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Abstract
Global warming is likely leading to species’ distributional shifts, resulting in changes in local

community compositions and diversity patterns. In this study, we applied species distribu-

tion models to evaluate the potential impacts of temperature increase on ant communities in

Korean temperate forests, by testing hypotheses that 1) the risk of extinction of forest ant

species would increase over time, and 2) the changes in species distribution ranges could

drive upward movements of ant communities and further alter patterns of species richness.

We sampled ant communities at 335 evenly distributed sites across South Korea and mod-

elled the future distribution range for each species using generalized additive models. To

account for spatial autocorrelation, autocovariate regressions were conducted prior to gen-

eralized additive models. Among 29 common ant species, 12 species were estimated to

shrink their suitable geographic areas, whereas five species would benefit from future global

warming. Species richness was highest at low altitudes in the current period, and it was pro-

jected to be highest at the mid-altitudes in the 2080s, resulting in an upward movement

of 4.9 m yr−1. This altered the altitudinal pattern of species richness from a monotonic-

decrease curve (common in temperate regions) to a bell-shaped curve (common in tropical

regions). Overall, ant communities in temperate forests are vulnerable to the on-going

global warming and their altitudinal movements are similar to other faunal communities.

Introduction
Global warming has produced clear fingerprints on biosphere [1–4]. To cope with warming
effects, the poleward and upward shifts in species’ distributional ranges have been increasingly
observed across a wide range of taxonomic groups, e.g., plants, insects, birds, and benthic
invertebrates [1, 5–9]. The range shifts caused by global warming would radically shape the
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compositions of biotic communities and local diversity, as well as the functions and services of
local ecosystems [3]. For example, it is expected that global warming will decrease the fitness of
tropical insects but increase that of temperate insects [10]. However, the changes in fitness in
temperate regions vary greatly among species due to their differences in ecological, physiologi-
cal, and evolutionary characteristics.

Ants are ideal organisms for testing or predicting the impacts of global warming on bio-
sphere because they are dominant insects in most terrestrial ecosystems worldwide [11]. As
keystone organisms, ant communities are closely related to other insects, plants, microorgan-
isms, and soil, and the changes in ant community compositions are likely to cause great cascade
impacts on terrestrial ecosystems [11]. Several studies have projected the effects of global
warming on ant species, e.g., distribution of invasive ant species such as Linepithema humile
[12], upward movement of Aphaenogaster species [13], global patterns of ant species richness
[14], and ant foraging activities and community metrics [15]. However, up to date, no study
has investigated the climate-induced risk of extinctions and upward movements of ant species
incorporating the whole surveyed communities.

Although both precipitation and temperature are important climatic factors determining
species distribution patterns, temperature has been used primarily to evaluate the effects of
global warming on organisms [3, 7, 16] because precipitation varies in time and space and its
prediction is more difficult compared with temperature. For example, in North America an
upward shift of ants was not related with the change in precipitation but significantly related
with the rise in temperature [13], and similarly the distribution of ants in South Korea was
mainly determined by temperature because other climatic factors are relatively homogeneous
in this region [17].

As temperature rises, ants may move upwards in mountain forests but the projected
responses of ant species vary along the altitudinal gradient. In our previous study, we examined
the response of individual ant species to temperature increase at the 2060s, where the abun-
dance of 11 species was expected to decrease, whereas five species were expected to increase
[17]. In this study, we developed species distribution models to further evaluate the potential
impacts of temperature increase on the risk of extinctions and upward movements of ant spe-
cies in the context of community and particularly aimed to test the following hypotheses: 1)
the risk of extinction of forest ant species would increase over time, and 2) the changes in ant
species distribution ranges could drive upward movements of ant species and further alter the
patterns of species richness.

Methods and Materials

Ethical statement
No permits were required to access sampling sites and to conduct field work. However field
sampling was supervised by Korea Forest Research Institute (Seoul, Republic of Korea). The
field studies did not involve endangered or protected species.

Field survey
Ants were surveyed at 335 sampling sites in the undisturbed forests or bush lands (mountain
tops) with limited anthropogenic disturbance on a nationwide scale in South Korea (Fig 1).
The sampling sites were composed of trees> 30 years with well-developed understory vegeta-
tion. Among the 335 sampling sites, 195 were located in deciduous forests, 129 were in conifer-
ous forests, one was in a mixed forest, and the remaining ten were in bush lands (mountain
tops).
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Ants were collected with pitfall traps consisting of a plastic cup (depth: 6.3 cm; diameter: 9.5
cm) with polyethylene glycol as a preservative. The pitfall traps were placed along a transect
line and each trap was 5 m apart. In total, ten pitfall traps were installed at each sampling site
for ten days from mid-May to mid-September (i.e., active period for ant foraging in South
Korea) over 2007–2009. Diversity and species composition of ground foraging ants are not dif-
ferent among sampling times [18]. All ant specimens were sorted from debris in the laboratory,
preserved in 80% ethanol, and deposited in the Forest Ecology Laboratory of the National Insti-
tute of Forest Science of Korea.

