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Abstract

Since many proteins express their functional activity by interacting with other proteins and forming protein complexes, it is
very useful to identify sets of proteins that form complexes. For that purpose, many prediction methods for protein
complexes from protein-protein interactions have been developed such as MCL, MCODE, RNSC, PCP, RRW, and NWE. These
methods have dealt with only complexes with size of more than three because the methods often are based on some
density of subgraphs. However, heterodimeric protein complexes that consist of two distinct proteins occupy a large part
according to several comprehensive databases of known complexes. In this paper, we propose several feature space
mappings from protein-protein interaction data, in which each interaction is weighted based on reliability. Furthermore, we
make use of prior knowledge on protein domains to develop feature space mappings, domain composition kernel and its
combination kernel with our proposed features. We perform ten-fold cross-validation computational experiments. These
results suggest that our proposed kernel considerably outperforms the naive Bayes-based method, which is the best
existing method for predicting heterodimeric protein complexes.
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Introduction

Protein complexes play crucial roles in a variety of biological

processes, such as ribosomes for protein biosynthesis, molecular

transmission and evolution of interactions between proteins. In

fact, many proteins come to be functional only after they interact

with their specific partners and are assembled into protein

complexes. Hence, much effort has been made for predicting

protein complexes from protein-protein interaction (PPI) networks

[1–6] in bioinformatics. The Markov Cluster (MCL) algorithm [7]

iteratively generates a matrix, called Markov matrix, in which

each row (each column) corresponds to a protein and each element

represents the relationship between two proteins. Then, MCL

extracts clusters from the matrix. This algorithm is efficient also for

large-scale networks because Markov matrices are calculated by

matrix multiplication and exponentiation of its individual

elements. The Molecular Complex Detection (MCODE) algo-

rithm [8] gives a weight to each vertex by using a modified

clustering coefficient, which is defined as edge density in a subset

of neighboring vertices and the originating vertex. Then, it finds

densely connected regions of molecular interaction networks based

on the weighted vertices. The Restricted Neighborhood Search

Clustering (RNSC) algorithm [9] separates the set of vertices into

clusters by searching locally in a randomized fashion based on a

cost function. After that, the clusters will be filtered according to

the cluster size, density and functional homogeneity. The Protein

Complex Prediction (PCP) algorithm [10] finds maximal cliques

within PPI networks modified by using the functional similarity

weight (FS-Weight) based on indirect interactions, and merges

their cliques. These methods are intended for detecting dense

subgraphs in a PPI network. Hence, they cannot find a protein

complex with size two because the density is always 1.0 and the

subgraph (i.e., an edge) itself is a clique even if two proteins that

interact with each other do not form a complex. In addition, it is

considered that any overlap rate of a predicted protein complex to

a small known complex is more likely to be by chance than the

same overlap rate to a larger known complex as pointed out in

[11]. Most prediction methods have been evaluated for protein

complexes with larger size than three excluding complexes with

small sizes.

However, the majority of known protein complexes are

heterodimeric protein complexes. CYC2008 [12], which is a

comprehensive catalogue of 408 manually curated yeast protein

complexes reliably supported by small-scale experiments, includes

172 (42%) heterodimeric protein complexes. Besides, MIPS

protein complex catalog [13], which provides detailed information

involved protein sequences on whole-genome analysis [14–16],

contains 64 (29%) heterodimeric protein complexes excluding

complexes obtained from high-throughput experiments. Hence, it

is necessary to develop another method for predicting smaller

complexes. Qi et al. proposed a method using a supervised

Bayesian classifier [17] that has good performance for predicting

protein complexes of middle sizes. The method still does not work
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well for heterodimeric protein complexes because they used

several features based on graph density and degree statistics. There

are some approaches based on random walks on PPI networks.

The Repeated Random Walks (RRW) method [18] repeatedly

expands a focused cluster of proteins depending on the steady state

probability of random walks with restarts from the cluster whose

proteins are equally weighted. The Node-Weighted Expansion

(NWE) method [19] is an extension of RRW. NWE restarts from

the cluster whose proteins are weighted by the sum of the edge

weights of the physical interactions with neighboring proteins,

where the edge weights are obtained from the WI-PHI database

[1]. Then, Maruyama [11] proposed an approach based on a

naive Bayes classifier using heterogeneous genomic data for

predicting heterodimeric protein complexes with features involved

with protein-protein interaction data, gene expression data, and

gene ontology annotations. This method outperforms other

existing prediction methods, MCL, MCODE, RRW, and NWE,

in F-measure for heterodimers [11] although these methods are

not supervised.

