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A B S T R A C T   

Background: Metabolic associated fatty liver disease (MAFLD) is a widespread liver disease that 
can lead to liver fibrosis and cirrhosis. Therefore, it is essential to develop early diagnosic and 
screening methods. 
Methods: We performed a cross-sectional observational study. In this study, based on data from 92 
patients with MAFLD and 74 healthy individuals, we observed the characteristics of tongue im-
ages, tongue coating and intestinal flora. A generative adversarial network was used to extract 
tongue image features, and 16S rRNA sequencing was performed using the tongue coating and 
intestinal flora. We then applied tongue image analysis technology combined with microbiome 
technology to obtain an MAFLD early screening model with higher accuracy. In addition, we 
compared different modelling methods, including Extreme Gradient Boosting (XGBoost), random 
forest, neural networks(MLP), stochastic gradient descent(SGD), and support vector machine 
(SVM). 
Results: The results show that tongue-coating Streptococcus and Rothia, intestinal Blautia, and 
Streptococcus are potential biomarkers for MAFLD. The diagnostic model jointly incorporating 
tongue image features, basic information (gender, age, BMI), and tongue coating marker flora 
(Streptococcus, Rothia), can have an accuracy of 96.39%, higher than the accuracy value except 
for bacteria. 
Conclusion: Combining computer-intelligent tongue diagnosis with microbiome technology en-
hances MAFLD diagnostic accuracy and provides a convenient early screening reference.   
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1. Introduction 

As of 2021, the global prevalence of metabolic associated fatty liver disease (MAFLD) is approximately 39.22%, with Europe having 
the highest prevalence at an estimated 54.53%, followed by Asia and North America. In China, the calculated prevalence can reach as 
high as 46.7% [1,2]. The majority of hepatocellular carcinoma (HCC) patients (68.4%) were diagnosed with MAFLD [3]. It increases 
susceptibility to liver cirrhosis, hepatocellular carcinoma, and a range of other severe conditions including cardiovascular diseases, 
extrahepatic tumours, type 2 diabetes, chronic kidney disease, and osteoporosis [4]. An international expert group recently renamed 
non-alcoholic fatty liver disease (NAFLD) to MAFLD [5]. The transition from NAFLD to MAFLD remains still debated [6]. 

MAFLD, a metabolism-related fatty liver disease, is strongly linked to genetic factors, specifically variations in genes like MBOAT7 
such as rs641738and the PNPLA3 gene [7,8]. MAFLD is closely tied to gut microbiota imbalance, especially with bacterium Akker-
mansia [9,10]. An early hallmark of MAFLD is the accumulation of fat in the liver. On the basis of fat accumulation, an inflammatory 
reaction begins to occur, forming steatohepatitis [11]. In the long run, this will lead to liver fibrosis, which may lead to liver cirrhosis in 
severe cases, and may eventually develop into hepatocellular carcinoma [12]. 

Early diagnosis of MAFLD is crucial for preventing disease progression, identifying risk factors, mitigating complications, and 
encouraging lifestyle changes. But it is challenging due to its subtle or absent symptoms, often resulting in missed timely treatment 
[13]. Liver ultrasound, commonly used for screening, lacks sensitivity and specificity for mild fatty liver [14]. Biochemical indicators, 
like the fatty liver index (FLI), provide limited information on liver function and lipid metabolism [15], these indicators can be specific 
diagnostic markers for MAFLD, We hope to have more indicators to assist diagnosis. Liver biopsy is the most reliable diagnostic method 
for MAFLD, but its invasiveness limits its use in practice. Exploring non-invasive, convenient, and accurate diagnostic methods is 
crucial. 

Exploring non-invasive diagnostic techniques for MAFLD is crucial. Computed tongue image analysis technology employs com-
puter image processing and pattern recognition to analyse tongue characteristics and aiding in disease diagnosis. It combines tradi-
tional Chinese medicine (TCM) tongue diagnosis with computer technology, thereby providing doctors and insights through image 
analysis. Therefore, computer analysis of tongue image parameters can be used for early diagnosis of MAFLD. 

Elucidating the relationship between tongue coating and intestinal flora distribution changes in MAFLD can explain the micro-
ecological mechanism of MAFLD. Additionally, this understanding provides important biological targets for the diagnosis and treat-
ment of MAFLD. Changes in tongue coating flora are closely related to diseases, such as colorectal cancer [16], type 2 diabetes [17]. 
Alterations in the tongue microbiota, including changes at the phylum level in Firmicutes, Fusobacteria, and Actinobacteria, as well as 
genus-level variations in Streptococcus, Actinomyces, Leptotrichia, Campylobacter, and Fusobacterium, are strongly associated with 
tumour diseases [18]. High abundance of Campylobacter in tongue coatings was associated with precancerous lesions in gastric cancer 
[19]. Oral probiotics effectively alleviate inflammatory bowel disease inflammation and repair colon epithelial barriers [20], high-
lighting their dual role in disease diagnosis and treatment. 

Tongue imaging parameters and oral intestinal flora are non-invasive and convenient for sample collection. In our initial study, we 
discovered that tongue diagnosis technology not only significantly improved the accuracy of the NAFLD diagnostic model but also 
provided a valuable non-invasive screening reference for NAFLD [21]. This study combines computerized tongue imaging with 
microbiome technology to observe MAFLD patients’ tongue intestinal flora characteristics, explores correlations among tongue im-
ages, bacterial flora, laboratory indicators, and tongue coating. Additionally, we constructed a MAFLD prediction model based on these 
factors, aiming to aid in early diagnosis and treatment. 

2. Materials and methods 

This cross-sectional observational study included 92 patients with MAFLD and 74 healthy individuals. 

2.1. Study participants 

Patients with MAFLD were recruited from Shuguang Hospital, affiliated with the Shanghai University of Traditional Chinese 
Medicine, between February 2021 and December 2021. The healthy control group consisted of volunteers who underwent health 
checkups at Shuguang Hospital’s Medical Examination Center and undergraduate and graduate student volunteers recruited from 
Shanghai University of TCM during the same period (February 2021 to December 2021). All the participants were requested to written 
the informed consent approved by the ethics committee of Shuguang Hospital, Affiliated with Shanghai University of TCM. 

