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Abstract: Unlike odorants that mask odors, natural zeolite acts as a molecular sieve that captures
and eliminates odors. Different treatment methods can be applied to influence the properties of
the natural zeolites. To enhance the odor adsorption capacities of the natural zeolite two types of
treatment methods were applied: chemical (acid, basic) and thermal. The initial natural zeolites and
the activated one were characterized using X-ray diffraction (XRD) and scanning electron microscope
(SEM-EDX). Two experiments were performed to establish the odor adsorption capacity of the
activated natural zeolites. The best zeolite for the adsorption of humidity, ammonia and hydrogen
sulfide was the 1–3 mm zeolite activated through thermal treatment. For the adsorption of PAHs, the
best zeolite was the one activated through basic treatment, with an adsorption capacity of 89.6 ng/g.

Keywords: natural zeolite; thermal treatment; chemical treatment; odor; polycyclic aromatic hydrocarbons

1. Introduction

The smell of a product is a complex, gaseous mixture that can contain hundreds of
individual chemical components [1]. Malodors can have a direct impact on the health of
humans and animals because they can contain harmful airborne substance [2,3]. Managing
odors represents a challenge for the continuous growth of the global industrialization. For
household malodor, with consumers that are more and more interested in eco-friendly
solutions, optimizing the available natural resources is a simple way of ensuring odor
control with little impact on the environment. Spoiled food smells are the results of bacterial
decomposition of organic matter. The ability to sense these smells and recognize them as
off-putting is essential in avoiding food intoxication [4,5]. People have found different
ways to ensure food stability. One of them is to reduce the humidity of the environment
where food was stored [6].

The persistent smell of tobacco smoke is a toxic mixture of more than 5000 com-
pounds [7]. Polycyclic aromatic hydrocarbons (PAHs), which are the result of incomplete
burning of the organic material, are some of the carcinogenic compounds that tobacco
smoke contains, especially benzo(a)pyrene which is one of the most potent carcinogens [8,9].
Eliminating PAHs from the households using natural available materials will ensure a
safer environment.

Strategies for odor elimination include chemical reactions, adsorption or absorption,
and combinations of these approaches [10].

The natural zeolites are crystalline materials with a porous structure that can accom-
modate a wide variety of cations (i.e., Na+, K+, Ca2+, Mg2+, etc.) [9,11]. Zeolites have
superficial interaction properties with changeable organic molecules that have a positive
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charge or can absorb polar molecules [12]. Due to their unique structural and chemical
composition, such as high adsorption and condensation properties, high surface area, and
adjustable surface property [13,14], zeolites are promising candidates for adsorbents appli-
cations [15]. Several studies of biofilter technology for treating a variety of odors emissions
have been reported [16–19]. Odor gases are removed by processes thought to include ad-
sorption/absorption and bio-oxidation in the biofilter media [20]. Biofilters are an efficient
and practical technology for gas cleaning and can reduce odors to acceptable levels [20].
In previous studies [20–22], hydrogen sulfide, H2S, and ammonia (NH3) were effectively
eliminated with a removal efficiency of over 90% with different types of biofilters.

These properties allow them to be applied into different fields, including gas purifica-
tion and wastewater treatment. Zeolite is an aluminosilicate-type microporous material
with three-dimensional tetrahedral SiO4 and AlO4 units. Each AlO4 unit introduces a net
negative charge and requires to be constructed by extra exchangeable cations [23]. Then
the cations are held loosely and can easily be exchanged with others. This connectivity of
these tetrahedral SiO4 and AlO4 units determine the framework type of zeolites [24].

The mining of natural zeolites typically involves crushing, milling, and grinding
techniques [25]. Zeolites are usually supplied in the form of a range of mesh size. In
this study, the samples have a particle size of 1–3 mm and 3–5 mm. The zeolite materials
have an ordered inner channel and homogeneous pore size distribution, which can control
the approach of adsorbates to their internal space [26]. Zeolites are considered a type of
effective adsorbent for the removal of various pollutants due to their low production cost,
high surface area, excellent thermal stability and ordered pore structure.

