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Selective attention can be directed not only to external
sensory inputs, but also to internal sensory
representations held within visual working memory
(VWM). To date, this phenomenon has been studied
predominantly following retrospective cues directing
attention to particular items, or their locations in
memory. In addition to item-level attentional
prioritization, recent studies have shown that selectively
attending to feature dimensions in VWM can also
improve memory recall performance. However, no study
to date has directly compared item-based and
dimension-based attention in VWM, nor their neural
bases. Here, we compared the benefits of retrospective
cues (retro-cues) that were directed either at a
multifeature item or at a feature dimension that was
shared between two spatially segregated items.
Behavioral results revealed qualitatively similar
attentional benefits in both recall accuracy and response
time, but also showed that cueing benefits were larger
after item cues. Concurrent electroencephalogram
measurements further revealed a similar attenuation of
posterior alpha oscillations following both item and
dimension retro-cues when compared with
noninformative, neutral retro-cues. We argue that
attention can act flexibly to prioritize the most relevant
information—at either the item or the dimension
level—to optimize ensuing memory-based task
performance, and we discuss the implications of the

observed commonalities and differences between
item-level and dimension-level prioritization in VWM.

Introduction

Visual working memory (VWM) provides a means
to maintain relevant information independent of
continued visual input, to guide adaptive behavior
(Baddeley, 1992, 2003). Because VWM has limited
capacity and/or resources (Bays & Husain, 2008;
Luck & Vogel, 1997; Vogel, Woodman, & Luck, 2001;
Zhang & Luck, 2008), it is essential to distribute
memory processes efficiently to complete the tasks at
hand effectively. Over the past decade, it has become
increasingly clear that VWM is more flexible than
originally thought. Focused attention continues to
prioritize and select contents maintained in VWM as
goals and predictions about goals change (Griffin &
Nobre, 2003; Kuo, Stokes, & Nobre, 2011; Landman,
Spekreijse, & Lamme, 2003; Souza & Oberauer, 2016).
To bring about behavioral benefits, attention-related
modulatory signals must interact with mnemonic
information that is available within VWM. Thus,
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by studying what forms of attention confer benefits
to VWM also provides insight about the format of
information held in VWM.

In perceptual attention, research has revealed a
multitude of representational formats available for
modulation. These include spatial locations, objects,
features, semantic associations, time intervals, and
likely more (for an overview, see e.g., Nobre, 2018).
Whether the same diversity of representational
formats is available in VWM is an important and
informative question. Information in VWM results
from attentional filtering of incoming sensory
processing (Vogel, McCollough, & Machizawa, 2005).
Thus, the representational information might be kept in
an altered, more compact format. For example, it has
been suggested that the primary representational unit
of VWM involves integrated (feature-bound) items
(Luck & Vogel, 1997; Vogel et al., 2001). Under this
framework, one might expect that the primary target
for attentional selection in VWM should be at the level
of individual items. Accordingly, most studies looking
at the role of attention in VWM to date have used
spatial retro-cues, linked to item-based representations,
and have shown clear benefits (e.g., Griffin & Nobre,
2003; Landman et al., 2003; Souza & Oberauer, 2016).

At the same time, recent studies have demonstrated
that attention can also facilitate behavior when directed
to feature dimensions that are shared among multiple
items in VWM (Heuer & Schubö, 2017; Niklaus, Nobre,
& Van Ede, 2017; Park, Sy, Hong, & Tong, 2017; Pilling
& Barrett, 2016; Sahan, Sheldon, & Postle, 2019; Ye,
Hu, Ristaniemi, Gendron, & Liu, 2016; Yu & Shim,
2017). It remains unclear, however, how such effects of
dimension-based attention compare with item-based
attention in VWM, because no study has directly
compared these two forms of attentional facilitation in
VWM. Here we directly compare these two types of
attentional facilitation.

In addition to comparing item- and dimension-based
attention at the level of behavioral performance,
we examined their effects on an electrophysiological
marker linked to attention in VWM: the attenuation
of posterior alpha oscillations. Several studies have
revealed that item-based prioritization in VWM is
associated with the attenuation of alpha oscillations
in posterior brain areas, suggesting modulation of
visual areas involved in representing the mnemonic
items (Myers, Walther, Wallis, Stokes, & Nobre, 2015;
Poch, Capilla, Hinojosa, & Campo, 2017; van Ede,
2018; van Ede, Niklaus, & Nobre, 2017; Wallis, Stokes,
Cousijn, Woolrich, & Nobre, 2015; Wolff, Jochim,
Akyürek, & Stokes, 2017). It remains unclear whether
alpha attenuation also occurs during the attentional
prioritization of feature dimensions that are shared
across multiple items held in VWM.