Health status was defined as the absence of acute or chronic diseases and no oral diseases. 
MAFLD Diagnostic Criteria [5]: Based on the evidence of hepatic fat deposition (histological, non-invasive biomarkers, or imaging), 

along with at least one of the following three conditions: 1)overweight or obesity; 2)type 2 diabetes; and 3)presentation of at least two 
metabolic dysfunction features. The metabolic dysfunction features information can be found in Ref. [5]. 

Inclusion Criteria: Individuals aged between 25 and 75 years who meet the MAFLD diagnostic criteria and have not taken anti-
biotics or immunosuppressants in the past three months, and have not used topical antibiotics in the past seven days. 

The exclusion criteria were as follows: Exclusion criteria include oral diseases such as untreated oral abscesses or fungal infections; 
severe cardiac, hepatic, or renal dysfunction; acute complications of type 2 diabetes; intestinal disease; malignancies; or other severe 
internal diseases. 
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2.2. Collection of Clinical data, tongue images and microbiota 

2.2.1. Clinical data collection 
The subjects’ names, age, height, weight, waist circumference, and hip circumference were used to calculate the Body Mass Index 

(BMI) and waist-hip ratio (WHR). Fasting blood glucose, ALT, AST, γ-GT, total bilirubin, indirect bilirubin, fasting blood glucose, 
HbA1c, triglycerides, low-density lipoprotein, high-density lipoprotein, and neutrophil count were collected from the subjects (Fig. 1). 

2.2.2. Objective tongue image collection 
All subjects were instructed to fast for 30 minutes before shooting to avoid staining the tongue with the colour of food, drinks, etc. If 

food residues were present in the subject’s mouth, they were instructed to rinse with water for 3–5 minutes before collection. The 
collection equipment used was the Tongue Diagnostic Instrument (TFDA-1) developed by the Intelligent Diagnostic Laboratory of the 
Shanghai University of Traditional Chinese Medicine. Please refer to our previous article [22] for the data collection method. Main 
technical parameters: Manual Mode; shutter speed: 1/125; aperture value: F6.3; ISO sensitivity: 200; correlated color temperature in 
the range of 4500K–7000K; illumination 4800 ± 10% (unit: lx). 

2.2.3. Tongue image feature extraction 
The characteristics of tongue images include colour, shape, and texture. Unlike our previous research, we introduced a generative 

adversarial network in this study. Generative adversarial networks (GAN) were first proposed by Goodfellow in 2014 [23]. GAN have 
many advantages, such as being good at unsupervised learning, powerful feature expression ability, and data generation ability. 
Benefits: The representation hierarchy of structured images can be learned semantically, resulting in an excellent performance in visual 
tasks. We used the adversarial generation network Tongue-GAN to extract the tongue image features. The steps are as follows. First, we 
randomly selected 2000 tongue images from the database with an original size of 5568*3712. These were then labelled to annotate the 
fine-grained images. This database is a 60,000-case standardized tongue imaging database constructed by us as part of the 13th 
Five-Year Plan. All images are acquired using a unified instrument, the TFDA-1 tongue diagnostic instrument. The tongue body area 

Fig. 1. Clinical information collection flow chart.  
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was marked with fine tongue classification features, of which 1600 tongue images were used as training data, and 400 tongue images 
were used as test data. Second, we used Adam as the backpropagation optimizer for the network parameters, where the learning rate 
was 0.0001, the initial value of the bias term Beta was 0.5, and the batch size was 16. When training the discriminator, the generator is 
frozen. The results showed that the tongue image segmentation model based on Tongue-GAN achieved a mIoU of 98.73% and a Dice 
coefficient of 99.02% in the test set. Simultaneously, the tongue image quality and texture classification accuracy were 96.02%, 
indicating that the Tongue-GAN model could extract image details. The core features of granularity classification realise the 
high-precision segmentation and classification of tongue images. Finally, the tongue body and tongue coating area segmentation is 
completed through the "segmentation merging algorithm" and the "color threshold method," and finally, the Lab colour space colour 
parameters, texture indicators, tongue coating index, etc., are extracted sequentially according to the previous pattern recognition 
method. The figure below shows the entire process of tongue feature extraction using Tongue-GAN(Fig. 2) [22]. 

2.2.4. Microbial collection 
Tongue coating samples were collected between 7:00 and 9:00 in the morning. All subjects provided samples on an empty stomach; 

if they had eaten, we asked them to rinse their mouths 2–3 times with normal saline for approximately 10 seconds each time. The 
subjects rinsed their mouths thoroughly and fasted for 1–2 hour before collection. Collection method: The participants used a sterile 
throat swab to scrape the tongue coating from the middle part of the back of their tongue, rotating it with little force at least ten times 
to collect samples. After collection, we placed the swab head into a 2 ml sterile EP tube and quickly transported it on ice to a − 80 ◦C 
refrigerator for storage until sequencing. 

Collection of fresh stool samples: A sterile tongue depressor was used to scrape off the stool surface after the subjects defecated in 
the morning. We then used a stool sampler to obtain the middle part of the sample (ensuring that the total amount did not exceed 10g) 
and placed it into a bacterium in the EP tube. The samples were then transported on ice to a − 80 ◦C freezer for storage until sequencing. 

2.3. Microbial sample sequencing process 

2.3.1. DNA extraction 
Total genomic DNA samples was extracted using the OMEGA Soil DNA Kit (D5625-01) (Omega Bio-Tek, Norcross, GA, USA) ac-

cording to the manufacturer’s instructions and stored at minus 20 ◦C before further analysis. The concentration and quality of 
extracted DNA were measured using a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Scientific, Waltham, MA, 
USA) and agarose gel electrophoresis, respectively. 