The specimens were identified to species level based on Kwon et al. [19], except Lasius
japonicus and L. alienus, which were the most common and abundant species in the genus
Lasius. These two species were treated as a species group (Lasius spp. [japonicus + alienus])

Fig 1. Distribution of the sampling sites and the digital elevation patterns.

doi:10.1371/journal.pone.0159795.g001
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because the intermediate forms of these two species were found frequently. Fifty-seven ant
species were collected, and 29 of the most common species (>5% occurrence frequency)
were selected to evaluate the potential impacts of temperature increase on ant communities
(S1 Table).

Temperature data
Temperature data at each sampling site was extracted from digital climate maps produced by
the Korea Meteorological Administration (KMA) and National Center for Agrometeorology.
The output of the global climate model (ECHO-G) was downscaled using the Mesoscale
Model 5 to produce a resolution of 27 km regional climate change scenario (http://ccs.kma.go.
kr). The results of regional climate model were further downscaled statistically to generate the
Applied Climate Data in Korea (30 m resolution) for the agricultural studies [20–22]. In the
regional downscaling procedure, interpolated climatic variables were obtained from a com-
prehensive mapping project, including 76 national permanent weather stations and 432 auto-
matic weather systems [22, 23]. Korea Forest Research Institute verified these climatic models
including mean annual precipitation, temperature, and solar radiation with commercial cli-
matic devices [23–25]. Although several emission scenarios were considered in this climatic
database, data with A1B emission scenario (720 ppm atmospheric CO2 in the 2100s) was
selected in our study because it is defined as not relying too heavily on one particular energy
source, but on the assumption that similar improvement rates apply to all energy supply and
end-use technologies [16].

The average decadal air temperature was not available in the KMA database, we therefore
selected the decadal (2000s–2080s) minimum and maximum air temperature data (resolu-
tion: 30 × 30 m) to calculate the average decadal air temperature using the Geographic Infor-
mation System program (ArcGIS 9.3, ESRI). For a given sampling site, the average decadal air
temperature was calculated as follows [16]: 1) the sampling site was located in a grid (30 × 30
m), and this grid together with its connected eight surrounding grids formed a nine-cell coe-
nobium; 2) the average maximum and minimum decadal air temperatures in these nine grids
were then calculated based on the arithmetic average; and 3) the average decadal air tempera-
ture was finally calculated as the arithmetic average of the maximum and minimum decadal
air temperatures. The predicted average temperature increases were 0.5°C, 1.2°C, 2.4°C,
and 3.5°C by the 2020s, 2040s, 2060s, and 2080s, relative to the baseline period of the 2000s,
respectively.

Risk rates for forest ants
Two steps were taken to evaluate the risk rates for forest ants in our study. First, a weighted
averaging regression model (WARM) was used to quantify the optimal and tolerance tempera-
tures. The optimal temperature for each species was calculated as the mean air temperature
weighted by the abundance of this taxon at all sampling sites according to eq 1 [26]:

WA ¼

Xn

i¼1

xi � yij

Xn

i¼1

yij

ð1Þ

whereWA is the weighted average (estimate of species optima), xi is the air temperature at site
i, and yij is the abundance of species j at site i.
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The tolerance temperature was calculated as the weighted standard deviation of taxon abun-
dance at all sampling sites according to eq 2 [26]:

TOL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðxi �WAÞ2 � yij

Xn

i¼1

yij

vuuuuuut ð2Þ

where TOL is the tolerance to air temperature for species j.
WARM was developed using C2 program ver. 1.6.7 [27]. The explanation power (R2) of air

temperature to the community variations was used to evaluate the accuracy of WARM. Errors
associated with model inferences were estimated by bootstrapping with 1000 cycles. The
WARMmodel explained two-thirds regression variations using the bootstrapping approach
(R2 = 0.66, average bias = 0.01, root-mean-square error = 1.52), the WARM results therefore
could be used. To show the altitudinal range of the common ant species, the optimal and toler-
ance altitudes for each species were calculated following the same approach as air temperature.