To further improve the prediction accuracy for heterodimeric

protein complexes, we propose a method using C-Support Vector

Classification (C-SVC) with several features based on protein-

protein interaction weights that are considered as reliability of

interactions between proteins. The idea behind the design of

feature space mappings is, for example, that the neighboring

weights of a heterodimeric complex tend to be smaller than the

weight inside of the complex. In addition to features based on

weights, we propose feature space mappings based on the numbers

of protein domains because those are considered to be functional

and structural units in proteins. Furthermore, we propose a

domain composition kernel based on the idea that two proteins

having the same composition of domains as a heterodimeric

protein complex would also form a heterodimer. We perform ten-

fold cross validation, and calculate the average F-measures. The

results suggest that our proposed kernel considerably outperforms

the naive Bayes-based method, which is the best existing method.

Methods

The problem we address in this study is stated as follows: Given

a network of protein-protein interactions, where interactions are

weighted, determine whether or not two interacting distinct

proteins form a protein complex with size exactly two. A network

of protein-protein interactions can be considered as a graph,

where vertices represent proteins and edges represent protein

interactions. Let G(V, E) be an undirected graph with a set V of

vertices and a set E of edges, where the weight of each edge (i,j)[E
is denoted by wij and represents reliability and strength of the

interaction related with the edge. Actually, we use the WI-PHI

database [1] as edge weights, which is derived from heterogeneous

data sources, and was used in previous studies [11,18,19]. In this

section, we propose several features for predicting heterodimeric

protein complexes, a novel kernel matrix based on protein domain

composition, and the combination kernel.

Feature Space Mapping Based on Interaction Weights
We propose simple feature space mappings based on weights of

interactions, which are regarded to be reliabilities and strengths for

protein-protein interactions as shown in Table 1. The basic idea

for designing features is as follows. The reliability of the interaction

in a heterodimeric complex should be high. In addition, the

reliability of the interaction between a protein contained in a

complex and a protein not contained in the complex should be

low. These features are not only applied to C-SVC through linear

kernels but are transformed to other kernel matrices using

extended diffusion and label sequence kernels.

Consider two interacting proteins Pi and Pj corresponding to an

input. Figure 1 shows an example of a subgraph with Pi, Pj, and

their neighboring proteins Pk such that (k,i)[E or (k,j)[E, where

interactions between these proteins are shown as edges. One

feature is the weight wij between proteins Pi and Pj , denoted by

(F1), because the proteins in a heterodimeric protein complex

should interact with each other and the weight wij should be large.

However, even if wij is large, the proteins could be included in a

complex with size larger than two. Hence, we consider the weights

of interactions with the neighboring proteins Pk. Since the

neighboring weights of a heterodimeric complex tend to be smaller

than the weight inside of the complex, we introduce the maximum

of the neighboring weights denoted by (F2) as a feature.

In contrast, if the neighboring weights are larger than the weight

wij , we can estimate that the proteins Pi and Pj would not form a

complex but neighboring proteins and either Pi or Pj would form

some complex. Thus, we introduce the minimum of the

neighboring weights denoted by (F3).

Even if the maximum of the neighboring weights (F2) is large

enough, the proteins Pi and Pj as well as Pi and Pk or Pj and Pk

may form a heterodimeric complex. Consider the case that a

protein Pk interacts with both of Pi and Pj . If two weights wik and

wjk are large, these proteins Pi, Pj and Pk are likely to form a

complex. Besides, if wij is smaller than wik and wjk, Pi, Pk and Pj ,

Pk independently can form a heterodimeric complex. For this

reason, we introduce the maximum of smaller weights denoted by

(F4).

In the discussion so far, we dealt only with the value of weights.

However, differences between weights are also important for

Table 1. Feature space mapping from two interacting
proteins Pi, Pj and neighbors.

