and Adjacent Normal Tissue

An initial quality control of our samples considering the missing values, β-value
distributions, and principal component analysis (PCA) indicated that three samples (two
tumor and one normal) did not meet our quality control and were excluded from further
analysis. The unsupervised PCA model of the remaining samples showed a clear distinction
between tumor and normal tissues in the first principal component (PC1), explaining 36.7%
of the variation (Figure 1A). This indicates that there are considerable methylation changes
between normal and tumor tissue. To further explore the methylation differences between
normal and tumor tissue, we performed a two-group comparison. The false discovery
rate (FDR)-corrected p-values (q < 0.01) and the mean difference (∆β-value > 0.3) between
the two groups are presented in a volcano plot (Figure 1B). This analysis resulted in
945 significant probes, with a majority of the probes showing hypermethylation in tumor
samples (Figure 1B). To identify differently methylated genes, we further required two
consecutive probes within a gene to be significant and this resulted in 108 differently
methylated genes (Supplementary Materials, Table S1). One of identified genes, AOX1,
which was previously suggested as a methylation biomarker for PCa [21,23], showed
significant hypermethylation for multiple probes in tumor tissue (Figure 1C). Using data
from The Cancer Genome Atlas (TCGA), we show that this aberrant promoter methylation
led to downregulation of AOX1 in tumor tissues (Figure 1D).
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Figure 1. Methylation differences in tumors vs. normal tissue. (A) Principal component analysis (PCA) of 45 samples in 
our study shows a separation between tumor (red triangles, n = 22) and adjacent normal tissue (blue circles, n = 23). (B) 
The volcano plot above indicates changes in the methylation pattern between normal and tumor tissues with hypermeth-
ylated regions in tumors. (C) Gene structure methylation (GSM) plot for a representative gene, AOX1. The methylation 
level (x-axis) for each probe set is represented by a boxplot for each group with tumors in red and normal in blue. The 
genomic and the probe identifier (ID) are shown on the left and right y-axis, respectively. The far-left column (black) 

Figure 1. Methylation differences in tumors vs. normal tissue. (A) Principal component analysis (PCA) of 45 samples in our
study shows a separation between tumor (red triangles, n = 22) and adjacent normal tissue (blue circles, n = 23). (B) The
volcano plot above indicates changes in the methylation pattern between normal and tumor tissues with hypermethylated
regions in tumors. (C) Gene structure methylation (GSM) plot for a representative gene, AOX1. The methylation level
(x-axis) for each probe set is represented by a boxplot for each group with tumors in red and normal in blue. The genomic
and the probe identifier (ID) are shown on the left and right y-axis, respectively. The far-left column (black) indicates the
presence of a CpG island and the next column (colored) shows the CpG probe location in the gene. Multiple probes showed
significant differential methylation level. (D) Average methylation level for 12 probes vs. RNA-seq gene expression levels
show a negative correlation using The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) non-Hispanic white
(NHW) samples. (E) Partial least squares (PLS) model derived using TCGA NHW samples can clearly separate the samples
from the Puerto Rico (PR) cohort. (F) Density scatter plot of ∆β-values for overlapping probes for the TCGA Illumina 450K
probes vs. PR cohort (EPIC) probes. **** p < 0.0001.
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To further investigate our data, we integrated the methylation results on a partial
least squares (PLS) model for tumor vs. normal using only non-Hispanic White (NHW)
samples from The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) dataset.
Applying this PLS model to our data, we can observe that samples of Puerto Rican origin
show similar methylation changes when comparing tumor and normal tissues for the two
datasets (Figure 1E). This is further established (Figure 1F) when comparing the ∆β-value
between tumors and normal for TCGA NHWs and this PR cohort, which shows a clear
linear tendency. Of the 945 significant probes found in the PR cohort, 799 are available on
the 450K chip used by the TCGA and 585 (73%) of these were also significant in the TCGA
NHW cohort.

2.3. Differentially Methylated Genes Associated with Aggressive Prostate Cancer

To further investigate the differentially methylated genes in prostate tumor samples,
we calculated a PCA model including 22 tumor samples identified as aggressive (high-risk)
and indolent (low-risk). No clusters were found on the sample score plot between aggres-
sive and indolent cases (Figure 2A). No significant results were obtained when comparing
between the indolent and aggressive groups using FDR (0.84). However, 23 probes were
identified as potential candidates using a p < 0.001 and a ∆β-value of 0.2 as cutoff (Figure 2B
and Table 2).