In the current study, we therefore compared and
contrasted behavioral and neural effects of internal

shifts of attention with multifeature items and with
single feature dimensions that were shared across
multiple items. Through the behavioral data, the
aim was to test whether there is a clear primacy
of the object-level information in VWM. If the
representational format in VWM organizes items as
integrated objects, this should also be the primary
level at which attention can operate. Accordingly,
benefits from item-directing retro-cues should be
substantially greater. If, however, attention has similar
access to multiple levels of information in VWM,
then retro-cueing benefits for feature dimensions and
individual items may be similar. By recording EEG and
measuring alpha oscillations, we further tested whether
a similar alpha modulation occurs when attention is
directed to a cued item or to a visual feature dimension
that is distributed across multiple items held in VWM.

To address these questions, we used a task in which
participants were presented with two Gabor gratings,
each of which contained both color and orientation
information. On half of the blocks, participants were
presented with an item-directing retro-cue and on the
other half with a feature-dimension-directing retro-cue.
Both blocks contained neutral (uninformative)
retro-cues, against which we compared the effects of
both types of informative retro-cues. We observed
qualitatively comparable retro-cueing effects, although
the benefits after item cues were larger. Both effects were
accompanied by similar alpha attenuation following the
cues, and both item- and dimension-level benefits on
behavior were highly correlated across participants.

Methods

Participants

The study was approved by the Central University
Research Ethics Committee of the University of Oxford
and is conducted in accordance with the Declaration
of Helsinki. Thirty-two healthy volunteers, 19 female,
mean age 28.3 years, range 18 to 35 years, took part.
Participants had normal or corrected-to-normal vision
and were not color blind. Participants provided written
informed consent before participating in the study and
were paid £15 per hour. Data from two participants
were excluded from analysis, one for terminating the
experiment early and the other owing to hardware
failure.

Experimental set-up and stimuli

Participants were seated in front of a 23-inch
monitor (1920 × 1080, 100 Hz). Stimuli were
generated using Psychophysics Toolbox version 3.0.11
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Figure 1. Experimental design with timings. Participants were presented with two colored Gabor gratings to memories. Subsequently,
a retro-cue informed participant which item or feature dimension would be probed. After either a color distractor or an orientation
distractor with a semi-randomly drawn orientation or color, the probe was presented. Participants adjusted the probe dial to match
the feature in memory.

(Brainard, 1997) in MATLAB 2014b (MathWorks,
Natick, MA). Head position was set at 90 cm from the
monitor, and participants used a chinrest. The stimuli
consisted of luminance-defined sinusoidal Gabor
gratings generated in MATLAB 2014b. Forty-eight
evenly spaced colors were drawn from a circle in CIE
L*a*b color space (center at L = 54, a = 18, b = –8,
radius = 59). Gratings were presented using one of 48
different orientations (3.75° to 180° in steps of 3.75°)
and 48 different colors.

Task and design

Participants performed 960 trials of a VWM task
(Figure 1) in which they were asked to reproduce the
color or orientation of one out of two memory items
at the end of a memory delay of 2.3 seconds. At the
start of each trial, two Gabor stimuli with a radius of
2.2° positioned left and right from fixation (centered
3.1° of visual angle) were presented simultaneously for
300 ms. Participants were instructed to remember the
color and the orientation of both items. At the end of
the trial, they were probed to report the orientation
or the color of one of the items. The to-be-reported
feature dimension was indicated with the probe circle
that was either a color wheel (color report) or a white
wheel (orientation report), whereas the to-be-reported
item was indicated by the location of the probe circle
(left/right, corresponding with the original location
of the probed memory item). Orientation and color
values varied independently between the two items,

with the constraint that no two equal orientations or
colors were presented on the same trial. Colors and
orientations were counterbalanced so that each was
presented equally often across trials.

Two events occurred during the memory delay: first
a retro-cue appeared, which could provide information
about the item or feature dimension that would be
probed. Second, 700 ms after the retro-cue offset,
an irrelevant distractor stimulus was presented that
contained either color or orientation information
(Figure 1 provides examples). We inserted the distractor
with the intention to study the neural response to the
distractor as a function of cueing condition. In the end,
this aspect did not yield clear results and was therefore
omitted for clarity. However, the single-feature nature
of the distractor did allow us to investigate whether the
congruence of the distractor feature and the probed
feature had any effect on recall.