The aim of this research is to evaluate the capacity of the natural zeolites to adsorb
odors (H2S, NH3) and toxic compounds (PAHs) from the household environment, after
undergoing chemical and thermal treatments. Two experiments were set up that mimic, at
laboratory scale, household areas where natural zeolites can be used for their adsorbent
properties. H2S, NH3 were generated in a container using pork meat left to decomposes
as source, while PAHs were obtained using tabaco smoke. Enhancing the natural zeolites
capacity of adsorption can ensure a wider applicability.

2. Materials and Methods
2.1. Zeolite Samples

The natural zeolites samples, with a grain size in the range of 1–3 mm (Z-1) and
3–5 mm (Z-2), originated from Poland. They were provided by the company Enviro
Naturals Agro LtD., Bucharest, Romania.

2.2. Materials

The refrigerated minced pork meat was bought from a local supermarket (Cluj-
Napoca, Romania), with a fat content of under 20%. The tobacco used in the experi-
ments is Silverado Blue Extra Volume tobacco, which is a voluminous tobacco, of su-
perior quality, that was cut into strands and purchased from specialty stores. The to-
bacco does not contain artificial flavors and the strength is medium to strong. Hex-
ane, acetonitrile gradient grade are from VWR (Fontenay-sous-Bois, France). Sodium
hydroxide, pure pellets, from Merck(Darmstadt, Germany) and chlorhydric acid are
from LGC Promochem (Wesel, Germany). PAHs Mix (naphthalene, acenaphthene, flu-
orene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene,
benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene,
benzo(g,h,i)perylene, indeno (1,2,3-cd)pyrene) 10 µg/mL each in acetonitrile are from
Sigma Aldrich (St. Louis, MO, USA). Ultrapure water (18.2 MΩ/cm) obtained from a
Millipore Direct-Q3 UV Ultrapure water system (Millipore, Molsheim, France) was used.

2.3. Zeolite Treatments

Two types of treatment methods for zeolite activation were applied: chemical (acid,
basic) and thermal. The acid treatment was done using HCl 0.4 M for 2 h. After the acid
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treatment the zeolite was washed with ultrapure water until no Cl- ions were detected in
the washing water by using AgNO3 solution, and then the washed zeolite was dried at
140 ◦C for 2 h. The basic treatment was done using with NaOH 1 N for 2 h, while stirring,
at 80 ◦C. After the basic treatment, the zeolite was washed with ultrapure water until the
pH = 7, and then dried at 140 ◦C for 2 h. The thermal treatment was performed at 300 ◦C
for 3 h (Table 1).

Table 1. Tested zeolite samples.

Sample Code Description

Initial 1 Zeolite, particle size 1–3 mm
Initial 2 Zeolite, particle size 3–5 mm

Cal 1 Thermally treated zeolite, particle size 1–3 mm
Cal 2 Thermally treated zeolite, particle size 3–5 mm
HCl 1 Chemically modified zeolite with HCl, particle size 1–3 mm
HCl 2 Chemically modified zeolite with HCl, particle size 3–5 mm

NaOH 1 Chemically modified zeolite with NaOH, particle size 1–3 mm
NaOH 2 Chemically modified zeolite with NaOH, particle size 3–5 mm

2.4. Characterization

The powder X-ray diffraction (XRD) patterns were recorded at room temperature
using a D8 Advance (Bruker, Karlsruhe, Germany) diffractometer operating at 40 kV and
40 mA with CuKα radiation (λ = 1.54060 Å). The degree of crystallinity was estimated
from the relative intensities of the most characteristic peaks of clinoptilolite, taking as
reference the intensity of these reflections in the initial zeolite sample [27]. To evaluate
the composition and morphology, the zeolites were analyzed using the scanning electron
microscope SEM VEGA3 SBU-EasyProbe (Tescan, Bron, Czech Republic) with energy-
dispersive X-ray spectroscopy Quantax 200 EDX detector (Bruker, Berlin, Germany). The
zeolite samples were mounted on the aluminum stud using a double-sided adhesive carbon
tape and measured induplicate. The conversion to the corresponding oxide was made by
multiplying the element concentration with 1.8895 (Al2O3), 1.4297 (Fe2O3), 1.3392 (CaO),
1.6583 (MgO), 1.2046 (K2O), 1.3480 (Na2O), while SiO2 and loss of ignition (LOI) were
determined by a gravimetric method [27].