2.3.2. Microbiome sequencing 
e 
The bacterial 16S rRNA gene V3-V4 region was PCR amplified using the forward primer 338F (5’-ACTCCTACGGGAGGCGCAGCA- 

Fig. 2. Intelligent tongue image analysis based on Tongue-GAN 
Tongue image feature indicators: perAll, TB-Con, TC-Con, TB-ASM, TB-ENT, TB-MEAN, TC-ASM, TC-ENT, TC-MEAN, TB-L, TB-a, TB-b, TC-L, TC-a, 
and TC-b. (TB prefix represents the tongue body, and the TC prefix represents the tongue coating). The Con value is the texture index contrast, which 
indicates the clarity of the image and the depth of the texture grooves, that is, the tenderness of the tongue and the roughness of the tongue coating. 
The L* value represents the lightness index of the colour space. The higher the L value, the brighter and whiter the tongue colour,and the a* value 
represents the red-green axis. As the value gradually increased, the tongue body and coating colours gradually changed from pale white to purple 
and light red. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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3’) and reverse primer 806R (5’-GGACTACHVGGGTWTCTAAT-3’). Sample-specific 7-bp barcodes are integrated into primers for 
multiplex sequencing. PCR components contain 5 μl buffer (5x), 0.25 μl Fast pfu DNA polymerase (5U/μl), 2 μl (2.5 mM) dNTPs, 1 μl 
(10 uM) each forward and reverse primer, 1 μl DNA template and 14.75 μl of ddH2O. Thermal cycling consisted of an initial dena-
turation at 98◦C for 5 min, followed by 25 cycles of denaturation at 98◦C for 30 s, annealing at 53◦C for 30 s, and extension at 72◦C for 
45 s, with Final extension for 5 minutes at 72◦C. PCR amplicons were purified with Vazyme VAHTSTM DNA Clean Beads (Vazyme, 
Nanjing, China) and quantified using the Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA). After a separate 
quantification step, amplicons were pooled in equal amounts and paired-end 2 × 250 bp analyzed using the Illumina NovaSeq platform 
and NovaSeq 6000 SP Reagent Kit (500 cycles) at Shanghai Personal Biotechnology Co., Ltd. (Shanghai, China) Sequencing. 

2.4. Data analysis methods 

2.4.1. Microbial data preparation protocols 
The QIIME 2_DADA 2 analysis methodology was used to process and assess the microbial sequences, primarily involving demul-

tiplexing, quality filtering, primer cutting, denoising, splicing, and chimera elimination. Specifically, 1) Use the demux plug-in was 
used to demultiplex the original sequence data. 2) Apply the Cutadapt plug-in to cut the primers. 3) Employ the DADA2 plug-in to 
perform quality filtering, denoising, merging, and de-chimerization of sequences. 4) Contrast non-singleton amplicon sequence var-
iants (ASVs) using mafft, and employ fasttree 2 to construct a phylogenetic tree. 5) Utilize the diversity plug-in to evaluate alpha 
diversity parameters (Chao1 index, Shannon index) and beta diversity parameters (Bray Curtis dissimilarity). 6) Use the classify- 
sklearn naïve Bayes classifier in the feature classifier plug-in to assign ASVs to taxa based on the Greengenes database (Release 
13.8, http://greengenes.secondgenome.com) and complete species annotation. 

According to a public tutorial (https://docs.qiime2.org/2019.4/tutorials/), we utilized QIIME2 (2019.4) for microbiome bioin-
formatics microbiome analysis. We evaluated and visualised the alpha diversity level of each sample in the form of box plots based on 
the distribution of ASVs among the different samples. To verify the significance of the differences, we employed the Kruskal-Wallis 
rank sum test and Dunn’s test. We described the diversity of the two groups using Shannon, Chao1, and Pieloue indices. Beta di-
versity analysis was conducted to study the structural variation in microbial communities between samples, and hierarchical clustering 
was visualised using principal coordinate analysis (PCoA). We used QIIME2 to assess the significant differences in the structural 
differentiation of microbial communities between each group through a permutation test-based multivariate analysis of variance 
(PERMANOVA). The taxonomic composition and abundance of microorganisms were visualised using MEGAN and GraPhlAn. We 
detected differentially abundant and stable taxa between groups using LEfSe analysis. Additionally, we employed LEfSe analysis to 
identify differential bacteria between the two groups. We used QIIME2 to perform random forest analysis to distinguish the contri-
bution of samples from different groups to the between-group differences. 

2.4.2. Statistical analysis methods 
IBM SPSS (version 26.0) was used for the statistical analysis. If the measurement data obeys the normal distribution or is 

approximately normally distributed, it is represented by x ± SD, minimum, and maximum; if the data does not obey the normal 
distribution, it is described by M, min, max, and quartiles (Q1 and Q3). Count data are represented by frequencies, composition ratios, 
rates, relative ratios, etc. ,and if the data obeys a normal distribution or an approximately normal distribution with homogeneous 
variances, a two-independent sample t-test is used. 

2.4.3. Machine learning methods 
We used the logistic regression method with backward selection, calling Logistic Regression, where L2 regularization was used, 

tolerance was 1e-4, the inverse constraint factor C was 1.0, the iteration number max_iter was 100, and the lbfgs solver was used. we 
screened tongue image features, clinical indicators, and microbial data for MAFLD prediction, eliminating unimportant variables and 
addressing multicollinearity. Model fitness was assessed using maximum likelihood and the HL test [24]. A combined tongue-microbial 
model for MAFLD prediction was developed and evaluated. 5-fold cross-validation was used to robustly assess model performance, 
dividing data into five subsets and averaging evaluation metrics such as ROC AUC, accuracy, sensitivity, and specificity [22]. Aiming to 
capture non-linear relationships, we used Python 3.10.9 for machine learning, including the extreme gradient boosting (XGBoost), 
support vector machine (SVM), random forest (RF), Neural Network (MLP), stochastic gradient descent (SGD).We used the sklearn 
(Version 1.3.1) library to calculate machine learning classification results. The implementation of other deep learning networks is 
based on PyTorch 2.0. The specific parameter settings of these machine learning methods are as follows [25]. 