Participants completed 20 blocks in total, each
containing 48 trials. On even-numbered blocks,
informative retro-cues indicated the location (left [L],
or right [R]) of the item that would be probed at the
end of the trial, without giving information about what
dimension would be probed. On odd-numbered blocks,
informative retro-cues indicated the feature dimension
to be probed (color, [C], or orientation [O]), without
giving information about what item would be probed.
We thus cued either a single item that contained two
features, or a single feature-dimension that was shared
between two items. We note that what we refer to as
“feature-dimension” selection is thus distinct from using
feature-based cues to orient attention to specific items,
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for example, as in Heuer and Schubö (2016) and Heuer,
Schubö, and Crawford (2016). When informative, the
retro-cue was always valid. Both blocks also contained
33% noninformative neutral cues (X) that provided
no information about what item or dimension would
be probed at the end of the trial. Participants were
encouraged to use the informative retro-cues to select
the relevant item or feature dimension.

After another fixation period of 700 ms (after the
retro-cue), a bilateral distractor was presented for 100
ms. The distractor consisted of either a single color
or a black-and-white oriented Gabor grating. Sixteen
colors and 16 orientations were used (from 11.25°
to 180° in steps of 11.25°). These varied randomly
from the orientation/color of the items in the memory
array. However, we ensured that the three types of cues
(C/O/X or L/R/X) all contained the same range of 16
distractor features. Out of these 16 distractor features,
we randomly assigned eight as color features and eight
as orientation features.

After another fixation period of 700 ms (after the
distractor), the color wheel or a white circle probe
appeared with the dial initialized at a random location.
To keep the orientation and color recall as similar as
possible, we presented the colors at a fixed position on
the color wheel. Participants were instructed to respond
as accurately as possible by using the J and F keys
to rotate the probe clockwise and counterclockwise,
respectively. Participants were instructed to use their left
index finger to press the F key and the right index finger
to press the J key. Although there was no explicit time
limit for the response time, we logged reaction times as
the time between the onset of the probe and the first
button press that initiated the dial-up report. Reaction
time therefore serves as a proxy for the time it took
participants to access the relevant memory information
before commencing their reproduction report.

Behavioral analysis

We computed the error for each trial for each
participant by subtracting the target orientation or
color (in radians around the color circle in CIE L*a*B
space) from the probe response. All error scores were
mapped onto a –1

2π to 1
2π space. All trials for which the

reaction time was more than four standard deviations
above a participant’s mean decision time were discarded
(0.9 ± 0.3%). To calculate the retro-cue benefit, we
subtracted the absolute error on cued trials from the
absolute error on neutral trials. In all our analyses, we
only compared trials of one retro-cueing condition
with neutral trials from the same block types (i.e., item
blocks or dimension blocks).

A mixture model was fitted separately for each
retro-cueing condition and respective neutral condition,

modelling target response rate, guess rate, swap
responses, and precision to the error data of each
subject (Bays, Catalao, & Husain, 2009; Zhang &
Luck, 2008). We fitted the mixture model separately
for every subject, color, or orientation recall, spatial
or dimension retro-cues, and informative or neutral
retro-cues. Estimating the mixture-model parameters
allowed for estimation of different components that
contribute the overall error; we estimated the fidelity of
the representation independently of the guess and swap
rate. We used the mixture model made available by Bays
et al. (2009).

When comparing more than two conditions, we
applied a repeated-measures analysis of variance and
report η2 as a measure of effect size. When evaluating
retro-cueing benefits, we applied dependent samples
t test, comparing informative vs neutral cues, as well
as the cueing effects between item and dimension
retro-cues. When the assumption of normality was
violated we instead applied a Wilcoxon signed-rank
test. We report Cohen’s d as a measure of effect size for
parametric tests and matched rank biserial correlation
for nonparametric effect size. For evaluation we used
two-sided tests with a critical alpha value of 0.05.

