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Abstract: This tutorial focuses on measurement uncertainty estimation in amperometric 

sensors (both for liquid and gas-phase measurements). The main uncertainty sources are 

reviewed and their contributions are discussed with relation to the principles of operation of 

the sensors, measurement conditions and properties of the measured samples. The 

discussion is illustrated by case studies based on the two major approaches for uncertainty 

evaluation–the ISO GUM modeling approach and the Nordtest approach. This tutorial is 

expected to be of interest to workers in different fields of science who use measurements 

with amperometric sensors and need to evaluate the uncertainty of the obtained results but 

are new to the concept of measurement uncertainty. The tutorial is also expected to be 

educative in order to make measurement results more accurate. 

Keywords: amperometric sensors; measurement uncertainty; uncertainty sources 

 

1. Introduction 

Amperometric sensors are applied widely to the concentration measurements of different analytes, 

e.g., gas components in the gas phase or analytes dissolved in a liquid medium. They offer good 

sensitivity [1,2] and wide linear range [3]. They can be low-cost and can be mass produced via 

microfabrication technology [4]. They are simple to use and are widely used in different areas of 

chemical analysis such as environmental monitoring, surveillance, security, industrial safety and 

medical and health applications. Numerous substances can be determined with amperometric  

sensors [1,5] (see Table 1 for an overview). 
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Uncertainty estimation of measurement results (including chemical analysis results [6]) has 

nowadays become a standard requirement [7,8]. Results without an uncertainty estimate cannot be 

considered complete [9]. At the same time, due to the nature of chemical measurements estimation of 

their uncertainty is often complicated [7]. This has resulted in a still continuing mismatch between the 

requirements imposed on laboratories and their ability to meet them. 

The aim of this tutorial is to give an overview of the main uncertainty sources that influence 

measurements with amperometric sensors, briefly look at two major approaches for uncertainty 

estimation and to illustrate practical uncertainty evaluation with two case studies. Our emphasis is on 

depth and usefulness for potential readers rather than on a (formally) exhaustive coverage of literature, 

therefore the literature references are selective rather than extensive. This tutorial is expected to be of 

interest to workers in different fields of science who use measurements with amperometric sensors and 

need to evaluate the uncertainty of the obtained results. We focus on low-temperature membrane 

amperometric sensors based on chemical reactions. High-temperature amperometric sensors as well as 

biosensors are outside the scope of this review. 

2. Design and Principle of Operation of Amperometric Sensors 

Numerous reviews have been published on design and operation of amperometric sensors 

[1,5,10-12] and only a brief introduction will be given here. The fundamental process for sensing an 

analyte by an amperometric sensor can be described in four steps: (1) the analyte diffuses to the 

sensing electrode. In order to achieve selectivity and/or diffusion-limited working mode this diffusion 

may proceed through a membrane or some other diffusion barrier. (2) The analyte is adsorbed on the 

sensing electrode. (3) The electrochemical reaction occurs. (4) The reaction products desorb from the 

sensing electrode and diffuse away [13,14]. 

Amperometric sensors are based on electrochemical cells consisting of working electrode,  

counter-electrode and reference electrode that are in connection through an electrolyte phase. By the 

design the sensors can be broadly divided into three groups: Clark type, SPE and GDE, see Scheme 1 

(see [1] for more information). On the working electrode the electrochemical reaction involving the 

analyte is carried out. The response (analytical signal) of the sensor is the current between the working 

electrode and counter-electrode. The working conditions of the sensor are usually chosen such that the 

sensor works in the diffusion-limited mode [1,5,10] and the current is independent of the working 

electrode potential. In this mode the mass-transfer rate of the analyte is slow and the Faradaic current 

is controlled by diffusion rather than the kinetics of the electrode reaction [5,15]. This assures a linear 

dependence of the current on concentration of the analyte [1,14]. The diffusion barrier is usually 

formed by the membrane (Clark, GDE) or is created artificially by a mechanical barrier (SPE) [14]. 

If the limitation is on the kinetics of the reaction then the response of the sensor is non-linear and 

the sensor will be more susceptible to ageing [1]. 

The porous PTFE-membrane of the GDE-devices serves to restrict the transport of the analyte to the 

electrode, but a further artificial barrier in the form of a covering plate with holes of controlled 

dimensions is usually still needed to obtain a well defined diffusion control and stable signal. This 

diffusion barrier also reduces the effects of drafts in the atmosphere being sampled [1]. 
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Scheme 1. The most frequently used amperometric sensor designs–Clark's, GDE and SPE 

sensors (reprinted from [1] with permission from Elsevier). 

 
 

In the SPE-membrane based sensors, the electrode surface directly faces the sample gas or liquid 

and therefore essentially no diffusion barrier is present [1,2]. This makes the sensitivity and response 

time of the SPE sensors better than those of the Clark or GDE sensors [16]. The virtual absence of 

diffusion layer also greatly reduces the temperature-dependence of the response of a SPE electrode [16]. 

The negligible diffusion barrier also has a downside. If diffusion is very fast then there is the danger 

that the sensor will not be operating in the diffusion-limited mode any more resulting in loss of 

linearity [17]. Therefore in SPE sensors an artificial diffusion barrier is sometimes added. SPE sensors 

also have a stronger dependence of the signal on the gas flow rate [1,14] and are therefore usually used 

in systems with a forced and constant gas flow. 

The electrolyte phase carries the cell current by enabling the transport of charge carriers in the form 

of ions and often provides co-reactants to electrode and allows the removal of ionic products from the 

reaction site. Note, that counter and reference electrodes may be combined into a single electrode [1,5]. 

Each sensor can have a unique design and a different set of materials and geometries for membranes, 

electrolytes, and electrodes in order to take advantage of chemical properties of a specific target 

analyte and survive under various operating conditions [5]. 

A critical issue in design of amperometric sensors is achieving selectivity, i.e., situation that the 

sensor current depends on analyte concentration but is insensitive towards possible interferents in the 

solution. In early amperometric measurements selectivity was achieved by the choice of working 

electrode material and the potential of the working electrode.  

A major breakthrough in this field was achieved in 1953, when Leland C. Clark developed the 

practically usable membrane oxygen sensor for measuring oxygen tension in the cardiovascular system 

in vitro and in vivo [18]. The choice of membrane material became the third important tool for 

achieving selectivity. With this advancement actually the amperometric sensors were born. After 

patenting the method in 1959, electrochemical membrane covered amperometric sensors have become 

a common method in situ measurement of oxygen and the design is often called ”Clark type”. 