Table 2. Differentially methylated genes between aggressive (high-risk) and indolent (low-risk) prostate tumors in Puerto
Rican men with prostate cancer.

Probe ID Gene Symbol GeneBody Chr Position p-Value Delta
β-Value

Mean
(Low-Risk)

Mean
(High-Risk)

cg22030684 COL9A2 Body 1 40,781,708 0.000067 −0.213457 0.449935 0.236478
cg25161377 FAM179A Body 2 29,237,783 0.000126 −0.221753 0.654878 0.433124
cg15218485 RREB1 Body 6 7,201,665 0.000899 0.220195 0.238283 0.458478
cg24163360 SLC17A2 TSS1500 6 25,931,557 0.000087 −0.218759 0.685592 0.466833
cg25641223 PDE10A Body 6 165,747,945 0.000104 −0.200032 0.640184 0.440152
cg11747142 FAM71F2 TSS200 7 128,312,331 0.00054 0.229507 0.477201 0.706708
cg17983571 JMJD1C Body 10 65,186,953 0.000427 0.23785 0.470854 0.708704
cg05363118 PLEKHS1 5′UTR 10 115,523,310 0.000081 −0.206065 0.589143 0.383078
cg05258834 TNNI2 Body 11 1,862,477 0.000455 −0.24573 0.648741 0.403012
cg21359838 OR51A4 TSS1500 11 4,969,708 0.000186 −0.212002 0.572201 0.360198
cg25921194 RNF169 Body 11 74,492,567 0.000161 −0.24419 0.624767 0.380577
cg19092163 SPNS2 Body 17 4,403,417 0.00075 −0.231457 0.433052 0.201596
cg15002904 ADAMTSL5 Body 19 1,510,692 0.000368 −0.242087 0.496689 0.254602
cg17713488 COL5A3 Body 19 10,077,935 0.000157 0.360569 0.405099 0.765668
cg22669123 CYP4F12 TSS1500 19 15,782,644 0.000677 −0.215233 0.627928 0.412695
cg09154639 RAE1 TSS1500 20 55,925,570 0.000905 0.226258 0.561288 0.787546
cg14539730 GABRQ Body X 151,809,946 0.000227 0.389047 0.362807 0.751854
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no separation between low-risk (green rectangles, n = 13) and high-risk (orange diamonds, n = 9) groups. (B) Volcano
plots highlighting 23 differentially methylated sites between high-risk and low-risk prostate tumors with a −log10 p-value
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(F) TCGA non-Hispanic Black (NHB) samples, and (G) Puerto Rican samples.
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2.4. Methylation Analysis of DNA Repair Genes Associated with Aggressive Prostate Cancer

The volcano plot shows the significant differentially methylated CpG sites between
aggressive and indolent prostate tumors found in 17 genes (Figure 2B). Six of these genes
were hypermethylated (RREB1, FAM71F2, JMJD1C, COL5A3, RAE1, and GABRQ), and 11
were hypomethylated (COL9A2, FAM179A, SLC17A2, PDE10A, PLEKHS1, TNNI2, OR51A4,
RNF169, SPNS2, ADAMTSL5, and CYP4F12). Table 2 presents the location of CpG sites,
mean methylation levels in high- and low-risk groups and the p-values for these differen-
tially methylated genes. One of the identified probes mapped to the gene named FAM71F2
(family with sequence similarity 71 member F2), which was previously suggested as a
biomarker for metastasis of testicular cancer [24]. Probe cg11747142 was found to be
significantly hypermethylated in tumor tissues (Figure 2C).

To compare our results with previous studies, we also included results from the NHW
samples in the TCGA PRAD dataset (Figure 2E). The ∆β-values for comparing Grade
Group 1 (GG1) vs. Grade Group 5 (GG5) are compared to our ∆β-value in Figure 2D. It is
clear that there is no consistency in differently methylated probes between the two datasets,
opposite to what was seen in Figure 1F. To further compare the two datasets, we derived a
PLS model for the NHW samples using the GG1 vs. GG5. This model was applied to all
the Grade Groups for the TCGA NHW samples (Figure 2E). For the sample used in the
PLS model, GG1 and GG5 are clearly separated but there is also a clear trend difference
among the GG2, GG3, and GG4 groups which were not part of the PLS model training set.
To further validate our PLS model, we also applied it to the TCGA PRAD NHB samples
(Figure 2F), and these predictions showed a similar trend as for the NHW samples. This
would indicate that the NHW-derived PLS models also work on NHB samples. The PLS
model was also applied to the PR cohort. However, it could not separate low-risk from
high-risk samples (Figure 2G).