(F1) wij

(F2) max max
fkD(i,k)[E,k=jg

wik , max
fkD(j,k)[E,k=ig

wjk

� �

(F3) min min
fkD(i,k)[E,k=jg

wik , min
fkD(j,k)[E,k=ig

wjk

� �

(F4) max
fkD(i,k)[E,(j,k)[Eg

minfwik ,wjkg

(F5) max
fk1 ,k2 D(i,k1)[E,k1=j,(j,k2 )[E,k2=ig

Dwik1
{wjk2

D

(F6) maxf# domains of Pi ,# domains of Pjg

(F7) minf# domains of Pi ,# domains of Pjg

doi:10.1371/journal.pone.0065265.t001

Figure 1. Example of a subgraph with an interacting protein
pair and their neighboring proteins. Pi and Pj denote focusing
interacting proteins shown in the dashed rectangle. Pk is a neighboring
protein. wij denotes the weight of the interaction between Pi and Pj .
doi:10.1371/journal.pone.0065265.g001
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discriminating heterodimeric complexes. Hence, we introduce the

maximum of differences between the neighboring weights denoted

by (F5).

For prediction of complexes, biological knowledge for proteins is

helpful. We use protein domains that are parts of proteins known

as structural and functional units. Ozawa et al. introduced the

domain structural constraint that one domain interacts with at

most one other domain for verifying protein complexes [20]. The

constraint excludes extra proteins from a set of proteins that is a

candidate complex by validating possible interactions between

domains. This means that extra domains cause interactions with

other proteins and the actual number of proteins contained in the

complex may be greater than that in the candidate set of proteins.

Since two proteins with small numbers of domains tend to form a

heterodimeric complex, we introduce the maximum of the

numbers of domains contained in Pi and Pj denoted by (F6). In

contrast, we introduce the minimum of the numbers of domains

contained in Pi and Pj denoted by (F7) because proteins with large

numbers of domains tend to form complexes with large sizes.

Domain Composition Kernel
In the previous section, we introduced several feature space

mappings from an example, that is, a pair of proteins. Kernel

functions can incorporate prior knowledge. If a set of proteins has

the same composition of domains as a known complex, it is highly

expected that the set forms a complex. On the basis of this idea, we

propose domain composition kernel for candidate complexes Ci

and Cj with size n (n~2 in this paper), in which Ci and Cj are

regarded as sets of proteins, fPi1 , � � � ,Ping and fPj1 , � � � ,Pjng,
respectively. Then, we define equivalence ~d between two

proteins Pik and Pjl as Pik consists of the same domains of Pjl ,

where the number of each domain must also be the same between

the proteins. Furthermore, we define equivalence ~c between two

sets of proteins Ci and Cj using ~d by

Ci~cCjuAs[ nVk(Pik
~dPjs(k)

), ð1Þ

where n denotes the symmetric group of degree n on the set

f1, � � � ,ng (s is a permutation of (1, � � � ,n)). For example, in the

case of Ci~fPi1
,Pi2
g and Cj~fPj1

,Pj2
g, Ci~cCj if Pi1

~d Pj1

and Pi2
~dPj2

or Pi1
~dPj2

and Pi2
~d Pj1

, whereas it is not

necessary that Pi1
~dPi2

~dPj1
~dPj2

.

Then, we propose domain composition kernel Kc by

Kc(Ci,Cj)~d(Ci~cCj), ð2Þ

where d(T)~1 if T holds, otherwise 0. It should be noted that our

kernel is different from pairwise kernels for protein pairs proposed

in [21]. Their kernel is defined as Kp(fPi1
,Pi2
g,

fPj1
,Pj2
g)~K ’p(Pi1

,Pj1
)K ’p(Pi2

,Pj2
)zK ’p(Pi1

,Pj2
)K ’p(Pi2

,Pj1
)

for predicting protein-protein interactions, where K ’p(:,:) is called

‘genomic kernel’ and operates on individual genes or proteins. In

the case of Ci~cCj , that is, Kc~1, Kp~2 if

Pi1
~dPi2

~dPj1
~dPj2

, otherwise Kp~1, where

K ’p(Pi,Pj)~d(Pi~d Pj). In addition, their pairwise kernels allow

extra domains in a candidate complex because the domains do not

prevent two proteins to interact with each other.

We can prove that Kc(:,:) is a kernel.

Theorem 1 Kc(:,:) defined by Eq. (2) is a positive semidefinite

kernel.

