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Insecticide-resistance threatens the control of mosquito-borne diseases like malaria or dengue fever. To ensure sustainable
vector control we need a full understanding of the factors driving the evolution of resistance. We test the hypothesis that
the expression of insecticide-resistance depends on the available resources by rearing genetically DDT-resistant and
sensitive larvae of Anopheles mosquitoes at three diet regimes, which correspond to 40%, 70% and 100% of the normal diet
and exposing the adult females to DDT 5, 10 and 15 days after emergence. In both colonies post-exposure survival
decreased with age at exposure. Additionally, the food levels and DDT-resistance were positively correlated in both
colonies, although only in the DDT-resistant one was this relationship statistically significant. The impact of larval diet was
smaller than the effect of age at exposure. We discuss our results and explain the implication of this study to resistance
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Introduction

The evolution of insecticide-resistance threatens the control of
mosquito-borne diseases like malaria or dengue fever [1]. With a
view to manage the problem of resistance, research has led to
considerable knowledge about the molecular mechanisms of
resistance and the physiological routes leading to insecticide-
resistance [2].

However, to ensure sustainable and efficient vector control we need
a full understanding not only of the genetic and physiological basis of
resistance, but also of the non-genetic factors that influence the
response to insecticide and the expression of resistance. Some of these
environmental and demographic factors have started to be understood.

First, sensitivity to insecticides increases as mosquitoes age [3-5].
This may be at least partly explained by an age-related decline in
the expression of insecticide detoxification genes [4] (but see [3,6] ).
Second, parasite infections can modify the way genetically resistant
mosquitoes respond to insecticides. For example, infection by
entomopathogenic fungi or microsporidian parasites partially
restores the mosquitoes’ sensitivity to insecticides [7,8], and
infection with an insecticide-degrading bacterial symbiont estab-
lishes insecticide-resistance in pest insects [9]. Third, the temper-
ature in which mosquitoes are exposed to insecticides can affect
their resistance, so that warmer conditions lead to higher mortality
[10]. Finally, some studies suggest that providing mosquitoes with a
blood meal may decrease their sensitivity to insecticides [3,4].
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Yet, it is still unclear whether and how available resources
modify the expression of insecticide-resistance. It has been recently
shown that metabolic resistance to insecticides uses resources
essential for development [11,12]: mosquitoes resistant to insec-
ticides store fewer lipids, sugars and energetic reserves than
sensitive ones, implying that the expression of the resistance is
resource-dependent. [12]. We therefore expect that resource
availability limits the expression of resistance.

To test this hypothesis, we reared DDT-resistant and sensitive
larvae of Anopheles gambiae mosquitoes on three different feeding
regimes, constituting 40%, 70% and 100% of their standard diet.
Subsequently, we measured their resistance by exposing them to
DDT at different ages and recording their survival 24 hours after
the exposure. We predicted that the post-exposure survival would
decrease with age and would be lower for the badly nourished
mosquitoes than for the well-fed ones. We also expected that the
negative effects of low diet would be stronger in the resistant
colony than in sensitive mosquitoes because of the resource
demands related to insecticide resistance.

Materials and Methods

Feeding Regime

We used two colonies of Anopheles gambiae mosquitoes: the DDT-
resistant ZAN/U colony with increased metabolism of the
insecticide, catalyzed by members of the glutathione S-transferees
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enzyme family [13] and the DDT-sensitive Kisumu colony from
western Kenya [14]. Two-day old larvae were transferred to 12-
well plates and reared individually in 3 ml of de-ionized water. For
each colony we reared 480 mosquitoes at each of three feeding
regimes: 100% (high), 70% (medium) or 40% (low) of the standard
amount of TetraMin® Baby fish food (Table 1). Given food
quantities were administered to each well in 100 uL of de-ionized
water (which partially compensates for evaporative loss). Emerged
females were moved to plastic cups and supplied with cotton balls
moistened with saturated 10% sugar solution, males were

discarded.