We analyzed differential methylation of 179 candidate DNA repair genes between
tumor and normal tissues and between aggressive and indolent cases. These genes were
predominantly distributed in five DNA repair pathways including nucleotide excision
repair, base excision repair, mismatch repair, and homologous and nonhomologous repair.
We found two significant differentially methylated DNA repair genes: JMJD1C and RNF169
(Figure 2B). JMJD1C (Figure 3A) codifies for a histone demethylase protein which plays a
role in regulation of MDC1 protein expression [9]. RNF169 (Figure 3B) acts as a negative
regulator of double-strand break (DSB) repair following DNA damage [25].
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2.5. Ancestry Analysis

For each study participant, we determined the proportion of African, European, and
Indigenous American ancestry. As shown in Table 3, the contribution of African ancestry
ranged between 2.7% and 85.8%, averaging 24.1% (standard deviation, SD 22.6%). For
the European ancestry component, values ranged between 9.4% and 97.1%, averaging
64.2% (SD 21.1%). For the Indigenous American, values ranged between 0% and 25.16%,
averaging 11.7% (SD 9.0%). It is noteworthy that, within this population, there are large
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variations in the contribution of European versus African ancestry, while the Indigenous
American ancestry remains relatively homogenous (Table 3, Figure 4). This contrasts with
what has been observed in H/L of Mexican and Peruvian origin for which there is a
stronger influence of Indigenous American ancestry.

Table 3. Ancestry proportions in the study cohort of 23 Puerto Rican men with prostate cancer.

Ancestral Population Average SD Maximum Minimum

African 0.2408 0.2256 0.8576 0.0274
European 0.6420 0.2181 0.9716 0.0938

Indigenous American 0.1173 0.0897 0.2516 0
SD: standard deviation.
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3. Discussion

This pilot study represents the first effort to study epigenetic regulation in PR H/L
men with PCa. Several potential DNA methylation biomarkers for aggressive and indolent
prostate tumors were identified. Our results integrate data from TCGA NHW and NHB
which provides a perspective regarding methylation patterns in PR H/L men. Moreover,
two differentially methylated protein-coding genes associated with DNA repair were
identified, shedding light on the differences between aggressive and indolent PR H/L men
with PCa. The outcomes of this study could lead to the development of better methods for
clinicians to identify PR H/L men with PCa with low and high risk.

Our study is not the first to identify differences in methylation patterns between
tumor and adjacent normal tissue in PCa. Using epigenome-wide 450K DNA methylation
data derived from 469 PCa tumors and 50 normal prostatic tissue samples, Nikas and
Nikas (2019) were able to develop a mathematical model that classified prostate tumor
tissue versus normal tissue with a high sensitivity (95.3%) and specificity (94.0%) [8]. Since
this group only compared tumor with adjacent normal tissues, their results cannot reflect
differences within prostate tumors (aggressive and indolent). Our study is an effort to
combine adjacent normal and tumor tissue to explore other differences that might be
related to biological processes. Xu et al. (2019) investigated 553 PCa tumor samples in
the TCGA database associated with DNA methylation-driven genes between tumor and
normal samples. Here, we show that there are common methylation patterns between PR
H/L and NHWs [12].

One of identified genes, AOX1, showed significant hypermethylation for multiple
probes in tumor tissue. The most promising methylation marker candidates identified by
Strand et al. (2014) included PITX2, C1orf114 (CCDC181), and the GABRE~miR-452~miR-
224 locus, in addition to the three-gene signature AOX1/C1orf114/HAPLN3 [23]. The
function of FAM71F2 is unknown although this gene is expressed in various tissues includ-
ing testis, brain, and others. Gene expression analysis in testis cancer identified family
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with sequence similarity 71, member F2 (FAM71F2), which can discriminate the metastasis
status with an excellent predictive significance [24].

Among 17 differentially methylated genes in aggressive cases, a few genes, such as
SLC17A2 and OR51A4, were not investigated previously for human cancers. However, most
genes were investigated for a role in the methylation process, DNA repair, or differential
expression in various tumors, including prostate cancer.