By appropriate selection of the membrane material (PTFE, PFA, FEP, PE, PP, silicone, cellophane 

etc.) and specific properties, one can control the analytical characteristics of the sensor, permitting the 

analysis of several analytes over a wide range of concentration [5]. Modern Clark electrodes are often 

fitted with a porous PTFE membrane. Because of the hydrophobicity of the material, the pores are not 
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wetted by the aqueous solution and are impermeable for ions and polar organic compounds but allow 

the transport of dissolved non-polar gases to the electrode [1]. Out of the gases normally dissolved in 

the aqueous environment only oxygen can undergo reduction at the working electrode. This way the 

selectivity of the dissolved oxygen sensor is ensured. Several diffusion layers are formed in the classic 

Clark sensor: the electrolyte layer, the membrane and a stagnant layer [5,14]. The thinner are the layers 

the higher the sensitivity and the faster the response. 

The electrolyte can be an aqueous or a non-aqueous solution or a so-called solid-phase electrolyte 

(SPE), which in most cases is a conductive polymer. These are good because of their high boiling 

point and often very high ionic conductivity. A typical solid polymer electrolyte is Nafion, a hydrated 

copolymer of poly(tetrafluoroethylene) (PTFE) and polysulfonyl fluoride vinyl ether, which contains 

sulfonic acid groups. It has more positive features, such as high structural stability and resistance to 

acids and strong oxidants. The only limitation for field use was the issue of the water in the Nafion 

freezing at low temperatures. [5]. 

The second breakthrough in amperometric sensor design–introduction of nanostructured materials – 

has taken place during the turn of the century [3,19-21]. It is clear that sensor's sensitivity depends on 

the surface area on which the electrochemical reaction takes place. The limiting current is proportional 

to the electrochemically active surface area, i.e., the three-phase boundary (TPB: interface between the 

gas, the electrode and the electrolyte) area, because the electrochemical reaction takes place only in 

this area [22]. Nanostructures can dramatically increase the three-phase boundary area, followed by an 

enhancement of the sensors sensitivity [5]. A further improvement of the sensitivity from ppm to ppb 

gas concentration levels can be obtained using the new membrane–electrode assembly composed of a 

PTFE membrane and nanocomposite materials of carbon nanotubes and PTFE [5]. In contrast to the 

Clark electrode the sensors of this type are not affected by evaporation of water because the porous 

electrode is directly in contact with the bulk of the electrolyte solution. The mass transfer of the 

analyte from the sample to the working electrode can be faster, resulting in shorter response times and 

higher currents that leads to higher sensitivity [5]. Newer design concepts have also been proposed, so 

that new breakthroughs are to be expected [23-25] 

3. General Principle of Amperometric Measurement in Gas Phase and in Liquid Phase 

Amperometric sensors measure the chemical potential of the analyte in the gas phase (termed as 

fugacity) and/or in the liquid phase (termed as activity) [26]. Thermodynamically, gas-liquid phase 

equilibrium is described by the Henry's law as: 

aKf        (1) 

where  is the fugacity of the analyte in the gas phase, K is an equilibrium coefficient for a particular 

analyte and liquid, called Henry's constant [15,27] and a is the activity of the analyte in the liquid 

phase. For low-pressure systems the fugacity of the analyte in the gas phase can be assumed to be 

equal to its partial pressure and the liquid-phase activity of the analyte can be expressed as product of 

activity coefficient and concentration of analyte, thus: 

CKp         (2) 
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where, p is the partial pressure of the analyte,  is the activity coefficient of the analyte and C is the 

concentration of the analyte. According to this equation the solubility of the analyte is proportional to 

its partial pressure above the liquid phase. The gases that have low boiling points and lack the 

reactivity towards water (H2, O2, CO, etc.) have low solubility in water and the  

temperature-dependence of solubility is linear. Gases that react with water (NH3, SO2, CO2, etc.) have 

higher solubilities. It is often assumed that the activity coefficient is equal to 1.0 or at least constant. 

However, in real samples this assumption often breaks down [28]. Especially important from practical 

point of view are different salt solutions, such as e.g., sewage [28] and seawater [26,29]. Using Fick’s 

first law and Faraday’s law the following general expression for the steady state current of an 

amperometric sensor can be written [15,17]: 
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where I is the sensor output current, n is number of electrons involved in electrochemical reaction, F is 

the Faraday constant, Rk is the kinetic resistance of the electrochemical reaction and Ri is the analyte 

diffusion layer resistance of a layer i. This generic equation holds for Clark, GDE and with some 

reservations also for SPE sensors. Albantov and Levin regard the diffusion layers mathematically as a 

set of resistors sequentially connected. The resistivity of a layer i to diffusion is described by the 

following equation for membrane-covered sensors [15]: 
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where, i is the thickness of the diffusion layer i, Si is analyte solubility in the diffusion layer i and Di 

is analyte diffusion coefficient in the diffusion layer i, A is the diffusion layer area (projected area of 

the electroactive surface in Clark type sensors [10]). The construction parameters of the sensor, such as 

surface area of the vacuum-deposited metal layer, width of the measurement cell, thickness of the 

metal layer, membrane thickness, membrane character (number of ionic groups in the total mass of 

polymer), the way of analyte supply to the working electrode surface (axial or radial) and composition 

of the internal electrolyte impose have an impact on the sensor signal. In reference [14] a 

comprehensive mathematical model is given, which describes the effects of these variables. 

Equation 3 is the general measurement model of the amperometric sensors. In the classical Clark 

sensors in the gas phase usually two diffusion layers are assumed [30] and in the liquid phase three 

diffusion layers [15,31]. In the GDE and SPE sensors the diffusion limitation can be achieved using 

mechanical barriers and a single diffusion layer is used in eq (3) [32]. 