2.5. Experimental Plan

Experiment 1:100 g of pork minced meat and 30 g of zeolite were introduced in 1 L
containers with lids and kept at room temperature (20–22 ◦C). The container containing
only meat was considered the control sample. The gases (carbon dioxide CO2, oxygen
O2, ammonia NH3, carbon monoxide CO, hydrogen sulfide H2S) were measured using a
portable gas analyzer model GA5000 (Geotech, Jimmy Hill Way, Coventry, UK) by inserting
the hose of the measuring equipment in the container. The measurements were made after
7 days to ensure the start of meat decomposition processes that lead to the release of bad
odor gases such as hydrogen sulfide and ammonia. The humidity measurement of zeolites,
using a thermal balance (model HC103, Mettler Toledo, Switzerland) was performed before
they were placed in the meat container and 7 days after being put in the meat container. The
samples of each zeolite (Cal 1, Cal 2, HCl 1, HCl 2, NaOH 1 and NaOH 2) were measured
in duplicate.

Equation (1) was used to evaluate the best zeolites. Each of the five evaluation criteria
has a different weight in calculating the final score obtained by each test. NH3 is a marker
for the abundant presence of nitrogen-reducing organisms, while H2S is a marker for
the advanced decomposition of meat products [28,29]. For the moisture level grade, the
difference between the initial humidity level and the final humidity level was considered.

FGzeolite = 2 × GNH3 + 2 × GH2S + GCO2 + GO2 + 4 × GMC (1)

where FGzeolite is the final grade of the zeolite, which is between 10 and 100.
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GNH3 is the grade for the amount of ammonia, which is between 5 and 10. The sample
with the highest NH3 concentration will receive a score of 5 and the sample with the lowest
NH3 concentration will receive a score of 10; GH2S is the grade for the amount of H2S,
which is between 5 and 10, the sample with the highest H2S concentration will receive
a score of 5 and the sample with the lowest H2S concentration will receive a score of 10;
GCO2 is the grade for the amount of CO2, which is between 5 and 10, the sample with the
highest CO2 concentration will receive a score of 5 and the sample with the lowest CO2
concentration will receive a score of 10; GO2 is the grade for the amount of O2, which is
between 5 and 10, the sample with the highest O2 concentration will receive a score of 10
and the sample with the lowest O2 concentration will receive a score of 5; GMC is the grade
for the amount of moisture, which is between 5 and 10, the sample the adsorbed the lowest
humidity will receive a score of 5 and the sample the adsorbed the highest humidity will
receive a score of 10.

The zeolites that had the best results were further used to evaluate their capacity in
adsorbing tobacco.

Experiment 2: A glass aquarium with a volume of 54 L and dimensions 60 × 30 ×
30 cm3 (L × W × D) was used in the study. A silicone sealed Plexiglas with a cutout of
15 × 15 cm3 was used as cover. A lid was made with a sealing gasket with dimensions
1.5 cm larger than the cutout. It was fixed in plexiglass with screws, so that the whole
assembly can be sealed. The dimensions of the cut-out allow the easy introduction of
both tobacco and zeolites. In addition, two holes were made on the filter for sampling.
These were closed tightly until the time of sampling and after sampling. A sealed chamber
was considered a control, and no zeolite was introduced into it. In the rest of the sealed
chambers, 5 g of zeolite was introduced. Ignition gel used in HORECA field was used to
maintain combustion. Then, 2.5 g of tobacco were burned inside each airtight chamber.
Two samples of each zeolite (Cal 1, HCl 2, NaOH 2) were tested.

Measurements for the sample/control chamber and measurements for each type of
zeolite (Table 2) were performed.