Differential expression of COL9A2 in prostate tumor was reported as compared in
normal tissues. COL9A2 was found as one of the hub genes in a protein–protein interaction
network [26]. The zinc finger protein Ras-responsive element binding protein (RREB-1)
interacts with androgen receptor (AR) as a partner and coregulator. The RREB-1 gene binds
to the prostate-specific antigen (PSA) promoter. Inhibition of RREB-1 expression leads to
increased PSA promoter activity and expression. Therefore, RREB-1 acts as a repressor of
AR [27,28]. CYP4F12 is expressed differentially in colon [29] and liver tumor tissues [30,31].
Expression of CYP4F12 is positively correlated with low clinical stages and is a prognostic
biomarker for overall survival in liver cancer. These results suggest the potential predictive
diagnostic and prognostic roles of CYP4F12 gene expression in liver cancer [30].

Gene expression profiling analysis showed that COL5A3 overexpression is related to
breast cancer progression [32]. ADAMTSL5 was proposed as a putative epigenetic marker
for therapeutic resistance in acute lymphoblastic leukemia. Results from two methods, 27K
microarray and methylation-specific polymerase chain reaction, showed hypermethylation
of ADAMTSL5 in chemo-resistant samples (93% vs. 38%; p = 0.0001) [33]. RAE1 was
identified as one of 23 genes involved in the transformation from androgen-dependent
PCa to castrate-resistant PCa. These 23 genes play a role in important biological processes,
such as cell signal transduction, cell adhesion, apoptosis, oncogenesis, cell proliferation,
and cell differentiation [34].

Spinster homolog 2 (SPNS2) is a multi-transmembrane transporter, widely located in
the cell membrane and organelle membranes. It transports sphingosine 1-phosphate (S1P)
into the extracellular space and the circulatory system [35]. Sphingosine 1-phosphate (S1P)
plays important roles in cell proliferation, differentiation, or survival mainly through its
surface G-protein-coupled receptors S1P1–5. Bone represents the major site of metastasis for
PCa cells, which rely on bone-derived factors to support their proliferation and resistance
to therapeutics in PCa [36]. The SPIN2 gene is known to be involved in angiogenesis,
immune response, and metabolism. Furthermore, Spindlin Family Member2 (SPIN2) is
associated with the transformation from inflammation to cancer and metastasis. A critical
role of SPIN2 was reported in the survival of lung cancer [37] and acute myeloid leukemia
(AML) [38].

Troponin I2 (TNNI2) was identified as a candidate biomarker for prediction of poor
outcomes in various cancers. Overexpression of TNNI2 is associated with recurrence
and metastasis in gastric cancer [39] and with poor survival in lung cancer [40]. TNNI2
was hypomethylated in liver tumor [41]. Overexpression of Pleckstrin homology domain
containing S1 (PLEKHS1) was associated with metastases, as well as shorter overall and
disease-free survival in thyroid carcinoma. The messenger RNA (mRNA) expression
of PLEKHS1 was inversely correlated with methylation level. PLEKHS1 plays a role in
aggressive thyroid carcinoma and can be a biomarker for predicting poor outcomes [42].

The FAM179A was identified as a fusion partner to the anaplastic lymphoma kinase
gene (ALK) in patients with non-small-cell lung cancer (NSCLC). Therefore, this FAM179A–
ALK fusion may influence the treatment response to ALK inhibitors [43]. γ-Aminobutyric
acid (GABA) A receptor subunit θ (GABRQ) is a well-known inhibitory neurotransmitter
in the brain, suggested as a prognostic biomarker of clear cell renal cell carcinoma (ccRCC).
Low GABRQ mRNA expression was significantly associated with a poor prognosis of
ccRCC in two independent cohorts. GABRQ mRNA expression may be considered as
a novel prognostic biomarker of ccRCC [44]. A previous study reported that GABRQ is
involved in the risk and progression of liver cancer, which promotes the proliferation of
cancer cells [45]. Phosphodiesterase10A (PDE10A) is expressed in prostate tissues. PDE10A
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was found frequently (≈19%) in novel somatic mutations. In silico analysis of this novel
variant shows a possible alteration of PCE10A function [46]. A biological role for PDE10A
has also been studied in neurodegenerative diseases and in colorectal cancer [47,48]. There-
fore, PDE10A-specific inhibitors are investigated in preclinical studies [49].