Electroencephalogram (EEG) acquisition

EEG data were collected using Synamps amplifiers
and Neuroscan software (Compumedics). We used a
61 Ag/AgCl sintered electrodes (EasyCap, Herrsching,
Germany), laid out according to the international 10–10
system, with mastoids behind the left and right ear. The
left mastoid was used as an active reference during the
recordings. Offline, an average mastoids reference was
derived using the left and right mastoids. The ground
electrode was placed on the left arm above the elbow.
Horizontal electrooculogram (EOG) was measured
using lateral electrodes next to both eyes and vertical
EOG was measured above and below the left eye. Data
were sampled at 1000 Hz and stored for subsequent
analysis.

EEG preprocessing

Data were imported into MATLAB 2017a
using pop_loadcurry() and further analyzed using
Fieldtrip (Oostenveld, Fries, Maris, & Schoffelen,
2011) and the OHBA Software Library (OSL;
https://ohba-analysis.github.io/). Analysis started by
cutting out the epochs between 100 ms before and 2200
ms after retro-cue onset ft_redefinetrial() followed by
re-referencing the data to the average of the mastoids
ft_preprocessing(). EEG data were down-sampled to
200 Hz to decrease computational demands and storage
space ft_resampledata().

https://ohba-analysis.github.io/
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Next, EEG data were further de-noised using inde-
pendent component analysis ft_componentanalysis()
applying the FastICA algorithm (Hyvärinen, 1999)
to all EEG sensors. Independent component analysis
separates the EEG signal into non-Gaussian subcompo-
nents of the data that are statistically independent from
one another. Spatial components strongly correlated
(r > 0.4) with EOG channels were removed from
the EEG data. We set out to remove trials on which
participants blinked during the window of 100 ms
prior up to 200 ms after retro-cue presentation. After
baselining the horizontal EOG signal at –300 to –100
ms trials on which horizontal EOG voltage surpassed
200 μV (approximately one-half of the maximum
voltage evoked by a typical blink) were flagged and later
removed from EEG and behavioral analyses (0.446 ±
1.23%). Subsequently, we removed epochs based on
within-trial variance of the broadband signal at a 0.05
significance threshold using a generalized ESD test
(Rosner, 1983; implemented in OSL) and discarded 2.48
± 2.18% of the trials.

Time–frequency processing

Time–frequency decomposition of the EEG signal
was done using ft_freqanalysis. Spectral power between
2 and 50 Hz was computed on Hanning-tapered data
using a short-time Fourier transform, with a 300-ms
sliding time window that was advanced in steps of 15
ms. We zoom in on modulations in posterior alpha
oscillations, by averaging the time-frequency plots
for the left cues (P1, P3, P5, P7, PO3, PO7, and
O1) and right (P2, P4, P6, P8, PO4, PO8, and O2)
posterior electrodes and calculating the normalized
differences in power falling between informative and
neutral retro-cues ([informative—neutral]/[informative
+ neutral] × 100). We did this separately for left and
right item retro-cues, and for color and orientation
dimension retro-cues. Using the same quantification,
we also compared alpha power for contralateral versus
ipsilateral electrodes after item, and alpha for color
versus orientation after a dimension cue. For statistical
evaluation, we applied a two-sided cluster-based
permutation analysis (Maris & Oostenveld, 2007) with
5,000 permutations at an evaluation threshold of 0.05.

To characterize the onset of alpha attenuation after
the retro-cue, we extracted the time course of 7 to 12
Hz power modulation (in the specified informative vs.
neutral cue contrast) and focused on the 0 to 1,000 ms
period after retro-cue onset. On these data, we then
identified the earliest timepoint in which the power
modulation reached half of its minimal value for each
condition. This latency was used as a measure to
compare neural modulation by dimension retro-cues
and item retro-cues.

To depict the topography of the power modulations
analyzed in the predefined set of posterior electrodes
(depicted in Figure 4), we calculated the relevant
contrast for each electrode and averaged over the
time-frequency window of 400 to 800 ms and 7 to
12 Hz. In addition, to focus on alpha lateralization,
we contrasted activity in electrodes left posterior
electrodes (O1, PO7, PO3, P7, P5, P3, and P1) and
right posterior electrodes (O2, PO8, PO4, P8, P6, P4,
and P2), contralateral versus ipsilateral to the cued
item after informative item retro-cues. To visualize the
topography of the difference between electrodes contra-
and ipsilateral to the item cue, we mirrored the left
and right electrodes onto one side. We then subtracted
electrodes that would be ipsilateral relative to the cued
item from the electrodes that would be contralateral
relative to the cued item.

Topographies were intended solely to portray the
nature of the modulation and were not subjected to
further statistical testing.