Table 2. Experiments performed for evaluation of the degree of adsorption of tobacco smell.

Test Type Performed Analysis Burning Interval

Air from the sealed chamber into which
only tobacco was introduced (control

sample)
Fuel gases Immediately after the combustion stopped

Sampling on PM10 particle filter from the
sealed chamber in which only tobacco

was introduced (control sample)
Polycyclic aromatic hydrocarbons Immediately after the combustion stopped

Air from the sealed chamber Fuel gases Immediately after the combustion stopped

Cal 1, NaOH, 2 HCl 2 Polycyclic aromatic hydrocarbons 24 h after the combustion stopped

Sampling with cotton buds from the
bottom of the sealed chamber Polycyclic aromatic hydrocarbons 24 h after the combustion stopped

Sampling on PM10 particle filter from the
sealed chamber Polycyclic aromatic hydrocarbons 24 h after the combustion stopped

The analysis of the polycyclic aromatic hydrocarbons content at the bottom of the test
chamber was also performed. That was done to demonstrate that the PAHs quantified
following the analysis performed on the zeolitic material are due largely to the adsorption
process and not to the deposition process on zeolite.

The content of the zeolite moisture and volatile substances was determined using a
thermal balance.
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2.6. PAHs Analysis

An extraction of both the filter and the cotton buds, as well as of the zeolites was
performed with 25 mL of hexane in an ultrasonic bath for 30 min to ensure optimal extrac-
tion. After filtration, the extract was concentrated to dryness using a rotary evaporator
with vacuum pump. The extract was redissolved in 1 mL of acetonitrile injected into a
high-pressure liquid chromatograph with fluorescence detector HPLC-FLD to quantify the
PAHs presented in Table 3.

Table 3. Stages and parameters of the PAHs determination method.

Step Equipment/Materials Used Parameters

Extraction Ultrasonic bath, LBS, Falc, Italy
• Extraction solvent: 25 mL Hexane
• Duration: 30 min
• Temperature: 20–22 ◦C

Purification Cellulose filter without metals • sup>· Diameter 150 mm

Concentration Rotavapor HeiVap Precision Heidolph,
Schwabach, Germany

• Vacuum: 200 mbar
• Temperature: 40 ◦C

Analysis HPLC-FLD, Perkin Elmer 200 Series
Shelton, CT, USA

• Mobile phase: Ultrapure water and acetonitrile in
gradient program

• Flow rate: 0.7 mL/min
• Injection volume: 50 µL
• Chromatographic column: Intersil HPLC Column ODS-P 5

µ 4.6 × 150 mm GL Science
• Specific wavelength program
• Duration: 45 min

2.7. Statistical Data Analysis

The Minitab 17 software (State College, PA, USA) was used to do the correlation and
the surface plots for the data obtained in the experiments.

3. Results and Discussion
3.1. Characterization of Zeolites

According to XRD analysis, the investigated zeolite samples contain up to 60% clinop-
tilolite (PDF 01-089-7538) accompanied by muscovite (PDF 00-058-2034), quartz (PDF
00-005-0490), orthoclase (PDF 01-076-0823) and albite (PDF 01-089-6423) (Figure 1). The
degree of crystallinity of studied zeolites was similar, of approximately 85%. The activation
treatments applied do not produce significant structural changes detectable by XRD with
respect to the initial zeolite.

In Figures 2–8, the images obtained from SEM for the surface structure of the zeolite
are presented.
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The SEM structural analysis presents a typical morphology of the sampled zeolite
with irregular particles, with sharp edges, due to the different zeolite phases (crystalline
and amorphous materials), in agreement with the XRD analysis. The calcined samples
presented no significant differences in the SEM images. The basic and acid treatment
caused grinding around the edges. The obtained results are in accordance with those
reported by San Cristóbal [30] and Elaiopoulos [31].