We used the Extreme Gradient Boosting (XGBoost) method and called the GradientBoostingClassifier, where the loss loss was 
selected as log_loss, the learning_rate was 0.1, the number of n_estimators was 100, subsample was 1.0, min_samples_split was 2, 
min_samples_leaf was 1, and min_weight_fraction_leaf was 0.0; We used the SVM method and called SVC, where the regular parameter 
C = 1.0, kernel is rbf, kernel order degree = 3, gamma selects scale, and stop tolerance = 1e-3; We used the random forest (RF) method 
and called RandomForestClassifier, where the number of trees n_estimators is 100, criterion is gini, min_samples_split is 2, min_-
samples_leaf is 1, and min_weight_fraction_leaf is 0.0; We used the neural network (Neural Network) method, called MLPClassifier, 
hidden_layer_sizes is 100, activation function activation is relu, optimizer solver is adam, regularization factor alpha is 0.0001, 
learning rate learning_rate_init is 0.001, and iteration number max_iter is 200; We used the stochastic gradient descent (SGD) method 
and called SGDClassifier, which used the hinge loss function, L2 regularization, tolerance of 1e-3, regularization factor alpha = 0.0001, 
and the maximum number of iterations is 1000. 
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3. Results 

3.1. Clinical characteristics of the MAFLD patients and healthy controls 

This study included 92 MAFLD patients and 74 healthy volunteers. The data for all subjects are listed in Table 1. There were 
significant differences between the groups in terms of age, sex, body mass index (BMI), and WHR. Clinically significant increases in the 
serum markers ALT, GGT, TG, FPG, HDL-C, HbA1C, and Neutrophils were observed in the patient group. Compared to the healthy 
controls, patients with MAFLD showed higher levels of AST, but there were no significant differences. Patients with MAFLD are usually 
in the early stages of the disease. 

A comparison of the computer tongue image parameters between the two groups showed that, except for the perAll and TB-b 
indicators, the tongue image parameters of the MAFLD group were significantly different from those of the healthy group. The 
Con*and L* values of the tongue body and coating were considerably higher than those in the healthy control group. The a* values of 
the tongue body and coating were significantly lower than those in the healthy control group. It is suggested that the tongue 
appearance characteristics of the MAFLD group were mainly white tongue and yellow tongue coating, and computer tongue image 
parameters can reflect the changes in MAFLD tongue appearance. 

3.2. Differences in tongue coating and intestinal flora distribution 

A total of 166 tongue coating and 109 stool samples were collected. We sequenced 275 samples and detected 22416913 sequences, 
of which the average effective sequence was 72925.32364, the intermediate high-quality sequence was 51437.24727, and the average 
sequence length was 331.4. Rarefaction curves were used to evaluate the sequencing depth of the samples. The results showed that the 
rarefaction curves of all samples included in this study tended to be flat, suggesting that the sequencing results could adequately 
reflected the diversity of the samples. Further details are provided in Supplementary Fig. 1 in the material. 

We found that the alpha diversity results of tongue coating and intestinal microorganisms showed significant differences in 
evenness and diversity between the two groups, and there was statistical significance in terms of the Shannon, Chao1, and Pielou_e 
indices of genus between the two different groups (Fig. 3A and C). The results of the beta diversity analysis showed that there were 
significant differences in the distribution of tongue coating and intestinal flora between the two groups (P < 0.001) (Supplementary 
Tables 1 and 2; Fig. 3B and D). 

LEfSe analysis showed that tongue coatings containing Streptococcus, Rothia, Neisseria, and Actinomyces could be used as the marker 
bacteria in patients with MAFLD (Fig. 4A).The intestinal flora Blautia, Bifidobacterium, Shigella, Streptococcus, Coprococcus, [Rumino-
coccus], Dorea, Collinsella and Gemmiger could be used as the markers bacteria in patients with MAFLD(Fig. 4B). Using random forest 
analysis (ten-fold cross-validation), we identified the top 10 bacterial that contributed the most to the differences between the two 
groups at the genus level (Fig. 4C and D). Among them, the relative abundance of Streptococcus, Rothia, and Oribacterium in the MAFLD 

Table 1 
Clinical information on MAFLD patients and healthy controls.  

clinical pathological indicators  MAFLD patients healthy controls   

N = 92 % N = 74 % P 

Age (year)  57.25 ± 12.72  35.91 ± 16.66  <0.01* 
Sex female 40 43.5 48 64.9 < 0.01# 

male 52 56.5 26 35.1 
BMI(kg/m2 < )  26.49 ± 3.85  22.12 ± 3.03  < 0.01        

WHR  0.95 ± 0.07  0.81 ± 0.07  < 0.01 
ALT (U/L)  39.04 ± 50.18  19.81 ± 11.20  < 0.01    

AST (U/L)  31.86 ± 42.26  24.65 ± 6.55  0.39    

GGT(U/L)  41.80 ± 43.34  24.08 ± 17.86  0.05    

TG (mmol/L)  2.50 ± 2.22  1.03 ± 0.53  < 0.01    

TBIL(umol/L)  15.41 ± 6.02  15.01 ± 5.48  0.76 
DB(umol/L)  2.48 ± 1.55  2.55 ± 0.79  0.73 
FPG (mmol/L)  9.36 ± 4.87  5.14 ± 0.47  < 0.01 
HDL-C(mmol/L)  1.10 ± 0.27  1.57 ± 0.29  < 0.01 
LDL-C(mmol/L)  3.08 ± 1.10  2.99 ± 0.66  0.62 
HbA1C(%)  8.93 ± 2.05  5.53 ± 0.39  < 0.01 
Neutrophils (*109/L)  4.05 ± 1.05  3.12 ± 0.99  < 0.01 