Results

Figure 2A shows behavioral performance as a
function of experimental condition (collapsed over
distractor type, because this did not yield consistent
results, as discussed elsewhere in this article). To
analyze the effects of item and feature-dimension
retro-cues, we quantified retro-cueing benefits as the
difference between the trials with informative and
neutral retro-cues (Figure 2B).

To formally quantify the effects of retro-cue
informativeness (valid or neutral) and retro-cue block
type (item retro-cue block or dimension retro-cue block)
we used a 2 × 2 repeated-measures analysis of variance.
We ran this separately for response time and response
error, and separately for both color and orientation
recall reports. We observed a significant main effect
of retro-cue informativeness, with better performance
following informative versus neutral retro-cues on all
four dependent variables: orientation error, F(1, 29)
= 18.888, p < 0.001, η2 = 0.394; color error, F(1, 29)
= 26.387, p < 0.001, η2 = 0.476; orientation response
time, F(1, 29) = 67.27, p < 0.001, η2 = 0.699; and
color response time , F(1, 29) = 65.15, p < 0.001, η2 =
0.692. At the same time, we found that the behavioral
benefits of retro-cue informativeness were larger in
item retro-cue block than in dimension retro-cue block,
yielding a significant interaction for color error, F(1, 29)
= 9.065, p = 0.005, η2 = 0.238; orientation response
time, F(1, 29) = 19.64, p < 0.001, η2 = 0.404; and color
response time, F(1, 29) = 21.00, p < 0.001, η2 = 0.420.
Although we found the same trend, this did not reach
significance for orientation error, F(1, 29) = 3.750, p =
0.063, η2 = 0.115. Finally, in line with the greater benefit
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Figure 2. Performance benefits of item and feature-dimension retro cueing. (A) The four columns show absolute error and reaction
times for trials with an informative cue or a neutral cue. Trials in which orientation was probed are displayed in red while color-probe
trials are displayed in blue. Each panel shows the data separately for item retro-cue blocks and dimension retro-cue blocks. (B)
Behavioral benefit of retro-cues. Subtracting the mean absolute error on trials with an informative cue from the neutral trials gives
the performance benefit of the retro-cue, here expressed as positive values. Orientation benefit is depicted in dark red and color
benefit in dark blue. (C) Correlations across participants between the item and dimension retro-cue benefits in shown in B. Error bars
show 95% confidence intervals.

of item retro-cues, we also found a significant main
effect of block type, constituted by better performance
in item retro-cue blocks for all four dependent variables:
orientation error, F(1, 29) = 39.634, p < 0.001, η2 =
0.577; color error, F1,29 = 8.343, p = 0.007, η2 = 0.223;
orientation response time, F1,29 = 50.51, p < 0.001, η2

= 0.635; and color response time, F(1, 29) = 32.08, p <
0.001, η2 = 0.525.

We also considered the third factor, namely, distractor
congruence (i.e., when the distractor contained the same
or the other feature dimension as the to-be-recalled
memory dimension), but found no systematic effects
of distractor congruence across our four dependent
variables, nor interactions with the factors of interest
(Supplementary Table 1).

We describe in greater detail the item and dimension
retro-cueing effects of interest, in accordance with the
data presented in Figure 2.

For orientation recall reports, participants
significantly benefitted from item retro-cues. They had
smaller errors, t29 = 4.235, p < 0.001, d = 0.773, and
responded faster, t29 = 7.854, p < 0.001, d = 1.434,
compared with trials with neutral retro-cues in the same
block types. Similarly, orientation reports benefitted
significantly from dimension cues in both reproduction
error, t29 = 3.748, p = 0.001, d = 0.684, and response
onset time, t29 = 6.302, p < 0.001, d = 1.151, compared
with neutral trials within the dimension retro-cueing
blocks. Item cues conferred numerically larger benefits
than dimension cues. The difference was not statistically
significant for error, 0.023 rad., 48%, t29 = 1.936, p =
0.063, d = .354, but reached significance for reaction
times, 79 ms, 94%, t29 = 4.431, p < 0.001; d = 0.809.