The chemical elemental composition (wt. %) and loss of ignition (LOI) of zeolite
samples is presented in Table 4. All zeolites have a Si/Al ratio over 4, which prove that
they confirm the presence of clinoptilolite [32]. Zeolites that have a high Si/Al ratio are
hydrophobic. [30,32]. The highest Si/Al ratio between Si and Al was obtained for the
zeolite sample HCl 2 and the lowest Si/Al for the initial zeolite sample.
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Table 4. Chemical composition (wt.%) of zeolite samples.

Sample Initial 1 Initial 2 Cal 1 Cal 2 NaOH 1 NaOH 2 HCl 1 HCl 2

Na2O 0.33 ± 0.03 0.33 ± 0.02 0.44 ± 0.03 0.45 ± 0.03 3.40 ± 0.31 3.45 ± 0.32 <0.14 <0.14
K2O 2.87 ± 0.24 2.47 ± 0.30 2.47 ± 0.34 3.01 ± 0.27 2.41 ± 0.24 1.87 ± 0.20 3.10 ± 0.29 2.34 ± 0.26
CaO 2.48 ± 0.29 2.47 ± 0.33 3.19 ± 0.27 2.60 ± 0.29 4.83 ± 0.39 5.24 ± 0.56 1.72 ± 0.18 2.16 ± 0.24
MgO <0.14 0.96 ± 0.09 0.97 ± 0.12 1.17 ± 0.11 0.83 ± 0.09 0.98 ± 0.08 1.02 ± 0.11 1.10 ± 0.13
Al2O3 12.64 ± 1.23 12.64 ± 1.29 12.33 ± 1.30 12.57 ± 1.28 10.58 ± 1.29 10.96 ± 1.10 12.41 ± 1.21 11.64 ± 1.21
Fe2O3 2.54 ± 0.19 2.55 ± 0.21 2.31 ± 0.26 2.53 ± 0.19 1.91 ± 0.23 1.93 ± 0.17 2.27 ± 0.20 2.20 ± 0.17
SiO2 69.79 ± 7.04 69.79 ± 6.78 70.50 ± 7.06 70.22 ± 7.11 67.24 ± 6.83 67.78 ± 6.67 72.38 ± 7.29 74.04 ± 7.33
LOI 4.87 ± 0.45 4.87 ± 0.42 5.04 ± 0.49 4.92 ± 0.51 5.60 ± 0.48 5.45 ± 0.56 5.14 ± 0.49 5.61 ± 0.55

During the acid treatment, the pores are opened, the channels are cleaned and the
isomorphic replacement of the alkali and alkaline-earth metal ions in the zeolite structure
with protons (H+) takes place [32]. The oxide repartition in the sample and the LOI values
are presented in Table 4. Zeolite samples with a particle size of 3–5 mm showed lower LOI
values, compared to zeolite samples with a particle size of 1–3 mm, which indicates that
the particle size of zeolites influences the LOI. Zeolite with a particle size of 1–3 mm had
higher values for all the treatment methods.

3.2. Experiment 1

The results obtained during the experiments for evaluating the degree of moisture
adsorption are presented in Table 5 and Figure 9.

Table 5. Levels of zeolite humidity adsorption.

Sample Humidity, Initial (%) Humidity, Final (%)

Cal 1 0.62 ± 0.03 8.26 ± 0.41
Cal 2 0.30 ± 0.02 6.65 ± 0.33

NaOH 1 3.27 ± 0.16 9.72 ± 0.49
NaOH 2 2.61 ± 0.13 9.28 ± 0.46

HCl 1 2.55 ± 0.13 8.85 ± 0.44
HCl 2 3.16 ± 0.16 8.44 ± 0.42
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The biggest difference between the initial and the final humidity value was recorded
in the calcined samples, but the highest humidity value was in the zeolite samples treated
basically with NaOH.
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Table 6 presents the results obtained in the tests for evaluating the degree of odor
adsorption. Methane was not detected in any of the samples.

Table 6. Results of experiment 1.