Insecticide Exposures

The resistance of mosquitoes was measured with the standard
World Health Organization test-kit according to WHO guidelines
[15]. 50 adult females from each feeding regime and colony were
exposed to insecticide at each of three ages: 5, 10 or 15 days after
emergence. They were individually exposed to DDT-treated filter
paper (4%) for 100 minutes (resistant ZAN/U colony) or 40
minutes (sensitive Kisumu colony). We based the exposure times
on earlier experiments, so that we could expect about half of the to
die within 24 hours of exposure when they were 5 days old. After
exposure the mosquitoes were moved back into insecticide-free
plastic cups and survival was recorded 24 h later. Mosquito
rearing and insecticide exposures were carried out at a temper-
ature of 26 (+/—1)°C and 70 (+/—5) % relative humidity with a
12 h: 12 h light/dark cycle. Subsequently, mosquitoes were
individually moved to eppendorf tubes and frozen. We removed
their wings, fixed them onto glass slides, scanned and measured
from the tip (excluding the fringe) to the distal end of the allula
using Image] software (http://rsb.info.nih.gov/ij/). Where both
wings were available, we took their mean length as a measure of
mosquito size.

Statistical Analysis

The mosquitoes emerged over a period of 5 days (ZAN/U; 9 to
13 days after hatching) and 3 days (Kisumu; 9 to 11 days after
hatching), so we grouped mosquitoes not only by treatment (food
regime and age at exposure), but also by age at emergence. The
number of mosquitoes that survived the exposure in each group
(food regime, age at exposure, age at emergence) was analysed
with a binomial GLM with logit link, with a correction for over-
dispersion if necessary. As age at emergence determined the date
of exposure (so that age at exposure could be fixed), it was
considered a nominal factor. As age at exposure had a close to
linear effect (Figure 1), it was considered a continuous factor;
feeding regime was considered an ordinal factor. The analysis
included only the interaction between age at exposure and feeding

Table 1. Daily amounts of food (in pg) for the three different
diet levels.

Days after hatch Low MEDIUM HIGH
1 0.016 0.028 0.04
2 0.024 0.042 0.06
3 0.032 0.056 0.08
4 0.064 0.112 0.16
5 0.128 0.224 0.32
6 and later 0.240 0.420 0.60

doi:10.1371/journal.pone.0058322.t001
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regime, as including interactions with age at emergence would
have led to a very unbalanced analysis. As the treatment of the two
colonies differed, we analysed the data of the resistant and sensitive
colony separately.

The analyses were carried out with the statistical package JMP
8.0.2 (SAS Institute, Cary, NC).

Results

In sensitive and DDT-resistant mosquitoes decreasing larval diet
delayed emergence (sensitive: chi-square =565.0, d.f=4,
p<<0.001; resistant: chi-square 547.8, d.f=8, p<<0.001) and
decreased adult wing length (sensitive: F=33.95, d.f.=1,308,
p<<0.001; ZAN/U F=129.97, d.f. = 1,286, p<<0.001; Figure 2). In
both colonies, age at exposure had a greater influence on survival
than feeding regime (Figure 1). Age at emergence had only little
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Figure 1. Survival 24 hours after exposure to DDT in (a) Kisumu
(sensitive) and (b) ZAN/U (resistant) mosquitoes. In both panels
survival is shown as a function of age at exposure. The error bars show
the 95% confidence intervals. Dotted lines link mosquitoes from
different treatment groups exposed at the same age. Note that the time
of exposure differed between the two colonies: The Kisumu mosquitoes
were exposed for 40 minutes; the ZAN/U mosquitoes were exposed for
100 minutes.

doi:10.1371/journal.pone.0058322.g001
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effect on survival (Table 2). For the sensitive Kisumu mosquitoes,
later exposure and less larval food decreased survival (Table 2).
The effect of the feeding regime differed among the three ages at

Table 2. GLM analysis of 24 hours post-exposure survival in a)
resistant and b) sensitive colonies of Anopheles gambiae

mosquitoes.