The same pattern of results was found for the error
and reaction times in the color recall trials: color reports
benefitted from both item cues, t29 = 5.060, p < 0.001,
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Figure 3. Cueing effects on mixture modelling parameters. (A)
Mixture-model estimates for the cueing effects on (A) precision,
(B) target response, guess rate, and swap rate, for trials where
item retro-cues or dimension retro-cues were presented
compared with neutral trials. Hence, valid retro-cues positively
influenced target response proportions and negatively
influenced guess rate and swap rate. The asterisks indicate
significant differences of, respectively, item or dimension
benefits from zero (i.e., benefits following informative versus
neutral cues). Asterisks above horizonal lines indicate
significant differences between item and dimension
retro-cueing benefits. Error bars indicate 95% confidence
intervals. n.s: p > .05 , * p < 0.05, ** p < 0.01, *** p < 0.001.

d = 0.924, and dimension cues, t29 = 4.069, p < 0.001,
d = 0.743, and responses were also faster for item
cues, t29 = 9.097, p < 0.001, d = 1.661, and dimension
cues, t29 = 4.951, p < 0.001, d = 0.904, compared with
their respective neutral trials. For color reports, we also
found greater benefits of item retro-cues compared with
dimension retro-cues for both error, 0.039 rad., 86%, t29
= 3.011, p = 0.005, d = 0.550, and reaction time, 63 ms,
91%, t29 = 4.583, p < 0.001, d = 0.837.

The benefits of item-based and dimension-based
retro-cueing showed strong positive correlations
across individuals for both color and orientation
reports (Figure 2C). For orientation reports, we found
significant correlations between retro-cueing benefits
following item cues and dimension cues for both error,
r = .709, p < 0.001, and reaction time, r = .539, p =
0.002,. Likewise, for color reports, we found significant
correlations between retro-cueing benefits following
item cues and dimension cues for both error, r = .697, p
< 0.001, and reaction time, r = .596, p < 0.001. Thus,
participants who benefitted most from item retro-cues
also benefitted most from dimension retro-cues.

Mixture modelling

In addition to the raw behavioral scores, we also
modelled sources of error using a mixture model
(Figure 3AB; Bays et al., 2009). We modelled four

components 1) precision, characterized by width
(1/STD) of the target centered response distribution, 2)
proportion of target responses modelled by the gaussian
centered around the target, 3) proportion of random
responses characterized by the height of the uniform
response distribution, and 4) proportion of responses to
the noncued feature of the same dimension as the cued
dimension (nontarget report or swap errors). Figure 3A
and B shows the retro-cueing effects (informative vs.
neutral) on each of these four parameters, separately
for item and dimension cues (collapsed over color
and orientation reports, after fitting the model for
each dimension separately; Supplementary Figure 1
provides mixture model parameters separated for color
and orientation reports). As depicted in Figure 3A
and B informative (vs. neutral) retro-cues significantly
increased precision for item retro-cues, item: t29 =
2.736, p = 0.011, d = 0.500, although this did not reach
significance for dimension retro-cues: t29 = 0.578, p
= 0.568, d = 0.105. At the same time, both item and
dimension retro-cues increased target response rates,
item: t29 = 5.595, p < 0.001, d = 1.022, dimension:
Z29 = 382, p = 0.001, rrb = 0.643, and decreased
guess rates, item: t29 = –2.131, p = 0.042, d = –0.389,
dimension: Z29 = 78, p < 0.001, rrb = –0.665, and item
retro-cues further decreased swap rate, item: Z29 = 21, p
< 0.001, rrb = –0.910, dimension: Z29 = 137, p = 0.080,
rrb = –0.368.

Direct comparisons between item and dimension
retro-cue benefits showed a significantly greater
reduction in the rate of swap errors by item retro-cues
relative to dimension retro-cues, Wilcoxon signed-rank
test, Z29 = 95, p = 0.002, rrb = 0.591 (Figure 3A
and B). Effects for the other three parameters were
not statistically different between item and dimension
retro-cues, all p > 0.10.