Parameter Control Cal 1 Cal 2 NaOH 1 NaOH 2 HCl 1 HCl 2

CO2 (%) 12.6 ± 1.4 7.2 ± 0.8 8.8 ± 1.0 7.8 ± 0.9 8.3 ± 0.9 9.9 ± 1.1 6.9 ± 0.8
O2 (%) 8 ± 0.9 11.2 ± 1.2 12.8 ± 1.4 10.9 ± 1.2 12 ± 1.3 11.9 ± 1.3 13.3 ± 1.5

NH3 (ppm) 37 ± 4.1 7 ± 0.8 9 ± 1.0 24 ± 2.6 9 ± 1.0 18 ± 2.0 2 ± 0.2
CO (ppm) 9 ± 1.0 6 ± 0.7 2 ± 0.2 7 ± 0.8 5 ± 0.6 6 ± 0.7 4 ± 0.4
H2S (ppm) 90 ± 9.9 27 ± 3.0 51 ± 5.6 59 ± 6.5 34 ± 3.7 59 ± 6.5 32 ± 3.5

The biggest difference between the initial and the final humidity value was determined
in the calcined samples, but the highest humidity value was determined in the zeolite
samples basically treated with NaOH.

Ammonia and hydrogen sulfide are very important indicators in the evaluation of
the degree of adsorption of unpleasant odors. These compounds are responsible for
unpleasant odors due to food spoilage [28,29]. It is observed that in the analyzed air from
the blank sample, the NH3 concentration is 37 ppm, while in the rest of the containers
the NH3 concentration is 2–24 ppm. This proves that zeolites can adsorb NH3 in different
concentrations, depending on the type of treatment applied for zeolites activation.

In the blank sample, the value of hydrogen sulfide content (H2S) is 90 ppm while in
the zeolite containers its value was between 27–61 ppm. The lowest value of NH3 content
was recorded in the sample with zeolite activated by treatment with HCl of particle sizes of
1–3 mm, 2 ppm. The lowest value of H2S content was recorded in the sample with calcined
zeolite with particle sizes of 1–3 mm, 27 ppm.

The grades obtained by each zeolitic material are presented in Table 7.

Table 7. Grade obtained by each zeolite sample and the final grade base on Equation (1).

Sample CO2 O2 NH3 H2S Humidity Final Grade

Cal 1 9 6 9 10 10 93
Cal 2 6 9 8 7 7 73

NaOH 1 8 5 5 5 8 65
NaOH 2 7 8 7 8 9 81

HCl 1 5 7 6 6 6 60
HCl 2 10 10 10 9 5 78

Based on the ranking in Equation (1) the zeolites with the highest grade were Cal 1,
93, NaOH 2, 81, and HCl 2, 78. These were further used for experiment 2.

3.3. Experiment 2

No significant difference was recorded between the flue gases measured for each
experiment, which shows that the values obtained for PAHs in the control sample can be
used for comparison with the other samples in which zeolites were used.

The results obtained for each type of sample analyzed in terms of PAHs content are
presented in Tables 8–10 and Figure 10.



Materials 2021, 14, 3724 12 of 16

Table 8. Results for samples taken on cotton buds.

Parameter
Obtained Value (ng/m3)

Blank Cal 1 NaOH 2 HCl 2

Naphthalene 0.88 ± 0.11 <LQ * <LQ * <LQ *
Acenaphthene 0.15 ± 0.02 <LQ * <LQ * <LQ *

Fluorene 0.72 ± 0.09 0.72 ± 0.09 0.15 ± 0.02 0.55 ± 0.07
Phenanthrene 0.72 ± 0.09 0.49 ± 0.06 0.97 ± 0.12 0.75 ± 0.09

Anthracene 0.87 ± 0.10 0.05 ± 0.01 0.41 ± 0.05 0.49 ± 0.06
Fluoranthene 2.13 ± 0.26 0.59 ± 0.07 0.67 ± 0.08 0.51 ± 0.06

Pyrene 5.68 ± 0.68 0.52 ± 0.06 0.64 ± 0.08 0.32 ± 0.04
Benzo(a)anthracene 8.68 ± 1.04 0.19 ± 0.02 0.32 ± 0.04 0.21 ± 0.03