exposure; thus the effect of age at exposure was greatest in the
best-fed mosquitoes, and increasing larval food increased resis-
tance only in the mosquitoes exposed 5 or 10 days after emergence Factor df X2 P
(Figure 1). -

The pattern in the resistant ZAN/U mosquitoes was similar but @jiresistancZAN/D
stronger, with survival after exposure decreasing with age (Table 2, Age at emergence 4 549 0.241
Figure 1). There was, however, little difference between the food Age at exposure 1 68.01 <0.001
regimes and no significant interaction between feeding regime and Food regime 2 363 0.163
age at exposure (Table 2, Figure 1). Food* Age at exposure 2 4.38 0.112

. . (b) sensitive Kisumu
Discussion

Age at emergence 2 4.95 0.084

In our study, the quantity of food available to larvac had an Age at exposure 1 10.72 0.001
effect on the expression of insecticide-resistance. However, its Food regime 2 10.50 0.005
cﬁ"ch was small apd was apparent only.ln one of our two colonies Food* Age at exposure ) 865 0.013
and if the mosquitoes were exposed fairly early after emergence.
Furthermore, corroborating other studies [3-5], in both colonies doi:10.1371/journal.pone.0058322.t002
post-exposure survival decreased with the age at exposure to
DDT.

[16,17]) would affect the mosquitoes’ survival of the insecticide.
However, there was only a small effect of larval nutrition on
resistance. One reason may be due to the importance of resistance
for the fitness of mosquitoes, so that allocation to resistance may be

As insecticide-resistance often [11,12,16], but not always [17]
has energetic and fitness costs, we had expected that our feeding
regime (which had a strong effect on adult size (Figure 2) and thus,
presumably on adult condition and level of stored resources
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Figure 2. Boxplot of wing length by colony and diet. A positive correlation between diet and wing length is observed in both: a) Kisumu and b)
ZAN/U colonies. Thick horizontal lines represent median, bottom and upper edges of the boxes first and third quartiles, whiskers demonstrate
minimum and maximum values.

doi:10.1371/journal.pone.0058322.9002
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maintained even in face of low resource availability. Alternatively,
the underfed larvae may have compensated for their low energy
reserves by feeding more in the adult stage [18]. Finally, the cost of
resisting the insecticide (which has not been measured for ZAN/U
mosquitoes) may be minimal in our mosquitoes.

As the resistance mechanism requires increased production of
metabolic enzymes and therefore presumably uses more resources,
we had expected that ZAN/U mosquitoes would be more sensitive
to food deprivation than Kisumu ones. We observed, however, the
opposite: whereas the resistance of ZAN/U was not affected by
larval food, Kisumu mosquitoes were less resistant if fed less as
larvae. This suggests that the mutations of the detoxification genes
in our resistant colony are less sensitive to environmental variation
than the more general mechanisms that help to survive exposure
to insecticides. Note, however, that any difference between ZAN/
U and Kisumu must be interpreted with caution as their genetic
backgrounds differ by more than just the site of resistance [19].

A significant interaction was observed between diet and age of
exposure in the sensitive Kisumu colony. This is mainly a
reflection of the survival in one treatment: high diet mosquitoes
exposed 15 days after emergence (Figure 1). Without this
treatment survival decreased with decreasing diet level. We
therefore believe that the interaction may be an artefact of
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experimental error or other external interference (e.g. higher
bacterial load due to higher food levels).

Our results confirm the importance of mosquito age in
expression of insecticide resistance. We argue that in order to
compare the level of resistance between different studies or sites,
mosquito age needs to be considered. We additionally show that
the age-related decline in resistance differs between the colonies
and can be affected by larval food availability. Although the effect
of larval diet was not as strong as the effect of age, our results
emphasize that considering environmental variation is important
to understand the expression of insecticide resistance. Such
information would greatly benefit our understanding of evolution
of resistance and could advice strategies for vector control
Initiatives.
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