Among 17 genes associated with aggressiveness, two genes are involved in the DNA
repair processes. JMJD1C, a DNA repair factor, plays multiple important roles in prostate
cancer progression. Downregulation of JMJD1C leads to an impact on the DNA repair
pathway in the balance of homologous recombination (HR) and non-homologous end-
joining (NHEJ) [9]. JMJD1C shows focal loss in PCa and may be associated with resistance to
PARP inhibitors [9]. In addition, a PCa genome-wide association study (GWAS) identified
a new locus, JMJD1C at 10q21, which was associated with serum testosterone levels
(rs10822184: p = 1.12 × 10−8). This SNP in JMJD1C was estimated to account for 5.3% of
the variance in serum testosterone and dihydrotestosterone levels. RNF169 is involved in
the DNA repair pathway via an interaction with dual-specificity tyrosine phosphorylation-
regulated kinase 1A (DYRK1A), and it was reported to be involved in DNA double-strand
break (DSB) repair [50,51]. RNF169 is recognized as a substrate for DYRK1A. RNF169
phosphorylation at S688 plays a major role in removing 53BP1 from the DNA damage
foci [52]. Furthermore, RNF169 interacts with DYRK1A and localizes to DNA damage foci
by binding [53].

Differentially methylated probes (585) were found when comparing tumor vs. normal
tissue in PR H/L samples and further confirmed using the TCGA data. Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis based on DNA methylation-
driven genes obtained from the Gene Expression Omnibus (GEO) database did not report
any DNA repair pathways as being enriched in PCa. However, recent genomic analysis
revealed that germline or somatic inactivation mutations in BRCA1 or BRCA2, or other
genes involved in the homologous repair pathway collectively occur in as much as 20–25%
of advanced PCa [54,55]. The identification of DNA methylation patterns related to PCa
in PR H/L men along with specific patters related to aggressiveness and DNA repair
constitutes a pivotal effort for the understanding of PCa disparities in this population. The
study by Apprey et al. (2019) reported that genetic ancestry influences DNA methylation
patterns [22]. This constitutes a unique effort to provide a broad overview regarding
methylation and ancestry patterns in PR H/L men while opening new avenues for future
studies.

4. Materials and Methods
4.1. Human Subjects, Sample Selection, and Specimen Acquisition

This study was approved by the Ponce Health Sciences University (PHSU) Institutional
Review Board (Protocol no. 1909021277A001). All samples for this study were obtained
from the Puerto Rico Biobank (PRBB), the only biorepository focused on the biobanking of
Hispanic cancer patients from US. The PRBB is a core facility in Ponce Research Institute
(PRI) and a key component of the U54 Partnership (PHSU/PRI-Moffitt Cancer Center)
funded by the National Cancer Institute (NCI) Center to Reduce Cancer Health Disparities.
Archived formalin-fixed paraffin-embedded (FFPE) blocks of 24 prostate tumor and 24
adjacent normal tissues were collected through the PRBB. We selected 11 aggressive and 13
indolent cases on the basis of Gleason scores.

4.2. DNA Methylation
4.2.1. Illumina Methylation 850K Data Filtering and Genome-Wide Analysis Plan

The Illumina 850K DNA methylation platform (San Diego, CA) was used to measure
DNA methylation patterns from FFPE isolated DNA according to the manufacturer’s
instructions.
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4.2.2. DNA Extraction

DNA samples were extracted from the FFPE prostate tissues from the PRBB core
at PHSU using a macro-dissection approach. Tumor areas were annotated on the H&E
(Haemotoxylin and Eosin) slides by a pathologist (Dr. Jasreman Dhillon) and extracted by
macro-dissection. To ensure the quality of the extracted nucleic acids, DNA extracted from
the samples was evaluated for integrity with DNA integrity numbers (DINs).

4.2.3. Quality Control (QC) and Normalization for Methylation Data

The ‘idat.files’ were read using the minfi (version 1.28.4) [56,57] Bioconductor package
for R (version 3.5.2). Detection p-values were subsequently calculated using minfi’s im-
plementation provided by the detectionP function. The function preprocessFunnorm was
used to perform both background correction, using the normal-exponential out-of-band
(NOOB) [58] method, and then functional normalization (FunNorm) [59], a between-array
normalization method. The preprocessFunnorm function returned an object containing
β-values which were calculated with an offset of 100 in the denominator, as suggested
by Illumina [60]. The number of missing values, histogram of β-values, and principal
component analysis (PCA) plots were used to visualize data quality and detect outlier
samples and potential batch effects. β-Values with a corresponding detection p-value > 0.05
were set as missing values.