4. Literature Survey: Overview 

Because of the nature of amperometric measurement described in the previous section it is clear that 

it is affected by numerous uncertainty sources. In the literature there is no shortage of reports that 

describe amperometric sensors of different design and address their characteristics, such as response 

time, detection limit, linearity, repeatability and sensitivity of sensors [14,16,22,33-43]. There are also 

works that discuss accuracy [38,44] and drift [34,36,37]. But there are only a handful of papers that 
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describe combined uncertainty (i.e., uncertainty taking into account all relevant uncertainty sources) 

estimation of amperometric measurement results and analyze the relevant uncertainty sources. Most of 

them are devoted to amperometric oxygen sensors [31,45-48]. Jalukse and Leito have carried out  

in-depth analysis and modeling of amperometric dissolved oxygen sensors. They identified 16 separate 

uncertainty sources [31] and found that the relative expanded uncertainties (k = 2) obtained by experts 

under laboratory conditions varied between 1% and 9%. More recently Nei has stated that 

uncertainties in amperometric dissolved oxygen measurement at field laboratory level tend to be larger 

(between 5% and 20%) [46]. 

Table 1 gives the overview of the articles found that address at least three uncertainty sources in 

amperometric sensors. The uncertainty sources will be reviewed in detail in the next section. The 

general observation from the literature survey is that, apart from certain articles on dissolved oxygen 

concentration measurement, uncertainty of measurement results obtained with amperometric sensors is 

rarely discussed in the literature. Most authors examine certain characteristics that are relevant to 

uncertainty but cannot be easily combined into the combined standard uncertainty estimate of the 

result uc (see below for terminology of uncertainty estimation). 

5. Literature Survey: Sources of Uncertainty 

Based on the generalization of the literature survey and the experience from our laboratory we 

discuss below the main uncertainty sources relevant to amperometric sensors. 

5.1. Temperature (Compensation) 

The rate of the diffusion or permeation (below diffusion) processes is influences by temperature. 

Temperature directly influences the following: widths of the diffusion layers, diffusion coefficients of 

the analytes in the different layers [29,62-65]. This is the reason why amperometric sensors are 

normally equipped with accurate temperature measurement capability and the results are in most cases 

corrected for taking into account the difference between measurement and calibration temperatures. In 

most cases measurement and calibration are carried out at temperatures that differ from each other (at 

least by few degrees). This temperature difference has to be taken into account. Temperature effects 

cause uncertainty in amperometric measurement via two factors: (1) limited accuracy of temperature 

measurement (during calibration and measurement) and (2) limited accuracy of compensation for 

temperature difference between calibration and measurement [31]. The latter may in turn be due to 

inaccuracy of the model underlying the temperature compensation or the inaccuracy of the value(s) of 

the parameter(s) involved in the compensation [31].  
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Table 1. Uncertainty sources of amperometric sensors discussed in the literature. 

Analyte Phase Response time Linearitya Repeatability Drift Interferences Ref. 

O2 Gas <20 sb Nominal Range: 0–2 ppm, 
linearity: linear 

 
<5% signal 
loss/year 

 [49] 

O2 Gas 20 sc 
Range: 0–25%, linearity: 

± 1% of full scale 
± 0.1% of 

range 
± 0.25% O2 

per week 
 [50] 

O2 Gas 
General purpose: 180 sc 

Fast Response: 30 sc 
0.05–60 mg dm3  

<1% per 
month 

 [51] 

H2 Gas <70 sc 
Nominal Range: 0–10,000 

ppm, linearity: linear 
2% of signal 

<2% signal 
loss/month 

CO; H2S; NO; 
HCN; C2H4 

[52] 

H2  Gas 
Ppm level: 20–50 s 

% level: 5–20 s 
0.2–2%  ± 10% d   [53] 

SO2 Gas 15 sc 
Nominal Range: 0–20 
ppm, Output linearity: 

linear 
2% of signal 

<2% signal 
loss/month 

CO; H2S; NO2; 
HCN; Cl2; HCl 

[54] 

O3 Liquid <90 sc 0.005–2 ppm 1.0% 
Calibration 
interval 2 
months 

No interference 
from Br2, 

chloramines, Cl2, 
ClO2 or H2O2 

[55] 

NO Gas 15 sc 
Nominal Range: 0–100 
ppm, Output linearity: 

linear 
2% of signal 

<2% signal 
loss/month 

H2S; HCl; NO2 [56] 

NH3 Gas <90 sc 
Measuring range: 0–1000 

ppm, 
Linearity: <5% full scale 

 
<10% per 6 

months 
H2S; SO2 [57] 

HCHO Liquid Tens of seconds 
0.002–1.25  

mg mL-1  
Ca 1.4% per 

hour 
CH3OH; HCHO; 
HOCH2CH2OH 

[58] 

H2S Liquid <100 ms 2–300 μM 2.5% <5% per day SO2; CH3CH2SH [36] 
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Table 1. Cont. 

CO Gas 7 s 0.70–56 µg mL-1 5.3% (n = 5)   [35] 

SO2 Liquid 4 s 
4·10-7–1·10-3  

mol dm-3 ± 3%  H2S; NO  [16] 

SO2 Gas 
 

1 s 
8·10-9–2·10-4  

mol dm-3 
± 3%  H2S; NO [16] 

SO2 Gas 189 sc 5–500 ppme   Nonef [41] 

H2S Gas Ca. 10 s 0–100 ppm 
± 1 ppmg

 
  [59] 

PH3 Gas 4.6 sc 0–100 ppm ± 3%g Good long-
term stability 

 [60] 

a  Linearity data has been presented the way it was given in the original paper. 
b  T95 

c  T90 

d  Reproducibility, the stability of the sensor was monitored for a period of three weeks and found to be stable within ±10% of the 

concentration value. 
e  The linear equation was y = –0.07x – 2.66 with a correlation coefficient of 0.9946. 
f  Other copresent gases, such as CO, NO, NH3 and CO2, did not cause interference under these conditions. 
g  Reproducibility 
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This component is also influenced by changes in properties of diffusion layers: for example: 

deformation, ageing and contamination of the membrane in the case of membrane-based electrodes. 

Different sensor designs are affected somewhat differently by temperature. In the Clark and GDE type 

sensors temperature affects the permeability of the membrane (activation energy of diffusion through 

membrane). At the same time in the SPE sensors the analyte does not need to diffuse through the 

membrane. The temperature dependence of permeability is determined by measurement of sensor 

current at different temperatures at constant (and known) analyte concentration. The temperature 

dependence can then be either used empirically [52,54,56,57,66] or converted into activation energies 

of diffusion through the diffusion layers [10,31]. The importance of this uncertainty source is widely 

acknowledged, but rigorous evaluation of magnitude of this uncertainty is generally not done (except 

in reference [31]). 