Proof) We show that the Gram matrix K for a set of candidate

complexes C~fC1, � � � ,Cmg is positive semidefinite. The binary

relation ~c on the candidate set is an equivalence relation because

for all Ci,Cj ,Ck[C, Ci~cCi (reflexivity), if Ci~cCj then Cj~cCi

(symmetry), if Ci~cCj and Cj~cCk then Ci~cCk (transitivity).

Then, the relation ~c partitions C into S1, � � � ,Sl , and we have

for any vector x~(x1, � � � ,xm)T[Rm

xT Kx~
Xm

i~1

Xm

j~1

Kijxixj , ð3Þ

~
Xl

i~1

X
Cj[Si

xj

0
@

1
A

2

§0: ð4Þ

It should be noted that Kij~Kc(Ci,Cj)~1 if Ci and Cj are

classified in the same set, otherwise Kij~0. Consequently, K is

positive semidefinite, and Kc(:,:) is a valid kernel. %.

Figure 2. Illustration of the selection of negative examples
from complexes with size more than two. Complex C1 consists of
four proteins P1, � � � ,P4 , whereas heterodimeric complex C2 consists of
P1 and P4 . Edges represent protein-protein interactions. According to
this figure, four sets of two proteins, fP1,P2g, fP2,P3g, fP2,P4g, and
fP3,P4g are selected as negative examples. The set of two proteins
fP1,P4g is removed from the dataset. Each pair of two proteins
surrounded by a dashed curve corresponds to a negative example.
doi:10.1371/journal.pone.0065265.g002

Figure 3. Result on the average F-measures using four sets of
features and the domain composition kernel with
a~0:0,0:1 � � � ,2:0. C-SVC was employed with regularization parame-
ters, C{~0:5,1:0, Cz=C{~3:5,4:0. As sets of features, (F1–5), (F1–6),
(F1–5,7), and (F1–7) shown in Table 1 were used.
doi:10.1371/journal.pone.0065265.g003
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In addition, for the purpose of predicting whether or not two

interacting proteins form a heterodimeric complex, we combine

some feature space mapping w in Table 1 with the domain

composition kernel by

K(w(Ci),w(Cj))zaKc(Ci,Cj), ð5Þ

where K(:,:) is any kernel for real-valued vectors, and a is a

positive constant. In this paper, we use the linear kernel for K , that

is, K(w(Ci),w(Cj))~Sw(Ci),w(Cj)T.

Computational Experiments

Data and Implementation
To perform computational experiments, we needed protein-

protein interaction data with weights and protein complex data.

We used the WI-PHI database [1] including 49607 protein pairs

except self interactions as weighted protein-protein interaction

data, where the actual file name was ‘pro200600448_3_s.csv’ at

the supporting information web page of http://www.wiley-vch.

de/contents/jc_2120/2007/pro200600448_s.html. The weights

of interactions were calculated as follows. They constructed the

literature-curated physical interaction (LCPH) dataset using

several databases such as BioGRID [2], MINT [3], and BIND

[4], and high-throughput yeast two-hybrid data by Ito [22] and

Uetz [23]. To evaluate high-throughput data, they constructed a

benchmark dataset having interactions supported by two inde-

pendent methods from LCPH-LS, which was a low-throughput

dataset in LCPH, and calculated a log-likelihood score (LLS) to

each dataset except LCPH-LS. For each interaction, the weight

was calculated by multiplying the socioaffinity (SA) indices [15]

and the LLSs from different datasets, where the SA index

measures the log-odds score of the number of times two proteins

are observed to interact to the expected value from their frequency

in the dataset.

To compare our method with the naive Bayes-based method

proposed by Maruyama [11], we prepared the same dataset as in

the paper [11] from CYC2008 protein complex database [12],

which is available at http://wodaklab.org/cyc2008/resources/

CYC2008_complex.tab. In the dataset, a positive example was

restricted to a pair of proteins that is included as a PPI in WI-PHI

and is not a proper subset of any other complex in CYC2008.