Second, species’maximum air temperature tolerances were calculated as the sum of optimal
and tolerance values. If this value was smaller than the lowest air temperature evaluated with
the A1B scenario in the study area, the species was defined as at risk due to the absence of the
suitable thermal habitats. The percentage of risk rate for each future decade (2020s, 2040s,
2060s, and 2080s) was calculated as the proportion of number of risk state species to the total
number of species recorded at the sampling sites. The lowest air temperature for each decade
was arbitrarily defined as the first percentile of the temperature in the lateral buffer zones (i.e.,
100 m adjacent to the sampling site). We analyzed the relationship between altitude and the
risk of species extinction in the 2080s for four different groups 1) all species, 2) species with
more than 1% of occurrence frequency, 3) species with more than 5% of occurrence frequency,
and 4) species with more than 10% of occurrence frequency using logistic regressions. Addi-
tionally, the risk rates for forest ant communities in six altitude groups (�200, 200–400, 400–
600, 600–800, 800–1000, and> 1000 m) were quantified using the above methods. The num-
ber of sampling sites in each altitude group was 157, 77, 27, 25, 21, and 28, respectively.

Generalized additive model and autocovariate regression
Differed from our previous study [17], where polynomial regression models were used to pre-
dict the changes in abundance of ant species, our present study employed one of the most
widely used species distribution models (SDMs), the generalized additive model (GAM), to
predict future suitable geographic areas for each species based on the current species distribu-
tion patterns and temperature conditions in the current and future decades. GAM quantifies
the relationship between independent variables and species abundance (continuous variable)
based on known locations, and the results are used to estimate species distributions by compar-
ing different independent variable layers. Nine independent variables indicating annual,
winter, and summer meteorological condition (annual maximum, annual average, annual min-
imum, January maximum, January average, January minimum, July maximum, July average,
and July minimum air temperature) were selected as input abiotic variables for GAMs.
Although high correlations were detected between each pair-wised abiotic variables, we still
choose all nine variables in the model because 1) considerably low predictive power was
observed when we selected any one of nine variables to calibrate GAM; and 2) the effects of
temperature variables on ant species are complicated and inconsistent, and only one or several
temperature variables may fail to explain a large variation of ant species. GAM additionally

Effects of Global Warming on Ant Communities

PLOS ONE | DOI:10.1371/journal.pone.0159795 August 9, 2016 5 / 14



uses a non-parametric smooth function to improve the predictive efficiency, as shown in eq 3
[28]:

gðmÞ ¼ aþ
Xn

i¼1

fiðxiÞ ð3Þ

where g(μ) is the response (i.e., predicted presence/absence of a given species), fi is the smooth
function, xi is the explanatory variable (i.e., temperature), n is the number of explanatory vari-
ables, and α is residual error.

A cross-validation approach was used to assess the predictive accuracy of individual GAM.
First, the entire dataset was partitioned into a training set (70%) and testing set (30%). Second,
models were calibrated using the training set and validated using the testing set. The goodness
of fit of GAM was estimated based on the following indicators: a) area under the curve (AUC)
statistics from threshold-independent receiver operating characteristic plots; and b) sensitivity
and specificity, indicating the true positive rate (i.e., presence) and true negative rate (i.e.,
absence) are correctly projected [29, 30]. AUC ranges from 0.5 to 1, where 0.5 represents no
discrimination and 1 represents perfect discrimination. Model predictive accuracy is acceptable
when AUC> = 0.7 [31]. Sensitivity and specificity range from 0 to 1, where 0 represents bad
prediction and 1 represents perfect prediction. The GAMs were performed using the statistical
package “gam” [32] in R (http://cran.r-project.org).

Prior to GAMs, spatial autocorrelation test was conducted. The results showed a clear spa-
tial autocorrelation among sampling sites using abundance data (Moran's I test, P< 0.0001).
To account for the effect of spatial autocorrelation, autocovariate regression (AR) was
employed [33, 34]. The generated eigenvectors from AR were then incorporated as additional
predictors in GAM. The corrected spatial model using both AR and GAM was then used to
predict the future distributions of individual ant species.