Alpha attenuation after feature and item
retro-cues

Figure 4 shows the time- and frequency-resolved
modulations in spectral EEG power in posterior
electrodes after item and dimension retro-cues,
expressed as a difference from the neutral retro-cueing
condition (neutral retro-cue minus informative
retro-cue). After both item retro-cues and dimension
retro-cues, we observe an attenuation of alpha power
starting at around 400 ms after presentation of the
retro-cue (clusters all conditions p < 0.001). The
alpha attenuation in trials with informative retro-cues
reemerges after the distractor onset, in the window just
prior to the probe. To reveal the spatial layout of the
significant clusters, we visualized the EEG topographies
of the alpha-band power at 400 to 800 ms after the
retro-cue. Similar topographies were associated with
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Figure 4. Induced neural EEG responses to the left and right item retro-cues and to color and orientation dimension retro-cues. (A)
Time–frequency representation of the difference between left/right cued trials versus neutral trials in item–cue blocks in left (P1, P3,
P5, P7, PO3, PO7, and O2) and right (P2, P4, P6, P8, PO4, PO8, and O2) electrodes. The bottom panel depicts the time-frequency map
of the difference between contralateral and ipsilateral responses calculated across left and right posterior electrodes, as described in
the Methods. Topographies show the associated differences in alpha power (7–12 Hz) in the 400- to 800-ms window (indicated in the
dotted line boxes in all time–frequency maps). For the contralateral vs ipsilateral topography (bottom), we projected the relevant
contrast values into the right electrode of each electrode pair. (B) Same representations as outlined above but here we compare color
and orientation with their respective neutral trials or with one another, in left and right electrodes. Highlighted areas with the black
solid outline indicate significant clusters (permutation test, n = 30, cluster-forming threshold p < 0.05, corrected significance
threshold p < 0.05).

the later alpha modulation after the distractor and with
the early modulation in the higher 13- to 30-Hz band
(topographies not depicted).

In addition to this global effect when comparing
informative to neutral retro-cues, we also evaluated
the specific difference between left and right item
cues (from the perspective of electrodes contra- and
ipsilateral to the cued item), and between color and
orientation (Figure 4, bottom row). In line with several
prior studies (Myers et al., 2015; Poch et al., 2017;
van Ede et al., 2017; Wallis et al., 2015; Wolff et al.,
2017), following item cues, alpha attenuation was most
pronounced contralateral to the memorized location
of the cued item. In contrast, following dimension
retro-cues no clear differences were observed between
color and orientation cues, which directed attention
to a single feature dimension that was shared between
the left and right items. Finally, we found that the
alpha attenuation had very similar latencies following
item-directing and dimension-directing retro-cues, t29
= 1.273, p = 0.213 (Supplementary Figure 2). Further
exploring the data, we also analyzed event-related
potentials (ERP) following retro-cues to investigate
ERP components linked to attentional selection in
working memory. We found clear selection-related
potentials following retro-cues that afforded item-level
selection (Supplementary Figure 3). At the same time,
however, we found no clear lateralization of ERPs after

item cues, nor significant ERP modulations associated
with attentional selection following dimension cues.

Discussion

We demonstrate that both item-based and
dimension-based attentional prioritization during
VWM maintenance decreases recall error and speeds
response initiation times following the probe. Hence,
we support the finding that selective attention can
retrospectively prioritize not only items (Griffin &
Nobre, 2003; Kuo et al., 2011; Landman et al., 2003;
Souza & Oberauer, 2016), but also feature dimensions
maintained in VWM (Heuer & Schubö, 2017;
Niklaus et al., 2017; Park et al., 2017; Sahan et al., 2019;
Ye et al., 2016; Yu & Shim, 2017). We thereby replicated
a feature prioritization effect in VWM for more than
one location (unlike Makovski & Jiang, 2007; but see
also Heuer & Schubö, 2016; Lepsien, Thornton, &
Nobre, 2011; Matsukura & Vecera, 2015). Building on
this work, our experimental design uniquely allowed us
to compare the magnitudes of both types of behavioral
retro-cue benefits within a single experiment, and to
correlate their strengths across participants. Although
the item benefit was greater than the dimension benefit,
both were highly robust. They were each evident across
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both color and orientation reports and in both recall
accuracy and response initiation times. Moreover, we
found strong correlations between the benefits that
followed item and dimension cues, and qualitatively
similar neural modulations, which suggest that the
two types of retro-cueing benefits may share at least
overlapping (although not necessarily equivalent)
attentional mechanisms.

The notion that both retro-cueing types yield
behavioral benefits that are qualitatively similar was
further supported by the similar retro-cueing effects on
guess rate and target response rate parameters estimated
by the mixture model. At the same time, we observed
that only item cues significantly enhanced precision
and decreased the probability of swaps (nontarget
responses), with the latter being the only parameter that
also differed significantly between item and dimension
retro-cue benefits. This difference is likely explained
by the fact that swaps are calculated between items
(within a single dimension). Provided that feature-cues
always concerned one dimension, shared across both
items, they may have helped to upregulate the relevant
feature dimension, but not to separate the two spatially
segregated items and thereby to reduce swap rates
(in contrast with item cues that directly targeted the
relevant item from the two memorized items). The
mixture modelling, therefore, enables the separation of
error into its different sources, such as swap rate and
guess rate. The overall error should reflect the aggregate
of all mixture modelling components.