5.2. Drift 

Drift is defined by VIM [67] as continuous or incremental change over time in indication, due to 

changes in metrological properties of a measuring instrument. Instrumental drift is related neither to a 

change in a quantity being measured nor to a change of any recognized influence quantity. In 

amperometric sensors all changes during sensor use, which lead to changes of the sensor properties 

compared to the time of calibration cause drift. Possible causes of drift are unstable reference potential, 

caused by contamination, poisoning or consumption (depletion) of the reference or counter-electrode, 

local changes of electrolyte concentration and/or pH, contamination or poisoning of the working 

electrode (changed catalytic activity) [10,29,68]. One of the most important of them is change of the 

diffusion layer that limits the mass transfer [31]. Changes in the properties of the working electrode do 

not affect the sensor as long as mass transfer remains the rate-limiting step (Clark and GDE type 

sensors). However, in more severe cases the sensor may begin to work in a mixed kinetics mode, 

leading to drift of the parameters and loss of linearity. The factors causing drift are known to change 

with age and periodically over time. Some factors can be predicted while others are more or less 

random. In order to evaluate the uncertainty due to drift the sensor signal has to be monitored in time 

at constant analyte concentration. This can be done either continuously or periodically. Keeping the 

measurement conditions constant is very important. 

5.3. Stirring Speed or Flow Rate 

Stirring speed or solution (or gas stream) flow rate (below termed flow rate) influences the result, 

because it affects the thickness of the outer diffusion layer. This happens because of analyte 

consumption by the sensor at the boundary layer between the sample and the membrane [15,29,31]. If 

the measurement is carried out in the gas phase then the dependence of the sensor signal on the flow 

rate strongly depends on the sensor type and design. The higher is the porosity of the contact between 

the sensor and the measured solution (i.e., membrane in the case of Clark and GDE sensors and 

working electrode in the case of SPE sensors) the higher is the sensitivity of the sensor signal towards 

flow rate [1,14]. At low values of gas or liquid flow rate the signal dependence on the flow rate is 

almost linear. Above a certain value the linearity is lost and if the flow rate is further increased then the 

influence of flow rate on sensor signal becomes negligible. This is because the stagnant layer thickness 

decreases with increasing volumetric flow rate and stops playing a significant role in the overall 
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diffusion resistance [14]. When measuring in solution then a stagnant solution layer always forms on 

the membrane surface [15]. This layer decreases the signal, compared to the respective signal in the 

gas phase (with equal activity of the analyte) [31]. If calibration and measurement are carried out at 

different flow rates then this effect has to be corrected for or taken into account as an uncertainty 

source (see Figure 1, difference of diffusion layer compared to measurement) [31]. The thickness of 

this stagnant layer strongly depends on the flow rate [29]. If the flow rate is the same during 

calibration and measurement (e.g., if both are carried out in the same measurement cell) then the flow 

rate uncertainty component need not be taken into account. The effect of flow rate on the sensor 

response can be evaluated by carrying out measurements at constant temperature and constant analyte 

concentration and varying the flow rate.  

5.4. Repeatability 

Repeatability is measurement precision under repeatability conditions (set of conditions including 

the same measurement procedure, same operator, same measuring system, same operating conditions 

and same location, and replicated measurements over a short period of time) of measurement [67]. It is 

commonly expressed as standard deviation sr of the values obtained from repeated measurements. 

In the literature many repeatability estimates for different sensors can be found [16,22,33-37]. 

Sensitivity of the sensor is closely related to repeatability. High sensitivity maximizes signal to noise 

ratio and thus improves repeatability [69]. In other words, the greater the sensitivity the better is 

normally the capability of the sensor to distinguish between the signal and the background noise [29]. 

The stability of the sensor signal and thus the repeatability can be influenced by several parameters, for 

example fluctuations of measurement temperature, flow rate [31] or reference potential). Repeatability 

is usually dependent on the magnitude of the signal itself and is often roughly proportional to it. This, 

however, needs to be experimentally confirmed for a particular sensor and repeatability should 

therefore be investigated at different concentration levels. Repeatability is also influenced by the flow 

rate [31]. Therefore, if measurements are carried out at different flow rates then it is necessary to 

evaluate the dependence of repeatability on stirring speed. 

An important parameter related to repeatability is within-laboratory reproducibility (also known as 

intermediate precision) sR. It characterizes long-term measurement precision within a laboratory 

[67,70]. By its nature reproducibility is a compound parameter, accounting for repeatability, as well as 

all other effects that may have different magnitudes on different days. This involves changes in the 

sensor due to ageing (drift os sensor characteristics), uncertainty sources related to calibration, etc. Only 

effects that retain their magnitude over a long time period remain outside of within-lab reproducibility. 

Within-lab reproducibility is a very useful characteristic because it is relatively easy to determine it 

experimentally and it is one of the two cornerstones of the validation-data-based uncertainty estimation 

approach (see below). Literature data on reproducibility of amperometric measurements are scarce 

[59,60] and in addition it may be possible that in fact repeatability is what is meant in references [59] 

and [60]. 

5.5. Response Time 

Sensor response time is one of the basic quality indexes for evaluating the performance of 

electrochemical sensors [32]. It is a parameter describing dynamic properties of the sensor with respect 
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to changes of the analyte concentration [14]. Response time of amperometric sensors has been 

investigated extensively both experimentally [16,22,35,36,38,41-43,59,72] and via theoretical 

simulations [32,73]. 

The diffusion process, which controls the response time, can be modeled using Fick’s second law 

[74,32]. The response time of the sensor is commonly specified by the so called T90. This value 

indicates the time required to reach 90% of the sensor's stationary current corresponding to the analyte 

concentration [32,43]. Other values referring to different percents of the stationary current, such as T63, 

T95, etc, are also used [14,49,51,75]. Contributing factors include diffusion through the diffusion 

barriers, membrane(s), electrolyte, and also kinetics of the electrode reaction (where appropriate), as 

well as some aspects of the electronic circuit [14,32,43]. In the case of GDE and Clarke type sensors 

the diffusion of analyte through membrane is the most significant factors of these [10]. Since mass 

transport by diffusion through the membrane is the slowest step in the overall process, dramatically 

shortened response times can be obtained by using thinner membranes [29].  