Thus, we used 152 heterodimeric protein complexes contained in

CYC2008 as positive examples, and selected 5345 negative

examples from interacting protein pairs in the CYC2008

complexes with size more than two, where positive examples

were excluded. Figure 2 shows an example of complexes C1 and

C2 consisting of four proteins P1, � � � ,P4 and two proteins P1 and

P4, respectively. According to this figure, four sets of two proteins,

fP1,P2g, fP2,P3g, fP2,P4g, and fP3,P4g are selected as negative

examples, where each interaction between two proteins is

confirmed to be included in WI-PHI. The set of two proteins

fP1,P4g is removed from the dataset. Since negative examples

selected in this way are more difficult to be correctly predicted

than randomly selected ones, this dataset is considered to be useful

for the evaluation.

C-Support Vector Classification (C-SVC) for unbalanced
data. Since the numbers of positive and negative examples of

the dataset used in this paper were very unbalanced, we used the

extension of C-Support Vector Classification (C-SVC) described

in [24,25]. The extended C-SVC solves the following optimization

problem given input feature vectors xi and the corresponding

classes yi[fz1,{1g.

min

subject to

1

2
jjwjj2zCz

X
yi~z1

jizC{
X

yi~{1

ji

Vi yi(w
T :xizb)§1{ji

Vi ji§0

where Cz and C{ are regularization parameters for positive and

negative classes, respectively, and in the usual C-SVC, Cz~C{.

We used ‘libsvm’ (version 3.11) [26] as an implementation of C-

SVC for unbalanced data.

Performance measure. To evaluate the performance of our

method, we used precision, recall and F-measure, which are

defined by

precision~
TP

TPzFP
, ð6Þ

Table 2. Result on the average precision, recall, and F-measure using our features and domain composition kernel in the best
average F-measure case for each set of features.

method features a C{ Cz=C{ precision recall F-measure

Our combination kernel F1–5 0.6 0.7 4.0 0.586 0.659 0.620

F1–6 0.7 0.8 3.5 0.566 0.677 0.616

F1–5,7 0.6 0.7 4.0 0.592 0.667 0.627

F1–7 0.5 1.0 4.0 0.618 0.644 0.631

naive Bayes [11] B1, B2:CC – 0.24 0.44 0.31

B1–6 – 0.17 0.65 0.27

MCL [7] – 0.017 0.023 0.020

MCODE [8] – 0 0 –

RRW [18] – 0.030 0.32 0.055

NWE [19] – 0.035 0.33 0.063

As sets of features, (F1–5), (F1–6), (F1–5,7), and (F1–7) shown in Table 1 were used. The results by the naive Bayes-based method [11], MCL [7], MCODE [28], RRW [18],
and NWE [19] are also shown, where the experiments for these methods were performed by [11]. (B1), (B2:CC),, (B6) indicate the features by [11] (shown also in Table 3).
doi:10.1371/journal.pone.0065265.t002
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recall~
TP

TPzFN
, ð7Þ

F-measure~
2:precision|recall

precisionzrecall
, ð8Þ

where TP, FP, and FN denote the numbers of true positive, false

positive, and false negative examples, respectively. Precision means

the rate of correctly predicted positive examples to examples

predicted as positive, and recall means the rate of correctly

predicted positive examples to all positive examples. For evalua-

tion of binary predictors, it is not sufficient to calculate only either

the precision or the recall, and thus we used F-measure of their

harmonic mean.

Results

To evaluate our method, we used several sets of our proposed

features, (F1–5), (F1–6), (F1–5,7), and (F1–7). For example, (F1–5)

Table 3. Feature space mapping from two interacting proteins Pi , Pj in the naive Bayes-based method [11].

(B1)

wij{ max max
fkD(i,k)[E,k=jg

wik , max
fkD(j,k)[E,k=ig

wjk

8<
:

9=
;

(B2:X)

wGO:X
ij { max max

fkD(i,k)[E,k=jg
wGO:X

ik , max
fkD(j,k)[E,k=ig

wGO:X
jk

8<
:

9=
;, where X represents

an ontology among biological process (BP), cellular component (CC) and molecular

function (MF) of Gene Ontology [27], and is also regarded to be the set of the terms;

wGO:X
ij ~{DCX

ij D log
mint[CX

ij
DSt D

maxt[X DSt D

 !
, where CX

ij is the set of all terms in X annotating

both Pi and Pj , and St is the set of proteins annotated by term t.

(B3)

rij{ max max
fkD(i,k)[E,k=jg

rik , max
fkD(j,k)[E,k=ig

rjk

8<
:

9=
;, where rij~

p(i?j)zp(j?i)
2

and

p(i?j) is the stationary probability from Pi to Pj by a random walk with restarts

at Pi (RRW [18]).