Chrysene 0.92 ± 0.11 0.17 ± 0.02 0.22 ± 0.03 0.12 ± 0.01
Benzo(b)fluoranthene <LQ * <LQ * <LQ * <LQ *
Benzo(k)fluoranthene <LQ * <LQ * <LQ * <LQ *

Benzo(a)pyrene <LQ * <LQ * <LQ * <LQ *
Dibenzo(a,h)anthracene <LQ * <LQ * <LQ * <LQ *

Benzo(g,h,i)perylene <LQ * <LQ * <LQ * <LQ *
Indeno(1,2,3-cd)pyrene <LQ * <LQ * <LQ * <LQ *

Total PAHs 20.74 ± 2.49 2.73 ± 0.33 3.38 ± 0.41 2.95 ± 0.35

* LQ = 0.05 ng/m3.

Table 9. Results for samples taken on PM10 particulate filter.

Parameter
Obtained Value (ng/m3)

Blank Cal 1 NaOH 2 HCl 2

Naphthalene 11.36 ± 1.36 0.31 ± 0.04 2.09 ± 0.25 2.30 ± 0.28
Acenaphthene 0.81 ± 0.10 <LQ * <LQ * <LQ *

Fluorene 11.60 ± 1.39 0.63 ± 0.08 0.49 ± 0.06 0.24 ± 0.03
Phenanthrene 32.13 ± 3.86 0.63 ± 0.08 0.50 ± 0.06 0.19 ± 0.02

Anthracene 3.03 ± 0.36 0.03 ± 0.00 <LQ * <LQ *
Fluoranthene 9.19 ± 1.10 0.13 ± 0.02 0.18 ± 0.02 0.18 ± 0.02

Pyrene 0.77 ± 0.09 0.09 ± 0.01 0.17 ± 0.02 0.17 ± 0.02
Benzo(a)anthracene 1.11 ± 0.13 <LQ * <LQ * <LQ *

Chrysene 4.32 ± 0.52 <LQ * <LQ * <LQ *
Benzo(b)fluoranthene 0.36 ± 0.04 <LQ * <LQ * <LQ *
Benzo(k)fluoranthene 0.12 ± 0.01 <LQ * <LQ * <LQ *

Benzo(a)pyrene 0.15 ± 0.02 <LQ * <LQ * <LQ *
Dibenzo(a,h)anthracene <LQ <LQ * <LQ * <LQ *

Benzo(g,h,i)perylene 0.12 ± 0.01 <LQ * <LQ * <LQ *
Indeno(1,2,3-cd)pyrene 0.59 ± 0.07 <LQ * <LQ * <LQ *

Total PAHs 75.69 ± 9.08 1.82 ± 0.22 3.42 ± 0.41 3.08 ± 0.37

* LQ = 0.05 ng/m3.

Table 10. Results for the degree of PAHs by zeolites adsorption.

Parameter
PAHs (ng/g)

Cal 1 NaOH 2 HCl 2

Naphthalene 0.32 ± 0.04 0.52 ± 0.06 0.91 ± 0.11
Acenaphthene 0.31 ± 0.04 0.26 ± 0.03 0.14 ± 0.02

Fluorene 0.55 ± 0.07 4.31 ± 0.52 8.98 ± 1.08
Phenanthrene 12.67 ± 1.52 15.37 ± 1.84 22.69 ± 2.72

Anthracene 3.16 ± 0.38 2.97 ± 0.36 1.53 ± 0.18
Fluoranthene 9.10 ± 1.09 14.67 ± 1.76 21.94 ± 2.63

Pyrene 9.26 ± 1.11 15.06 ± 1.81 20.67 ± 2.48
Benzo(a)anthracene 0.64 ± 0.08 4.97 ± 0.60 3.63 ± 0.44

Chrysene 1.47 ± 0.18 3.97 ± 0.48 4.20 ± 0.50
Benzo(b)fluoranthene 0.45 ± 0.05 1.03 ± 0.12 1.26 ± 0.15
Benzo(k)fluoranthene 0.24 ± 0.03 0.52 ± 0.06 0.63 ± 0.08