To model this effect, diffusion transport must be understood and characterized. This is done by 

measurement of the sensor output signal in time, first without and then with and finally again without 

the analyte [29,73,75]. From these data the response times are evaluated. It is also possible to estimate 

how much the signal at a specific time will be different from the signal at the steady state. This 

information can be used for uncertainty estimation. This uncertainty source can be eliminated almost 

completely by taking reading when stationary current has been achieved [31]. 

5.6. Linearity  

Linearity of response of amperometric sensors has been extensively discussed in the literature  

[14,16,33-36,38-40,41,59,52,53]. As the mass-transfer rate of the analyte is slow compared to electron 

transfer, the current is controlled by diffusion rather than the kinetics of the electrode reaction, and this 

assures a linear dependence of the current over a wide range of concentration [5]. Linearity refers to 

the analyte concentration range, in which the sensor signal is proportional to concentration. 

Measurement range is connected with linearity and is defined as the range between the lowest and the 

highest concentration, which can be determined with assumed accuracy and precision [14]. 

Accurately prepared calibration mixtures are very important for linearity testing. In the case of  

gas-phase measurements gas mixtures of controlled composition can be used. Such mixtures are 

commercially available or can be prepared in the laboratory [32]. In the liquid phase the standard 

addition method can be used. If accurate preparation of calibration mixtures is difficult then an 

accurate independent reference method can be used if available. If the linear range of the sensor is 

established then the sensor should be used in the linear range only. If deviations from linearity occur 

then these should be corrected for or taken into account by additional uncertainty components [76]. 

Linearity also depends on the realizable analyte concentrations in the measurement medium. For 

example solubility of many gases in water is limited and in many cases even at saturation level the 

responses are still in the linear range. At the same time solubility of e.g., ethanol in water is unlimited 

and non-linearity can be a problem at higher concentrations. Linearity is assessed at constant 

conditions varying the analyte concentration in the solution or in the gas phase. Uncertainty due to 

possible non-linearity can be accounted for by the generic approach as described in reference [76]. The 
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possible non-linearity component of uncertainty is the larger the more the concentrations during 

calibration and measurement differ.  

5.7. Zero Current 

Zero current (also termed as background current) arises from numerous sources. The most common 

of them is the oxidation or reduction of electrochemically active impurities and other side reactions [29]. 

The impurities may be present in the analyzed solution, but as well in the sensor materials. It can be 

especially important if too high a polarizing voltage is applied. Thus, the concept of zero current is 

closely related to selectivity [24]. High zero current can also be caused by the analyte from the 

previous measurements dissolved in the insulating body of the sensor (or in the electrolyte). This is 

especially noticeable in high-concentration environment. Analyte "stored" this way may slowly diffuse 

out during future use when the sensor is in an environment where analyte concentration is low [29]. 

This is similar to the sample carryover effect, frequently observed with different trace analysis 

techniques. 

If the zero current is high then it should be taken into account either in the calibration model 

(preferably) or as a component of uncertainty. Neither of the two approaches is easy, if the zero current 

varies and depends on the composition of previous samples. In the former case there will still be an 

additional uncertainty associated with the inaccuracy of zero current determination. Zero current is 

determined at the temperature of measurement and zero concentration of the analyte. Under these 

conditions zero current is the stationary current of the sensor. In the literature only few authors have 

addressed zero current [22,31,36]. 

5.8. Rounding of the Digital Reading 

Modern instruments display results in the digital form, rounding the result and thus introducing 

uncertainty due to rounding. Whether or not this uncertainty component is of importance is highly 

dependent on measurement conditions. In most cases its effect is small, but in certain cases can make 

op to 60% of the uncertainty [31]. Uncertainty due to rounding is easy to take into account: its 

magnitude is ± 0.5 of the last digit of the reading, with rectangular distribution [77]. 

5.9. Analyte Concentration in Calibration Medium 

There is always an uncertainty associated with the analyte concentration in the calibration medium. 

This uncertainty is transferred to the uncertainty of all measurement results obtained with the sensor, 

regardless accurate the sensor otherwise is. If reference mixtures are used for calibration then there is 

usually an accompanying document that contains also the uncertainties of the analyte concentrations. If 

the calibration mixture is prepared in-house then the uncertainty of analyte concentration is mostly due 

to gravimetric and/or volumetric measurements and can be estimated using the standard uncertainty 

estimation approaches [77]. With certain analytes there are additional complications that arise: the 

analyte may be volatile, prone to decomposition or adsorption, etc. These effects significantly 

complicate preparation of calibration mixtures and evaluating the uncertainty. In some cases 

calibration mixtures can be prepared only in situ. For example, there is up to now no standard solution 
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of dissolved oxygen available [31,45]. Standard substance purity should also be accounted for, which 

can be difficult, if the impurities do not act as inert compounds but influence the response [78]. 

5.10. Activity of the Analyte and Matrix Effect  

Amperometric sensors measure actually not analyte concentration, but activity [29]. Calibrating the 

sensors in concentration terms implicitly introduces the assumption that the activity coefficient of the 

analyte is the same during calibration and measurement. This assumption breaks down e.g., when there 

is a high concentration of salts in the measured medium. In salt-rich water the active concentration of 

water decreases and this leads to increase of the activity coefficients of most neutral compounds, 

notably gases (salting-out effect). For example, investigations of the solubility of H2S in pure water 

and NaCl brine solutions at different ionic strengths show significant influence on the activity 

coefficient of molecular H2S [36].  

If a calibration made in pure water is used to calculate the concentration of the analyte in real 

sample with high ionic strength (e.g., sea water) then significant uncertainty is introduced by the 

difference between the activity coefficient of the analyte in the calibration solutions and the sample 

during measurement. For example, if in a stream of natural water the dissolved oxygen activity 

coefficient is 1.075 and the dissolved oxygen concentration as measured by the Winkler method [79] is 

4.7 mg dm-3 then the reading of an amperometric sensor calibrated in water with negligible ionic 

strength will be approximately 5.0 mg dm-3 [28]. 

This effect either has to be corrected for or introduced as an additional uncertainty component. This 

issue has been studied e.g., with dissolved oxygen measurement [28] and it is possible to calculate the 

activity coefficient of oxygen if the ionic strength is known [29,Error! Reference source not 

found.,81]. The activity coefficients found this way are approximate, because conductivity does not 

directly show the ionic strength of the solution. 