(B4)

w
Exp
ij { max max

fkD(i,k)[E,k=jg
w

Exp
ik , max

fkD(j,k)[E,k=ig
w

Exp
jk

8<
:

9=
;, where w

Exp
ij is the Pearson

correlation coefficient between the two genes producing Pi and Pj , respectively, over

some gene expression profiles.

(B5) DfkDwik§wij ,(i,k)[E,k=jgDzDfkDwkj§wij ,(k,j)[E,k=igD

(B6) DfkD(i,k),(k,j)[E,k=i,jgD

doi:10.1371/journal.pone.0065265.t003

Figure 4. Result on the average precision, recall, and F-
measure with varying a~0:0, � � � ,2:0 in the best case using
features (F1–7).
doi:10.1371/journal.pone.0065265.g004

Figure 5. Result on the average precision, recall, and F-
measure with varying C{~0:1, � � � ,2:0 in the best case using
features (F1–7).
doi:10.1371/journal.pone.0065265.g005
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means that we use a feature vector consisting of five values

calculated by (F1), (F2), � � �, (F5) as shown in Table 1. Then, we

calculated the combination kernel with the domain composition

kernel as shown in Eq.(5), and employed C-SVC with varying

mixing parameter a~0:0,0:1, � � � ,2:0 and regularization param-

eters C{~0:1,0:2, � � � ,2:0, Cz=C{~3:0,3:5, � � � ,6:0. For each

case, we performed 10-fold cross-validation using our combination

kernel, and took the average of precision, recall, and F-measure in

the same way as in [11].

Figure 3 shows the results on the average F-measures using four

sets of features, (F1–5), (F1–6), (F1–5,7), (F1–7), and the domain

composition kernel for the cases of a~0:0,0:1 � � � ,2:0,

C{~0:5,1:0, Cz=C{~3:5,4:0 (see Fig. S1 for more cases of

C{~0:1,0:5,1:0,1:5,2:0 and Cz=C{~3:0,3:5, � � � ,6:0). We can

see from these figures that the average F-measures during

0:5ƒaƒ1:0 were about 0:5 to 0:6 and were better than that of

a~0:0 in each case. It means that the domain composition kernel

enhanced the prediction accuracy comparing with only features.

Furthermore, features (F1–7) tended to have better average F-

measures than other sets of features.

Table 2 shows the results on the average precision, recall, and F-

measure using our features and domain composition kernel in the

best average F-measures case for each set of features. It also shows

the results by the naive Bayes-based method [11], which is the best

existing method for heterodimeric complex prediction, MCL [7],

MCODE [8], RRW [18], and NWE [19]. (B1), (B2:CC), …, (B6)

indicate the features used in the naive Bayes-based method (shown

also in Table 3). These existing methods were executed using

default parameters except the option of the minimum size of

predicted complexes, which was set to be two if possible. For sets of

features (F1–5), (F1–6), (F1–5,7), and (F1–7), the average F-

measures in the cases of (a,C{,Cz=C{)~(0:6,0:7,4:0),
(0:7,0:8,3:5), (0:6,0:7,4:0), and (0:5,1:0,4:0) were best, respec-

tively. In particular, the average F-measure for (F1–7) using

(a,C{,Cz=C{)~(0:5,1:0,4:0) was best among all the cases, and

was much better than that by the naive Bayes-based method. We

investigated which feature most contributed to the prediction

accuracy. The discriminant function for SVM with linear kernel

can be represented as f (x)~wTzb. Here we suppose that

elements w1, � � � ,w7 of w are the coefficients of the corresponding

features (F1),(F7), respectively. If each element of x is normalized,

it can be considered that features with the largest absolute value of

wi are effective for the discrimination in the seven features. We

calculated the coefficients and averages of the feature values using

(C{,Cz=C{)~(1:0,4:0) and the dataset with 152 positive and

5345 negative examples. Thus, we had the coefficients w~(0:049,

0:0052, 0:18, {0:063, {0:017, {0:066, 0:32)T , b~{2:40, and

the averages �xx~(27:4, 56:5, 6:7, 33:2, 31:1, 1:8, 1:1)T . Then,

(wi
:�xxi)~(1:35, 0:29, 1:18, {2:09, {0:54, {0:12, 0:35)T , and it

was (F4),(F1),(F3),(F5),(F7),(F2),(F6) in descending order of Dwi
:�xxi D.