Benzo(a)pyrene 0.25 ± 0.03 0.24 ± 0.03 0.66 ± 0.08
Dibenzo(a,h)anthracene <LQ * <LQ * 0.16 ± 0.02

Benzo(g,h,i)perylene 0.30 ± 0.04 0.74 ± 0.09 0.94 ± 0.11
Indeno(1,2,3-cd)pyrene 0.20 ± 0.02 0.93 ± 0.11 1.23 ± 0.15

Total PAHs 38.92 ± 4.67 65.56 ± 7.87 89.56 ± 10.75

* LQ = 0.05 ng/g.
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Figure 10. Polycyclic aromatic hydrocarbons (PAHs) adsorption on the different zeolites.

In the control sample, the amount of PAHs deposited on the wall is higher than in the
samples with zeolites, 20.74 ng/cm2 compared to 2.73–3.38 ng/cm2 in the samples with
zeolites. The large difference between the amount at the bottom of the chamber in which
zeolites were not introduced and the amount in which zeolites were introduced is due to
the capacity and degree of adsorption of PAHs by zeolites. This demonstrates that natural
zeolites can adsorb PAHs and thus they can purify the air of cigarette smoke.

There is a significant difference between the amount of PAHs quantified on the PM10
filter in the control sample compared to the samples in which zeolites with different
characteristics were introduced, 75.69 ng/m3 compared to 1.82–3.42 ng/m3. The zeolite
with particle sizes of 3–5 mm activated by acid treatment adsorbed the highest amount
of PAHs, namely 89.56 ng/g. The smallest amount of PAH was adsorbed by zeolite with
particle sizes of 1–3 mm, activated by calcination, 38.92 ng/g. The zeolite using NaOH and
particle sizes 3–5 mm adsorbed 65.56 ng/g, a result which is consistent with the finding
of Buchori, Araújo and Wirawan [33–35], namely that the interaction of π-electrons in the
PAH (i.e., van der Waals forces) and the hydrophobicity of the zeolite ensure a bigger
adsorption capacity. In Table 11 the correlation between the different measured parameters
is presented for samples Cal1, NaOH 2 and HCl 2.

Table 11. Correlation between the different measured parameters.

Parameter NH3 H2S Humidity Si/Al PAHs

NH3 1.000 - - - -
H2S 0.038 1.000 - - -

Humidity 0.491 −0.852 1.000 - -
Si/Al −0.495 0.849 −1.000 1.000 -
PAHs −0.671 0.715 −0.975 0.976 1.000

There is a negative correlation of –0.999 between the Si/Al and the humidity adsorbed.
Between the Si/Al and the PAHs adsorption there is a positive correlation of 0.976. There
is no significant correlation between Si/Al and the H2S adsorbed.

The surface plot for NH3 vs. Si/Al, H2S (Figure 11) for all the samples from experiment
1 further illustrate the low correlation of Si/Al to the measured parameters.
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Figure 12 shows the surface plot of PAHs vs. Si/Al, humidity for samples Cal1, NaOH 2
and HCl 2 which illustrates the positive and negative correlation of these measured parameters.
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4. Conclusions

This study confirms that natural zeolites are low-cost materials for odor control and
removal. The thermal and chemical treatments greatly influence the zeolites capacity of
adsorption. While the thermally-activated zeolite had a significantly better performance
regarding humidity control, the acid treated zeolite had the best results in adsorbing the
PAHs from the atmosphere. The zeolite with particle sizes of 3–5 mm activated by acid
treatment adsorbed twice as much PAHs (89.56 ng/g) from air as the zeolite that was
thermally treated (38.92 ng/g). The difference is even bigger when it comes to PAHs with a
higher number of aromatic rings. The HCl 2 sample adsorbed 0.66 ng/g benzo(a)pyrene,
while the Cal1 adsorbed only 0.25 ng/g.

The activation treatment applied to the different natural zeolites has a great influence
on adsorption specificity and capacity. Different activation treatments offer the possibility
to make tailored natural zeolites for different applications. Further studies must be done
on a mixture of natural zeolites with other adsorbent materials to create an even better
tailored product.
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