5.11. Interferences from Other Compounds (Insufficient Selectivity) 

The usual assumption in sensor use is that the sensor response is influenced only by the analyte and 

not by other compounds in the sample matrix. In reality there are often interfering compounds 

(interferents) that either (1) behave as the analyte or (2) disturb the operation of the sensor in some way. 

There are some possibilities to enhance sensor selectivity by sensor design. One of them is choice 

of the membrane (applicable to GDE and Clark type sensors). Appropriately chosen membrane can 

efficiently limit the access of interfering substances to the electrode [82]. The second possibility is 

tuning the composition and pH of the electrolyte solution [2]. The third possibility is to vary the 

working potential [29] of the sensor. The fourth possibility is to apply filters that trap and eliminate 

interfering substances [1]. The fifth possibility is to use an auxiliary electrode that works at a lower 

potential than the working electrode and electrochemically removes the interfering substances [1]. As a 

general rule lower potential of the working electrode is preferable, because it excludes interference by 

substances of higher oxidation potential. Nevertheless, selectivity certainly remains an issue with 

amperometric sensors and is often one of the main uncertainty components in analysis with 

amperometric sensors. In some drastic cases the sensitivity of the sensor can actually be higher 

towards an interferent that towards the analyte. For example, this holds in the case of certain ethanol 

sensors that are more sensitive towards methanol than towards ethanol [33]. 
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In spite of its importance, selectivity has been discussed scarcely in the papers devoted to 

amperometric sensors. The reason might be that it is extremely difficult to model it, express it 

numerically or take it into account as an uncertainty source [83]. This is the reason, why most of the 

discussion on selectivity [16,13,23,24,33,34,38,40-42] remains qualitative: the majority of authors 

discuss selectivity in yes/no terms only. In a small number of papers also quantitative estimates are 

given [82,84]. For example, the effect of water on the Au-Nafion® on and Au-ADP SPE electrodes for 

determination of ethanol and acetaldehyde was investigated. It was found that the signal dramatically 

increases with humidity content up to approximately 80% r. h., after which further increase does not 

vary the response considerably. The presence of H2O in the gas thus can cause strong interference and 

has to be either controlled or compensated for. [2] If data are available on sensor selectivity with 

respect to the potential interferents and if the concentration ranges of the interferents in the samples 

can be estimated then the uncertainty due to the possible presence of the interferents can be estimated. 

Alternatively, if it is possible to remove the analyte from the sample and measure the zero current 

(which will mostly be due to the interferents) then it will be possible to correct the results for the 

interference. This can be done if the background current is steady and the interfering substances do not 

contaminate the system [29]. When the background current is large and is not steady, then the only real 

solution is to remove the interference either before or during measurement using chemical treatment or 

with some separation device. 

6. Literature Survey: Conclusions 

The literature survey reveals that the main uncertainty sources relevant to amperometric 

measurement are well known. As a generalization the following "fishbone" diagram of uncertainty 

sources inherent to amperometric measurements can be presented: 

Figure 1. Uncertainty sources in amperometric measurement. 
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All of the uncertainty sources indicated in Figure 1 have been at least in some context dealt with in 

the literature. The level of coverage of the uncertainty sources differs very strongly. For example, 

repeatability as an uncertainty source is almost always included while the activation energy of 

diffusion is examined only in few works. A potentially very important uncertainty source is 

interference from other compounds in the matrix. Interference is often mentioned and discussed but 

rarely handled as an uncertainty source. 

Uncertainty sources in amperometric measurements of different analytes are broadly the same. 

Nevertheless, their magnitudes are strongly dependent on the analyte, the matrix, sensor design and 

measurement conditions [31]. Therefore it is not to be expected that uncertainty estimation at a 

reasonable level of rigor can be carried out based purely on literature data. 

7. Approaches for Uncertainty Estimation in Amperometric Measurement 

Most of the available approaches for measurement uncertainty estimation evaluate the uncertainty 

due to different uncertainty sources and combine these into the combined standard uncertainty uc – 

uncertainty estimate taking into account all significant uncertainty sources and expressed at the level of 

standard deviation [7,9,70]. For reporting the result usually a higher coverage level is desired than the 

one provided by uc (roughly 68% if the result is Normally distributed) and thus uncertainty is usually 

reported as expanded uncertainty U: 

U = k · uc      (5) 

where k is the coverage factor. Often k = 2, which means that the coverage level is roughly 95%, if the 

result is normally distributed. 

The approaches differ in two aspects: (1) how detailed is the examination of the uncertainty sources 

and (2) how the estimates of the uncertainty sources are combined into uc. We look at two widespread 

approaches for uncertainty estimation: 

1. Full-fledged modeling approach as proposed in Reference [9]. The use of this approach implies 

compiling a measurement model for the sensor, in-depth analysis of the uncertainty sources and 

experiments for quantifying the uncertainty components. This means that the uncertainty is broken 

down into a number of sources and they are combined using the measurement model. If the output 

quantity Y is found as a function F of input quantities X1 .. Xn as: 

Y = F(X1, X2 ... Xn)       (6) 

then the combined standard uncertainty is found as: 
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where u(xi) is the standard uncertainty estimate of Xi. All these standard uncertainty contributions have 

to be evaluated. 

2. Approach based on validation and quality control data. This approach was originally proposed in 

the handbook published by Nordtest [70] and has later been revisited in reference [7]. The advantages 

of the approach are that there is no need for a measurement model and in-depth analysis of uncertainty 

sources. Instead, use can be made of validation data, control charts, reference measurements [71] and 

participation in interlaboratory comparisons–all of which are rather accessible even to routine analysis 
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laboratories. The different uncertainty sources are accounted for by two principal components–u(RW) 

accounting for all the random factors (at lab level) contributing to the uncertainty and u(bias) 

accounting for all the systematic factors (at lab level) contributing to the uncertainty. These two are 

combined as follows: 

22
wc )()( biasuRuu       (8) 

Reference [70] envisages the ways to estimate these two components by using control charts [85] 

(for u(RW)), analysis of certified reference materials or participation to interlaboratory comparisons 

(for u(bias)). The uncertainty component accounting for possible bias is found as follows [86]: 

2
ref

2
bias )()( CuRMSbiasu       (9) 

where RMSbias is the root mean square of differences found as: 
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where i are the differences between the results of the procedure and Cref and u(Cref) is the standard 

uncertainty of Cref. Contrary to the model-based approach the uncertainty estimate obtained with the 

Nordtest approach does not characterize a single measurement result but rather gives an average 

uncertainty value obtained in a laboratory using a given measurement procedure [7]. This estimate is 

appropriate for the measurement conditions under which the uncertainty components u(Rw) and u(bias) 

were evaluated. Further comments on the approaches are given in the case studies presented below. 