We can see that (F4) was most effective, and worked on the

discrimination negatively, whereas (F6) was least effective, in fact,

the decrease of the average F-measure by removal of (F6) from

(F1–7) was small as shown in Table 2. It should be noted that this

result does not necessarily mean that supervised methods such as

the naive Bayes-based method and our proposed method are

always better than unsupervised methods such as MCL and

MCODE because unsupervised methods were evaluated using the

whole PPI data whereas supervised methods were trained and

evaluated via cross validation using a part of PPI data. Therefore,

unsupervised methods may work better in other situations.

Figures 4, 5, and 6 show the results on the average precision,

recall, and F-measure with varying a, C{, and Cz=C{,

respectively, in the case of (a,C{,Cz=C{)~(0:5,1:0,4:0) using

features (F1-7). We can see that in the examined range, the

average F-measures did not largely fluctuated.

In addition, we performed another experiment to validate our

method for the rest PPIs, that is, we used 152 positive and 5345

negative examples as training data, and used the rest, 44110

examples as test data. Then, we obtained the prediction accuracy

of 98.7% (43554/44110) using the combination kernel with (F1–7)

and (a,C{,Cz=C{)~(0:5,1:0,4:0). These results suggest that

our proposed kernel successfully predicted heterodimeric protein

complexes and outperforms the naive Bayes-based method.

Conclusions
We proposed several feature space mappings using weights of

protein-protein interactions for predicting heterodimeric protein

complexes. In addition, we proposed the domain composition

kernel based on the idea that two proteins having the same

composition of domains as a heterodimeric protein complex would

also form a heterodimer, and proved that the domain composition

kernel is actually a kernel function. To validate our proposed

method, we performed ten-fold cross-validation computational

experiments for the combination kernel of the domain composi-

tion kernel with the linear kernel using several sets of features. The

results suggest that our proposed kernel considerably outperforms

the naive Bayes-based method, which is the best existing method,

even in the case using only feature space mappings (F1–5) from

weights of protein-protein interactions, that is, (F6,7) was not used

and the mixing parameter a is 0 although our proposed method is

limited to prediction of heterodimeric protein complexes.

An important contribution in this paper is that we have shown

that heterodimeric protein complexes are able to be successfully

predicted using only information on weights of protein-protein

interactions. Furthermore, we indicated that the use of protein

domain information enhances the prediction accuracy.

There is some possibility to further improve the prediction

accuracy. For instance, we can develop some kernels on protein

domains using protein amino acid sequences and multiple

sequence alignments. In addition, we can add new features based

on other biological knowledge.

We used the C-SVC classifier, which is a variant of support

vector machines, because the numbers of positive and negative

examples were not balanced. It is interesting future work to

Figure 6. Result on the average precision, recall, and F-
measure with varying Cz=C{~3:0, � � � ,6:0 in the best case
using features (F1–7).
doi:10.1371/journal.pone.0065265.g006
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develop more robust methods against unbalanced data for

classifying heterodimeric protein complexes.

Supporting Information

Figure S1 Result on the average F-measures using four
sets of features and the domain composition kernel with
a~0:0,0:1 � � � ,2:0. C-SVC was employed with regularization

parameters, C{~0:1,0:5,1:0,1:5,2:0, Cz=C{~3:0,3:5, � � � ,
6:0. As sets of features, (F1–5), (F1–6), (F1–5,7), and (F1–7) shown in

Table 1 were used.
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Figure S2 Result on the average F-measures using four
sets of features and the domain composition kernel
represented by Eq. (S1) with b~0:0,0:1 � � � ,1:0. C-SVC was
employed with regularization parameters, C{~0:5,1:0,

Cz=C{~3:5,4:0. As sets of features, (F1–5), (F1–6), (F1–5,7), and

(F1–7) were used.

(EPS)

Table S1 Result on the average precision, recall, and F-
measure using our combination kernel represented by
Eq. (S1) in the best average F-measure case for each set
of features. As sets of features, (F1–5), (F1–6), (F1–5,7), and (F1–

7) were used.
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Text S1 Results on our kernel by another combination.
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