In a strict account in which the primary unit of
VWM is integrated items (Luck & Vogel, 1997; Vogel
et al., 2001), one may predict that attention in VWM
will primarily operate at the level of items, leaving little
room for attentional facilitation of specific features
that are shared among items. Alternatively, if VWM
consists of a hierarchy of representations, with both
item-level and dimension-level representations (Bays,
Wu, & Husain, 2011; Brady, Konkle, & Alvarez, 2011;
Fougnie & Alvarez, 2011; Töllner, Conci, Müller, &
Mazza, 2016; Töllner, Mink, & Müller, 2015); then
one may expect that attention can operate similarly
at distinct levels, depending on the nature of the
task at hand. Our data are in line with a mixture of
both scenarios—showing that attention can operate
qualitatively similarly at both item and dimension
levels, while also revealing an additional benefit when
attention is directed at two dimensions of a single item
(following item cues), compared with a single feature
dimension across two items (following dimension cues).

At the same time, we note that attentional benefits
in behavioral performance in VWM tasks need not
only reflect changes in the quality of representational
information. Factors related to prospective task
preparation may also contribute (González-García,
Formica, Liefooghe, & Brass, 2020; Myers, Stokes, &
Nobre, 2017; van Ede, Chekroud, Stokes, & Nobre,

2019). Therefore, although our data provide clear
evidence for the benefit of dimension retro-cues—which
is qualitatively similar to, and correlated with, the
benefit following item cues—it remains possible that
at least part of these benefits are due to factors
other than a change in the underlying mnemonic
representation (and this holds for both item and
dimension retro-cueing benefits).

In addition to the behavioral performance data, we
also observed commonalities in the neural modulation
following item and dimension cues; both cases
showing robust alpha attenuation over posterior
electrodes, arising around the same time, with a
similar magnitude. The neural responses therefore
provide important relevant complementary data to
our behavioral performance data. We observe more
direct evidence for an early modulation in posterior
(putatively visual) brain areas following both types of
retro-cues; compatible with a modulation at the level
of the memorized visual representations. This finding
may reflect reweighting of sensory input in order to
optimize upcoming memory-guided behavior (Myers,
Stokes, & Nobre 2017). However, despite the similar
appearance of this modulation following item- and
feature-dimension retro-cues, it remains possible that
the neural signals we measure reflect the engagement
of distinct, but overlapping, brain areas and neural
computations (Heuer, Schubö, & Crawford 2016),
just like the recruitment of different neural substrates
for item-selection based on spatial versus feature cues
(Heuer & Schubö 2016). However, because we used
visual retro-cues, we cannot fully rule out the possibility
that at least part of this modulation may be driven
by differential visual processing of informative versus
a neutral retro-cues per se, although we note how
our neutral retro-cues were designed to be similar to
our informative retro-cues, ruling out more obvious
differences owing to bottom-up visual features such as
retro-cue size and saliency. One important difference
between the two types of selection is that spatial
orienting is inherently linked to item selection and
not to dimension selection. Items occupied distinct
locations and each dimension was always shared
between two segregated items. In future studies, it will
also be informative to equate spatial factors when
comparing item and dimension selection, such as by
using multifeature items that occupy the same spatial
location (e.g., overlapping colored moving dot clouds).

In conclusion, retro-cueing studies have typically
shown that internally directed attention can prioritize a
subset of mnemonic representations (Griffin & Nobre,
2003; Rerko, Souza, & Oberauer, 2014; VanMoorselaar,
Olivers, Theeuwes, Lamme, Victor, & Sligte, 2015).
These representations are typically thought of as
integrated item of features bound together into a
discrete mnemonic item (Luck & Vogel, 1997; Vogel
et al., 2001). Our results show that attention can also
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effectively be directed to specific visual dimensions
that are shared across multiple items in memory—and
for the first time reveal that such dimension cues yield
qualitatively similar (albeit weaker) behavioral benefits
and neural modulations or latency, as do item cues, and
that item and dimension cueing benefits are correlated
across individuals. We argue that retro-cues help place
memorized visual stimuli into a goal-oriented format,
such that relevant information at both the item and the
dimension level can be optimized for upcoming task
performance.

Keywords: working memory, attention, feature
selection, EEG, retro-cue
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