7.1. Case study 1: Model-Based Measurement Uncertainty Estimation 

Model-based measurement uncertainty estimation [9] closely follows the operation principle of the 

sensor, expressed by the measurement model. An adequately compiled model allows taking into 

account all significant uncertainty sources [77]. The uncertainty estimate obtained with the  

model-based approach are directly relevant to a particular measurement situation and allows to take 

into account all the aspects of the measurement, such as temperature, calibration conditions, sensor 

design, etc. [31]. The outcome of uncertainty estimation with this approach is not only the uncertainty 

estimate but also the uncertainty budget, which allows seeing where most of the uncertainty comes 

from and thus provides valuable information on improving the measurement. This is certainly a big 

advantage of this approach. At the same time, in order to get a realistic uncertainty estimate, all the 

individual uncertainty components have to be discovered and also quantified. This requires careful 

investigation of the measurement procedure and high level of competence. 

We present here a case study of uncertainty estimation of amperometric dissolved oxygen 

measurement. It was originally published in reference [31] and full details can be found there. This 

case study is useful for demonstrating how much measurement conditions can affect uncertainty. 

The WTW OXI340i analyzer with a CellOx 325 sensor was used for measurements. The calibration 

and measurement conditions correspond to cases 1 and 4 in reference [31] and have been described in 

detail there. Case 1 represents a laboratory measurement under nearly ideal conditions. The sensor 

membrane and electrolyte have been freshly changed. Calibration has been carried out in water 

immediately before measurement. The stirring speed is the same during measurement and calibration 
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and is quite high: 30 cm s−1. Case 4 represents a typical measurement situation in a laboratory doing 

field work. Sensor's membrane is 0.5 months old. Calibration was carried out in laboratory at 20 °C 

(stirring speed 20 cm s−1) 5 days before measurement. The measurement is performed under outdoor 

conditions with different water temperatures. The estimated stirring speed during measurement is  

10 cm s−1 (this is a suitable estimate of the flow speed in the case of slow river flow or moving the 

sensor up and down during measurement). In both cases saturated oxygen concentrations are examined 

at various temperatures. The results are presented in Table 2. 

Table 2. The expanded uncertainties (k = 2) of WTW OXI340i with a CellOx 325 sensor 
for laboratory and field conditions by model-based measurement uncertainty estimation. 

tmeas 
(°C) 

  

Cmeas  
(mg/L) 

  

U 
(mg/L)

U relative
(%)

U
(mg/L)

U relative 
(%) 

Case 1
laboratory conditions

Case 4 
field conditions 

20 0 0.10 - 0.10 - 
5 12.71 0.24 1.9% 0.66 5.2% 
15 10.01 0.10 1.0% 0.50 5.0% 
20 9.01 0.07 0.8% 0.44 4.9% 
25 8.18 0.08 0.9% 0.41 5.0% 

 

The uncertainty budgets for both cases at temperature 5 and 20 °C are presented in Table 3. 

Table 3. Uncertainty budgets for cases 1 and 4 at temperatures of 5 and 20 °C. 

Inputsa 

 
Calibration environment: water 

Case 1 Case 4 Case 1 Case 4 

Measurement conditions 

Cmeas (mg dm-3) 12.71 12.71 9.01 9.01 

tmeas (
oC) a 5 5 20 20 

stirring speed_meas (cm s-1) 30 30 30 30 

tcal (
oC) a 20 20 20 20 

u(pcal) (Pa) 150 150 150 150 
stirring speed_cal (cm s-1) 30 20 30 20 
day_newcal-meas (day) 0 5 0 5 
day_oldcal-meas (day) 0 0 0 0 
month (month) 0 0.5 0 0.5 

 

Input Parameters (xi)
a 

 

Uncertainty contributions (indexes) of the 

input parameters xi 

tcal 0% 0% 0% 0% 
Tinstab 0% 0% 1% 0% 
J0 2% 0% 0% 0% 
Jcal_output 2% 1% 12% 1% 
pcal 3% 0% 15% 0% 
Csat_cal 9% 1% 47% 1% 
pCO2 0% 0% 1% 0% 
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Table 3. Cont. 

pH2O_cal 2% 0% 9% 0% 
Cread_cal 0% 0% 0% 0% 
tmeas 3% 0% 0% 0% 
J_meas_output 2% 3% 12% 4% 
Cread_meas 0% 0% 1% 0% 
lsme_drift 0% 2% 4% 2% 
Esme_drift 0% 0% 0% 0% 
Jstir 0% 81% 0% 91% 
Esme_membrane 77% 10% 0% 0% 

 Expanded uncertainties (k = 2) of Cmeas 

U(Cmeas) 0.24 0.66 0.07 0.44 
U(Cmeas), relative 1.9% 5.2% 0.8% 4.9% 

a The definitions of all the quantities and parameters are given in reference [31]. 

 

At all temperatures (except in the case with zero oxygen concentration) the uncertainty is 

significantly lower under laboratory conditions, because calibration was carried out immediately 

before measurement and the stirring speed is equal during calibration and measurement and the sensor 

membrane has been freshly changed. As can be easily seen from Table 3, under different measurement 

conditions different uncertainty sources have the most significant contributions. 

At 20 °C in Case 1 the contribution of the calibration solution concentration uncertainty is near 50%, 

meaning that these measurement conditions allow to obtain accuracy approaching the highest possible 

with that sensor–calibration solution concentration is a factor extraneous to the sensor. At 5 °C in Case 

1 the uncertainty is mainly due to the quite strong temperature correction –the activation energy of 

permeation of oxygen through the membrane Esme_membrane is the main uncertainty source. In Case 4 at 

both temperatures the main part of uncertainty comes from the uncertainty of the stirring speed. The 

reason is that this particular sensor has a very thin membrane with high O2 permeability and under 

field conditions the stirring speed can only be vaguely estimated. 