Continuous variables expressed as mean ± SD; *Independent t-test, #Pearson chi-square test or Fisher’s exact test. Abbreviation: HC: healthy controls; 
BMI: Body Mass Index; WHR: Waist-hip ratio; ALT: alanine aminotransferase; AST: aspartate aminotransferase; GGT:γ-glutamyl transferase; TG: 
Triglycerides; TBIL: total bilirubin; DB: Direct bilirubin; FPG: fasting plasma glucose; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density 
lipoprotein cholesterol; HbA1C: hemoglobin A1c. 
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group was significantly higher, while the relative abundances of Proteus, Halomonas, Desulfovibrio, and Lactobacillus were significantly 
lower than control group in the tongue coating flora (P < 0.001, Fig. 5A); In the intestinal flora, the relative abundance of Shigella, 
Halomonas, Cetobacterium, Rothia, Blautia, Actinomyces, and Streptococcus were significantly higher. Simultaneously, the relative 
abundances of Proteus and Lactobacillus in the intestine were significantly lower (P < 0.001; Fig. 5B). Finally, Common bacteria were 
identified using LEfSe and random forest analyses. It was found that Streptococcus and Rothia are present in the tongue-coating flora, 
and Shigella, Blautia, and Streptococcus are in the intestinal flora. These five common bacteria were strongly associated with MAFLD and 
may serve as potential biomarkers. 

3.3. Correlation between tongue parameters, tongue coating, intestinal flora, and biochemical indicators 

This study analysed the correlation between biochemical indicators (ALT/AST, γ-GT, and TG), tongue coating, intestinal flora, and 
tongue parameters in 92 patients with MAFLD. Tongue coating and intestinal flora (genus level) were derived from LEfSe analysis. The 
results showed that the tongue coating bacteria Neisseria, Actinomyces, and Rothia were related to tongue coating and tongue body a* 
values, among which TC-a and Actinomyces had the highest correlation coefficient of − 0.380 (P < 0.01), Table 3 and Fig. 6 in the 
material. The intestinal flora Coprococcus is related to most tongue parameters, among which the correlation coefficient with TB-ASM 
is the highest at 0.272 (P < 0.05) (Table 4 and Fig. 7); the biochemical indicator ALT/AST and γ-GT were correlated with most tongue 
parameters, among which the correlation coefficient with TC-MEAN was the highest at − 0.406 ((P < 0.01)), Table 5 and Fig. 8. 

3.4. MAFLD fusion diagnostic model based on tongue image and tongue coating biomarker 

To determine the value of tongue appearance and tongue coating flora in diagnosing MAFLD, we compared different index MAFLD 
diagnostic models. Model 1 included sex, age, BMI, and tongue image parameters (the L*a*b values of the tongue body and tongue 
coating). Model 2 included sex, age, body mass index(BMI), and tongue coating bacterial Streptococcus and Rothia. Model 3 is a 
combination of Models 1 and 2. Model 4 included age, sex, BMI, tongue coating bacterial Streptococcus and Rothia, TB-L and TC-b. 
Model 4 had an AUC scores of 0.990). When the tongue image parameters (TB-L, TB-a, TB-b, TC-L, TC-a and TC-b) are included in 
the model, only TB-L enters the equation in model 1, and TB-L and TC-b in model 4 enters (Figure 9; Table 6). 

3.5. Comparison of different machine learning methods in MAFLD classification 

We used the parameters of the Model 4 for model comparison. We used five different modelling methods: XGboost, Random Forest, 
Neural Network(MLP), SGD, and SVM to compare MAFLD and healthy controls. 

Fig. 3. Analysis of tongue coating and intestinal flora diversity in MAFLD patients and healthy people (Pics A & C show Alpha diversity analysis of 
tongue & intestinal flora in MAFLD vs. healthy groups. Pics B & D depict Beta diversity analysis for both flora types. (Each point in Figure B, D 
represents a sample, and the percentage in the parentheses of the coordinate axis represents the proportion of sample difference data that the 
corresponding coordinate axis can explain. ***P < 0.001; **P< 0.01; *P< 0.05). 
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The results showed that XGboost had the highest accuracy of 96.39%, sensitivity of 94.57%, and specificity of 98.65%, followed by 
Neural Network with(95.78%), SGD(94.58%), and Random Forest(92.77%). The experimental results in Table 7 show that the random 
forest model was inferior to 4 models, including XGBoost, neural network, SGD, and SVM models for classifying the MAFLD population 
and healthy controls. The figure below shows the results of AUC, shown in Fig. 10. 

4. Discussion 

The incidence of MAFLD has increased significantly over the past few decades and has become a global public health problem 
worldwide. The main reason for this is that modern lifestyle changes, including high-fat and high-sugar eating habits and lack of 
exercise, have led to increasing obesity rates. The diagnosis of MAFLD relies mainly on blood sample examination (including liver 
function indicators, blood lipid levels, blood sugar and insulin, etc.), imaging examination (ultrasound, CT scan, or MRI), and liver 
tissue biopsy (biopsy sample to observe abnormal changes in liver cells). Most diagnoses still rely on invasive examinations; therefore, 
there is an urgent need to explore and establish non-invasive diagnostic methods. 

In this study, we used a GAN to analyse the tongue images of patients. This neural network model has also been used for other 
disease areas [26]. The tongue image texture and colour index significantly differed from those of the healthy control group. The levels 
were higher in the TB-Con, TB-L, TC-Con, and TC-L groups. TB-a and TC-a were lower, indicating that the MAFLD group had a whiter 
tongue body and yellower tongue coating, Table 2, Compared with the normal control group, the tongue body color value of the 
MAFLD group was lower, indicating that the red tongue body color was lighter of the MAFLD group. The higher the L* value, the 
greater the brightness of the tongue body, which means that the colour of the MAFLD tongue body is brighter and the tongue body is 
whiter. In addition, compared with the control group, the L* and b* value of the tongue coating increased in the MAFLD group, and the 