4.2.4. Selection of Differentially Methylated Regions (DMRs)

Two group comparisons were performed using Student’s t-test controlling for multiple
testing using FDR [61]. Furthermore, probes were considered significant if the difference
in mean β-value between the two groups was larger than 0.3 [62]. To further remove
potentially false positives, we used a region-based analysis. This is accomplished by
simultaneously considering all the probes within a specific region (gene or CpG island)
and defining a significant change when multiple probes within that region show the same
significant change [63–66]. A single significant probe within a CpG island or gene body
was not considered significant. Statistical analysis was performed using MATLAB (Natick,
MA, USA).

4.2.5. TCGA Data

Raw IDAT files were downloaded and normalized. RNA-seq data for PRAD was
extracted from the PanCancer dataset (https://gdc.cancer.gov/about-data/publications/
pancanatlas). Ancestry estimates were taken from the publication by Yuan et al. (2018) [67].

4.3. Ancestry Analysis
4.3.1. Genotyping

A set of 106 single-nucleotide polymorphisms (SNPs) that can discriminate indigenous
American, African, and European ancestry was used to estimate the proportion of genetic
ancestry in 24 PR H/L PCa patients. The ancestry informative markers (AIMS) are widely
spaced throughout the genome and have a well-balanced distribution across all 22 autoso-
mal chromosomes, with an average distance between markers of 2.4 × 107 bp. Genotyping
of the ancestry informative markers was performed using a multiplex PCR coupled with
single-base extension methodology with allele calls using a Sequenom analyzer at the
University of Minnesota.

4.3.2. Quality Control of Ancestry Data

Out of the 106 AIMS genotyped, five were excluded due to a genotyping rate <90%
(n = 2, rs30125, rs10491097) and/or weak confidence in clustering (n = 3, rs993314, rs2585901,
rs4076700). One individual with a call rate of <90% was excluded from further analysis.

https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
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4.3.3. Ancestry Estimates

The global genomic ancestry proportion was estimated using Admixture under a
supervised model and assuming three populations of origin (k = 3) using the -B (boot-
strapping) flag to generate estimates of standard error. Reference populations for su-
pervised analysis consisted of individuals of European ancestry (n = 42, Coriell’s North
American Caucasian panel), African ancestry (37 non-admixed West Africans living in
London, United Kingdom, and South Carolina), and Indigenous American (15 Mayans and
15 Nahuas).
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DRC DNA repair capacity
NER Nucleotide excision repair
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AA African American
NHW Non-Hispanic White
PCA Principal component analysis
AIMS Ancestry informative markers
QA Quality assurance
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FDR False discovery rate
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PCR Polymerase chain reaction
PHSU Ponce Health Sciences University
PRI Ponce Research Institute
PRBB Puerto Rico Biobank
HR Homologous recombination
PARP1 Poly (ADP-Ribose) polymerase-1
BRCA1 Breast cancer type 1 susceptibility protein
BRCA2 Breast cancer type 2 susceptibility protein
DSBs DNA double-strand breaks
AOX1 Aldehyde Oxidase 1
RREB1 Ras Responsive Element Binding Protein 1
FAM71F2 Family with Sequence Similarity 71 F2
JMJD1C Jumonji Domain Containing 1C
COL5A3 Collagen Type V Alpha 3 Chain
RAE1 Ribonucleic Acid Export 1
GABRQ Gamma-Aminobutyric Acid Type A Receptor Subunit Theta
COL9A2 Collagen Type IX Alpha 2 Chain
FAM179A TOG Array Regulator of Axonemal Microtubules 2
SLC17A2 Solute Carrier Family 17 Member 2
PDE10 Phosphodiesterase 10
PLEKHS1 Pleckstrin Homology Domain Containing S1
TNNI2 Troponin I2, Fast Skeletal Type
OR51A4 Olfactory Receptor Family 51 Subfamily A Member 4
RNF169 Ring Finger Protein 169
SPNS2 Sphingolipid Transporter 2
ADAMTSL5 ADAMTS Like 5
CYP4F12 Cytochrome P450 Family 4 Subfamily F Member 12
MDC1 Mediator of DNA Damage Checkpoint 1
PARP Poly(ADP-Ribose) Polymerase
BRCA1 BRCA1 DNA Repair Associated
BRCA2 BRCA2 DNA Repair Associated
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