In order to use this approach successfully the uncertainty contributions due to all these (and other) 

factors have to be estimated reliably. Detailed discussion on these (and some more, corresponding to 

different concentrations) uncertainty budgets can be found in reference [31]. 

7.2. Case study 2: Measurement Uncertainty Estimation Based on the Nordtest [70] Approach 

The same instrument was used as in Case study 1. However, due to the nature of the Nordtest 

approach–pooling of the data over a long time period–the sensor properties–age of the membrane and 

time that has passed from the last calibration –cannot be as well defined as in the case of the ISO GUM 

modeling approach. The approach rather evaluates an average uncertainty of the measurement 

procedure as applied under the normal working conditions of a particular laboratory. 

The component taking into account random effects u(Rw) was estimated from a control chart made 

at saturation concentration at temperature 20 °C and from these data u(Rw) = 0.089 mg/L. In order to 

be applicable also to concentrations lower than saturation we use this estimate as relative standard 

uncertainty urel(Rw) = 0.98%. Due to the working principle of amperometric dissolved oxygen 
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measurement it can be assumed that this relative uncertainty estimate is in broad terms constant over 

the different concentrations [31]. 

The u(bias) component can be estimated from the results of interlaboratory comparison 

measurements from references 87 and 88 as well as from reference measurements with air-saturated 

water at different temperatures. The bias estimates obtained are presented in Table 4: 

Table 4. Bias estimates obtained from the reference measurements and interlaboratory comparisons. 

tmeas (°C) 16.01.2006a 7.03.2006b 9.06.2006a 

0 mg/L 0.04 0.20 0.04 
5 −0.35 −0.56 0.01 
15 −0.28 −0.18 0.07 
20 −0.32 −0.11 −0.18 
25 −0.31 −0.03 −0.08 

a Reference measurements. b Interlaboratory comparisons. 

 

The uncertainty estimates obtained from these data using eqs 8–10 are given in Table 5. The 

uncertainty of the reference value at the saturation conditions was 0.15 mg/L (k = 2). The uncertainty 

of the reference value of zero solution was 0.01 mg/l (k = 2) [88]. 

 

Table 5. The uncertainties of WTW OXI340i with a CellOx 325 sensor by the Nordtest approach. 

tmeas  
(°C) 

Cmeas  
(mg dm-3) 

RMSbias  
(mg dm-3) 

u(bias) 
(mg dm-3) 

U 
(mg dm-3) 

U 
(%) 

20 0 0.12 0.12 0.24   
5 12.71 0.38 0.39 0.82 6.4 
15 10.01 0.20 0.21 0.46 4.6 
20 9.01 0.22 0.23 0.50 5.5 
25 8.18 0.19 0.20 0.43 5.3 

 

In this case both control charts and interlaboratory comparisons were carried out at saturation 

concentrations. Therefore these uncertainty estimates are more suitable for higher concentrations.  

7.3. Comparison of the Model- and Nordtest Based Uncertainty Estimation Approaches 

Comparison of the uncertainty estimates obtained with both approaches is presented in Figure 2. As 

seen from the figure the uncertainties obtained using the Nordtest approach and the ISO GUM 

approach under the non-ideal conditions (Case 4) agree well. This is remarkable, given the completely 

different foundations of the data used for uncertainty evaluation. It is fair to say that in practice this 

level of agreement between the ISO GUM modeling and Nordtest approaches is not always found. The 

uncertainty under nearly ideal laboratory conditions is expectedly significantly lower – up to five 

times–than in the remaining two cases. 
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Figure 2. Expanded uncertainties for all conditions using two estimation approaches. 
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The ISO GUM approach allows evaluating uncertainty for a particular measurement result taking 

account the particular measurement conditions. In contrast, the Nordtest approach allows evaluating an 

averaged uncertainty, which takes into account the average state of the equipment and working 

practices over a long period of time. 

Mathematically the Nordtest approach is simpler, but availability of data for a sufficiently long 

period of time is necessary. The most important issue with the Nordtest approach is estimation of the 

bias. It may often be difficult to find reference values of sufficiently high quality for that. The most 

accessible reference values for laboratories are generally results of Interlaboratory comparison 

measurements. However, their reference values can be of low quality, especially if consensus values 

based on participant results are used. For example, in 1981 an interlaboratory comparison 

measurement of dissolved oxygen concentration was carried out [89] at two concentrations 1.20 and 

5.86 mg dm-3. The mean absolute difference of the participant results from the reference values was 

0.6 mg dm-3. Also, 11 laboratories out of 14 obtained higher results than the first reference value and 

all laboratories obtained results higher than the second reference value. 

8. Practical Notes on Achieving Accuracy When Measuring with Amperometric Sensors 

The lowest uncertainty is obtained when the analyte concentration is near the calibration 

concentration(s), measurement is carried out during a short time after calibration, measurement and 

calibration are carried out in the same medium and the flow rate and temperature are the same during 

measurement and calibration. It must be made sure that the stationary current has indeed been reached. 

Strong interferences should be eliminated if present and salinity correction carried out (if relevant). 

When measuring low analyte concentrations the zero current has to be either corrected for or taken into 

account as uncertainty source. If so done the main uncertainty sources are those associated with 

analyte concentration in calibration solutions and repeatability/stability of the sensor (in the medium 

concentration range) or zero current (in the low concentration range). 
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9. Conclusions 

A large number of different factors cause uncertainty in analysis using amperometric sensors. All of 

them have been addressed in the literature and estimates of the uncertainty invoked by them can be 

found in the literature. However, different uncertainty sources differ vastly by their coverage and only 

a handful of papers describe calculation of combined standard uncertainty that takes into account all 

relevant uncertainty sources. 

Uncertainty estimation by the modeling approach, which explicitly takes into account all major 

uncertainty sources and combines them using a measurement model, needs a high level of knowledge 

about the measurement procedure. The alternative–Nordtest approach–is less demanding on the detail 

of knowledge but needs ample validation data. The approaches yield uncertainties that refer to 

different situations–the particular measurement under question and the measurement procedure in 

routine use at the laboratory, respectively. 

The case studies demonstrate that even with the same sensor the relative contribution of the 

different uncertainty sources can be very different depending on the sample, condition of the sensor 

and measurement conditions. 
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