Fig. 4. Analysis of marker species in tongue coating and intestinal flora in MAFLD patients and healthy people 
(Figure A shows the LEfSe analysis results of the tongue coating marker flora of MAFLD patients (LDA = 3.5); Figure B shows the LEfSe analysis 
results of the intestinal marker flora (LDA = 3.5) of the two groups.In the figure, the ordinate is the taxa with significant differences between groups, 
and the abscissa is the LDA analysis logarithmic score of each taxon. The taxa are sorted according to the score value. The longer the length, the 
more significant the difference between the taxa. The red bar graph represents the MAFLD group, the blue bar graph represents the healthy group, 
and the LDA threshold is 3.5.) Figure C shows the top 10 important bacteria in the tongue flora of the MAFLD group and the healthy group; Figure D 
shows the top 10 important bacteria in the intestinal flora of the two groups (In the figure, the abscissa of the histogram is the importance score of 
the species to the classifier model, and the ordinate is the name of the taxon at the genus level; the heat map shows the abundance distribution of 
these species in each grouping. From top to bottom, the importance of species to the model decreases; these species with the highest importance can 
be considered marker species for differences between groups.). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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a* value decreased. This is consistent with the findings of other scholars [27]. A higher the b* value indicated that the tongue coating 
was more likely to be yellow. This study also found that, compared to the healthy controls group, the higher CON*, ENT*, ASM*,and 
MEAN* values of the tongue body and tongue coating in the MAFLD group, indicated that the tongue body texture and tongue coating 

Fig. 5. Differences in typical bacterial flora of tongue flora and intestinal flora between MAFLD and control group 
(Picture A is the significant difference in tongue flora between the MAFLD group and the control group (genus level); Picture B is the significant 
difference in intestinal flora between the two groups (genus level),*P < 0.05; ***P< 0.001). 

Table 2 
Comparison tongue images parameters and features of MAFLD and healthy controls(mean ± SD).  

Index MAFLD(n = 92) HC(n = 74) t P 

perAll 0.33 ± 0.12 0.32 ± 0.10 1.040 0.300 
TC-b 7.27 ± 2.48 6.61 ± 1.77 2.003 0.047* 
TB-Con 122.55 ± 42.84 102.98 ± 33.79 3.208 0.002** 
TC-Con 164.82 ± 60.35 138.22 ± 52.15 2.997 0.003** 
TB-ASM 0.06 ± 0.01 0.06 ± 0.01 − 2.605 0.010** 
TB-ENT 1.32 ± 0.08 1.28 ± 0.08 2.888 0.004** 
TB-MEAN 0.03 ± 0.01 0.03 ± 0.01 2.995 0.003** 
TC-ASM 0.05 ± 0.01 0.06 ± 0.01 2.202 0.029* 
TC-ENT 1.38 ± 0.10 1.34 ± 0.09 2.618 0.010** 
TC-MEAN 0.04 ± 0.01 0.04 ± 0.01 2.893 0.004** 
TB-L 49.17 ± 2.68 47.95 ± 2.28 3.100 0.002** 
TB-a 25.34 ± 2.98 26.38 ± 2.32 2.469 0.015* 
TB-b 9.65 ± 2.33 9.73 ± 2.11 − 0.213 0.832 
TC-L 50.81 ± 4.45 48.03 ± 5.13 3.740 < 0.001 
TC-a 17.85 ± 2.51 18.85 ± 1.97 − 2.798 0.006** 

(Note:*represent P ≤ 0.05; **represent P ≤ 0.01; Abbreviation:TB:tongue body; TC:tongue coating; Con:Contrast of Texture; ASM: Angular Second 
Moment; ENT: Entropy; perAll: Ratio of tongue coating area to total tongue area; L:lightness; a:red-green channel; b:blue-yellow channel). 

Table 3 
Correlation coefficient values between tongue parameters and tongue coating flora (genus level).  

Tongue parameters Tongue flora Correlation coefficient r value 

perAll BT-Actinomyces 0.288** 
TB-a BT-Actinomyces − 0.281** 
TB-a BT-Rothia 0.286** 
TC-a BT-Actinomyces − 0.380** 
TC-a BT-Rothia 0.250* 
TC-a BT-Neisseria 0.305** 

(The BT prefix before the bacterial name indicates that it is a bacterium found on the tongue coating; **P < 0.01; *P<
0.05).  
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in the MAFLD group were dry and thin. 
This study found that tongue coating Streptococcus and Rothia, and intestinal flora Shigella, Blautia and Streptococcus play essential 

roles in MAFLD and may be potential biomarkers of MAFLD. This finding is consistent with the results of previous studies [28–30]. 
Potential biomarker bacteria found in existing flora studies of MAFLD include M. ambiguus, S. cerevisiae, and Dorea [31,32]. At the 
phylum level, Proteobacteria and Actinomycetes were significantly increased in patients with MAFLD [33].At the species level, patients 
with MAFLD have increased relative abundances of Prevotella, Succinobacterium, Eubacterium biformis, and Bacteroidetes in aerosols 
[34]. 

Streptococcus is a key bacterium in the tongue coating and gut microbiota of MAFLD patients, primarily relying on sugar meta-
bolism for growth, and it is linked to insulin resistance and obesity [35]. Additionally, Klebsiella pneumoniae, an oral bacterium, may 

Fig. 6. Correlation heat map between MAFLD tongue parameters and tongue flora (values are correlation coefficients).  

Table 4 
Correlation coefficient values between tongue parameters and intestinal flora (genus level).  

Tongue parameters Gut flora Correlation coefficient r value 

TB-Con BG-Coprococcus − 0.255* 
TC-Con BG-Coprococcus − 0.253* 
TB-ASM BG-Coprococcus 0.272* 
TB-ENT BG-Coprococcus − 0.270* 
TB-MEAN BG-Coprococcus − 0.263* 
TC-ENT BG-Coprococcus − 0.240* 
TC-MEAN BG-Coprococcus − 0.243* 
TB-ENT BG-[Ruminococcus] − 0.246* 
TB-L BG-Collinsella 0.239* 

(The prefix BG indicates the intestinal flora; **P < 0.01; *P< 0.05).  
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trigger intestinal inflammation [36]. However, further research is needed to clarify whether changes in oral streptococcus abundance 
lead to alterations in the gut microbiota that cause MAFLD. 

Rothia, a bacterial genus belonging to the family Micrococcaceae, is an opportunistic pathogen associated with various infections in 
both immunocompromised and immunocompetent individuals [37]. Moreover, changes in the intestinal permeability of Rothia and 

Fig. 7. Correlation heat map between MAFLD tongue parameters and intestinal flora (values are correlation coefficients).  

Table 5 
Correlation coefficient values between tongue parameters and biochemical indicators.  

Tongue parameters Biochemical indicators Correlation coefficient r value 

TB-Con ALT/AST − 0.244* 
TB-Con γ-GT − 0.218* 
TC-Con ALT/AST − 0.379** 
TC-Con γ-GT − 0.399** 
TB-ASM ALT/AST 0.239* 
TB-ENT ALT/AST − 0.246* 
TB-ENT γ-GT − 0.230* 
TB-MEAN ALT/AST − 0.238* 
TC-ASM ALT/AST 0.386** 
TC-ASM γ-GT 0.403** 
TC-ENT ALT/AST − 0.375** 
TC-ENT γ-GT − 0.400** 
TC-MEAN ALT/AST − 0.382** 
TC-MEAN γ-GT − 0.406** 
TB-L ALT/AST − 0.228* 
TC-a ALT/AST 0.253* 

(Abbreviation: ALT/AST: ratio of alanine aminotransferase and aspartate aminotransferase). 
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Streptococcus are associated with liver disease [29]. It was found that the presence of Rothia mucilaginosa in the intestine was one of the 
causative bacteria of NAFLD [28]. This study found that changes in the abundance of Rothia in the oral cavity were closely related to 
MAFLD. Disease changes are suggested to be related to changes in multisite bacterial flora. 

Blautia is an anaerobic bacterial genus that has probiotic properties. Intestinal bladder dysfunction is closely related to type 2 
diabetes and obesity. Oral administration of this bacterium in mice can cause metabolic changes and anti-inflammatory effects, 
revealing a close connection between this bacterium and biological metabolism [38,39]. Blautia also has potential probiotic functions 
and can be used to alleviate metabolic syndromes [40]. Shigella is a bacterial genus that includes a group of pathogens capable of 
causing intestinal infections in humans, primarily bacillary dysentery, in humans. Relevant studies have found that the relative 
abundance of Shigella is increased in MAFLD patients [30], and that intestinal Shigella bacteria are enriched in MAFLD patients with 
severe steatosis and fibrosis [41]. Further animal experimental verification studies should be conducted using these four bacterial 
markers. 

In addition, we found that there is a correlation between the objective tongue image parameters and tongue-coating bacteria 
(Fig. 6). Changes in bacteria may cause changes in tongue appearance, thereby leading to changes in TCM syndromes [42]. Therefore, 
further analysis of the relationship between changes in the tongue-coating flora and TCM syndromes in the MAFLD population in the 
future can provide targets for TCM treatment. 

We incorporated tongue image parameters, and tongue flora markers into the diagnostic model; the obtained model had an ac-
curacy of 90.36%. The accuracy was significantly improved compared with a model that did not include microorganisms in previous 
studies [21]. We previously used machine learning algorithms to diagnose NAFLD [21]. Based on this, we incorporated microbiome 
data to obtain a higher accuracy prediction model. We also compared five different modelling methods and found that XGboost had the 
highest accuracy, reaching 96.39%. The XGBoost model algorithm model has many advantages, making it one of the preferred al-
gorithms for machine learning tasks. In the medical field, the XGboost model algorithm can be used for cancer prediction, such as 
breast cancer [43], and liver cancer [44]; cardiovascular disease risk prediction, such as heart disease [45], and heart failure [46]; 
neurological disease prediction, such as Parkinson’s disease [47]; and chronic diseases risk prediction such as diabetes [48]. This 
model is not only good at predicting and diagnosing diseases, but is also a preferred model for building artificial intelligence models for 

Fig. 8. Correlation heat map of MAFLD tongue parameters and biochemical indicators (values are correlation coefficients).  
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TCM treatment [49], which has high clinical application value. 
The main result of this study is the discovery of MAFLD marker bacteria and the use of marker bacteria combined with tongue 

images to diagnose MAFLD. This study is the first to combine computer tongue image analysis technology and microbiomes for the 
predictive diagnosis of MAFLD with a high accuracy rate. The secondary results were to explore the relationship between MAFLD 
tongue coating and intestinal marker flora, as well as the correlation between flora and tongue images, and the correlation between 

Fig. 9. ROC curves of different MAFLD diagnostic models 
(Note:Model 1(TongueROC) contains sex, age, BMI, and TB-L; Model 2(SerumROC) contains sex, age, BMI, ALT/AST, and TG; Model 3(Micro-
biotaROC) contains sex, age, BMI, Streptococcus, and Rothia; Model 4(CombinedROC) contains sex, age, BMI, Streptococcus, Rothia, TB-L, and 
TC-b.). 

Table 6 
Construction of MAFLD diagnostic model based on logistic regression analysis.  

Model Variables B SE Wald P OR 95% CI 

Model 1 Age − 0.098 0.019 27.84 <0.001 0.907 0.875–0.940  
Sex − 0.586 0.518 1.281 0.258 0.556 0.202–1.536  
BMI − 0.33 0.079 17.409 <0.001 0.719 0.616–0.839  
TB-L − 0.333 0.109 9.355 0.002 0.717 0.579–0.887  
Constant 29.023 6.139 22.347 <0.001   

Model 2 Age − 0.102 0.033 9.773 0.002 0.903 0.847–0.963  
Sex 0.779 0.68 1.312 0.252 2.18 0.575–8.272  
BMI − 0.192 0.104 3.387 0.066 0.825 0.673–1.013  
ALT/AST − 3.115 1.144 7.411 0.006 0.044 0.005–0.418  
TG − 1.933 0.662 8.528 0.003 0.145 0.040–0.530  
Constant 14.652 3.67 15.941 <0.001   

Model 3 Age − 0.122 0.028 19.014 <0.001 0.885 0.838–0.935  
Sex 0.634 0.728 0.759 0.384 1.885 0.453–7.849  
BMI − 0.362 0.105 11.969 0.001 0.696 0.567–0.855  
BT-Streptococcus − 28.599 9.635 8.81 0.003 <0.001 0.000–0.000  
BT-Rothia − 79.56 21.023 14.322 <0.001 <0.001 0.000–0.000  
Constant 18.59 3.631 26.212 <0.001   

Model 4 Age − 0.112 0.03 13.995 <0.001 0.894 0.844–0.948  
Sex − 1.332 1.089 1.497 0.221 0.264 0.031–2.23  
BMI − 0.477 0.177 7.274 0.007 0.62 0.439–0.878  
BT-Streptococcus − 22.618 11.111 4.144 0.042 <0.001 0.000–0.431  
BT-Rothia − 113.803 30.802 13.65 <0.001 <0.001 0.000–0.000  
TB-L − 0.663 0.228 8.461 0.004 0.515 0.329–0.805  
TC-b − 0.56 0.246 5.167 0.023 0.571 0.352–0.926  
Constant 58.658 14.914 15.469 <0.001   

(Abbreviation:The BT prefix before the bacterial name indicates that it is a bacterium found on the tongue coating; TB:tongue body; TC:tongue 
coating; L:lightness; b:blue-yellow channel; BMI: Body Mass Index; ALT: alanine aminotransferase; AST: aspartate aminotransferase; TG: 
Triglycerides). 
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tongue images and laboratory indicators. 
But the study still has many limitations. The age and metabolic differences of the MAFLD and study groups as among main lim-

itations of the study. Among the included subjects, age, gender, and BMI in the MAFLD group and healthy controls were potential 
confounding factors for the results. Studies have found that the intestinal flora of a 70-year-old person is similar to that of a young 
person [50]. And with age, the α diversity of healthy people’s oral flora shows a downward trend, while the β diversity shows an 
upward trend [51]. The average age of MAFLD patients in this study was higher than that of the control group, and alpha diversity 
showed that the oral microbiota Chao1 index of MAFLD patients was higher, while the opposite was true for the intestinal microbiota. 
Considering that the diversity of microbiota changes with age in disease states and healthy states, the differences in the composition of 
MAFLD microbiota in different age groups require further study. 

Gender has no significant effect on oral microbiota distribution [42,52] and may influence gut microbiota, which is affected by 
gender in a BMI-specific manner and does not affect the distribution of oral flora in any BMI group [53]. there were no significant 
differences in α and β diversity between males and females, and no differences were observed at the phylum level and Firmicu-
tes/Bacteria ratio, except when BMI>33, males and females had Different Firmicutes/Bacteria ratios. In this study, the BMI was all 
<33. 

Therefore, we cannot rule out the possible influence of age and gender on the results of this study. However, through literature 
analysis, it was found that the dominant bacteria in MAFLD in this study were similar to the results of other studies, proving that this 
part of the results has certain reference value. At the same time, whether the same factor affects bacterial composition in a disease state 
is different from that in a healthy state still needs further verification. In this way, the exact influence of relevant factors on the 
composition of the bacterial community under different conditions can be more clearly determined. 

The prevalence of diabetes in MAFLD is 29.6% [2]. This study does have the limitation of comorbid confounding factors. The 
MAFLD patients here are not completely consistent. Some patients have diabetes and fatty liver, and some patients have diabetes and 
abnormal lipid metabolism. We will better control for comorbid confounding factors in the further study. 

Another limitation of this study is the small sample size, the overfitting problem of the machine learning model, and the lack of 
corresponding diagnostic model validation studies. In the next step of the study, we will expand the sample size, control confounding 
factors and include more bioinformatics data (tongue coating, intestinal microorganisms, metabolomics, etc. data) to continue to 
clarify MAFLD biomarkers. 

Table 7 
Comparison of diagnostic efficiency of six different machine learning methods.  

Methods Accuracy Sensitivity Specificity Precision FPR FNR F1-Score MCC 

XGboost 0.9639 0.9457 0.9865 0.9886 0.0135 0.0543 0.9667 0.9283 
Random Forest 0.9277 0.9348 0.9189 0.9348 0.0811 0.0652 0.9348 0.8537 
Neural Network 0.9578 0.9565 0.9595 0.9670 0.0405 0.0435 0.9617 0.9148 
SGD 0.9458 0.9457 0.9459 0.9560 0.0541 0.0543 0.9508 0.8905 
SVM 0.9398 0.9348 0.9459 0.9556 0.0541 0.0652 0.9451 0.8787 
LogisticRegression 0.9036 0.9022 0.9054 0.9222 0.0946 0.0978 0.9121 0.8057  

Fig. 10. ROC curve of the diagnostic model using different MAFLD modelling methods.  
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5. Conclusion 

Oral Streptococcus, Rothia and intestinal Blautia, and Streptococcus are closely associated with MAFLD. Therefore, they are potential 
targets for the diagnosis and treatment of MAFLD. But a major limitation of the study is that any findings may be confounded by 
underlying differences between the MAFLD and control groups. Upon conducting a literature review, we observed that the prevalent 
bacteria associated with MAFLD in our study aligned with previous reports, thus affirming the reliability and reference worth of our 
findings. Computer image analysis combined with microbiome technology has dramatically improved the efficiency of MAFLD 
diagnostic models. However, there are problems with small sample size and overfitting. In the future, we aim to expand sample size, 
control confounding factors, enhance methods, and combine omics data for disease diagnosis and prediction to better provide early 
disease diagnosis and treatment methods. 
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Appendices. 

The formulas used in the research are as follows: 
Accuracy: Acc = TP+TN

TN+TP+FN+FP 

Sensitivity/Recall: Sens/R = TP
TP+FN 

Specificity: Spec = TN
TN+FP 

FPR: FPR = FP
FP+TN 

FNR: FNR = FN
FN+TP 

Precision: P = TP
TP+FP 
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F1-Score: F1 = 2∗P∗R
P+R 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2024.e29269. 
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