Results
Relationships between altitude and risk of extinction of common ant species (> 5% occur-
rence frequency) were significantly positive (S1 Fig). Similar patterns were observed with
those of all species and species with > 1% occurrence frequency, whereas no clear trends were
observed with that of species with > 10% occurrence frequency (S1 Fig). The optimal altitude
and air temperature for the selected species were 114–1080 m and 7.0–12.9°C, respectively (S2
Table). The indicators of predictive accuracy of GAMs ranged between 0.70 and 0.99 (aver-
age = 0.85), between 0.52 and 0.97 (average = 0.62), and between 0.59 and 1.00 (average = 0.84)
for AUC, sensitivity, and specificity, respectively (S3 Table), indicating that the calibrated
GAMs were reliable with relatively high goodness of fit. Among the 29 common species, 12
species were expected to decrease in the suitable geographic areas (decreased species), whereas
five species were predicted to increase (increased species) (S2 Table). The remaining 12 spe-
cies were predicted to have no significant changes in their suitable geographic areas (stable
species). Overall, the group of decreased species was generally from high altitude ranges, e.g.,
north region (Fig 2).

A loss of biodiversity was projected in the 2040s and increased gradually until the 2080s,
suggesting that the high altitude areas may have higher biodiversity loss than that in low alti-
tude areas (Fig 3). The highland areas (i.e.,> 1000 m) were expected to face the highest biodi-
versity loss by the 2080s of approximately 61.5%, whereas biodiversity in lowland areas (<400
m) was not seriously affected. Overall biodiversity loss across all altitudinal gradients by the
2080s was approximately 7.6%.
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The location of the highest species richness was expected to continuously upward move
from 263 m (the 2000s) to 656 m (the 2080s), representing an upward movement of 4.9 m yr−1

(Fig 4). The regression curves between the predicted species richness and altitude changed
from a monotonic decrease response curve in the 2000s to a bell-shaped response curve in the
future decades (Fig 4).

Discussion
In this study, we estimated the future risk of extinction and upward movement of Korean ant
species in response to the A1B emission scenario. Our projection suggests that ant species in
temperate forests are vulnerable to global warming, and more ant species are expected to move
to higher elevations. Due to these upward movements, ant species diversity is expected to
increase in richness at high altitudes and decrease at low altitudes, and we determined that the
altitudinal pattern of ant richness will likely switch gradually from a low altitude to a mid-alti-
tude peak, and was prevalent in tropical regions. As keystone species, the upward movement of
ant communities may lead to a mismatch of interactions (e.g., between phenology and food-
web) among ants and plants as well as other insects.

Risk of extinction
The projected responses of ant species to global warming may continue in the Korean Penin-
sula and the continuous increase in the risk of extinction observed covered all altitudinal gradi-
ents (confirming the first hypothesis). Cold-adapted ants are expected to eventually become
extinct in South Korea because these currently mountain-dwelling species do not have alterna-
tive habitat to move up [35]. The abrupt decline inMyrmica species due to global warming in
highland regions may severely affect competitive ant species (e.g., Aphaenogaster japonica),
ground beetles, aphids, butterflies, and soil arthropods, leading to cascade effects on plants,
birds, rats, snails, fungi, and mushrooms as well as other organisms in the Korean highlands
[36, 37]. Overall, our projection is regionally applicable to ant fauna in East Asia, including

Fig 2. Maps of number of ant species expected to decrease (red) and increase (green) by the 2080s in
Korea.

doi:10.1371/journal.pone.0159795.g002
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North Korea, mid to northern Japan, and eastern to northeastern China, since these neighbor-
ing regions have ant faunas similar to those found in South Korea [38, 39].

Compared with ambient acclimated ants, forest ants generally have a higher physiological
temperature tolerance, suggesting they might not be affected by warming. Particularly in tem-
perate regions, insects are expected to be at low risk to global warming [40], with their pre-
dicted diversity predicted to increase in response to future global warming trends [10].
However, our observations indicated that there was a high risk of extinction for ant species.
Specifically, we predicted that one-third of ant species will decrease in abundance in their
distributional range even with leading to local extinction events such as those observed in dom-
inant species in found in highland regions, such asMyrmica kurokii and Stenamma owstoni
[17]. The projection in the abundance of 85 species of Korean spiders demonstrated that 80%
(68 of 85 species) may decrease in abundance and distribution in the future [41]. Projections
determined for aquatic insects also show similar patterns [16]. The cold-adapted species in the
Korean Peninsula might have migrated from the northern region, whereas the warm-adapted
species could have originated farther south [42], leading to in the peninsula effect on species

Fig 3. Temporal patterns of common ant species at risk of extinction across the altitude gradient.

doi:10.1371/journal.pone.0159795.g003
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Fig 4. Projected richness of ant species in the (a) 2000s, (b) 2020s, (c) 2040s, (d) 2060s, (e) 2080s, and (f) the patterns of predicted curves.
Arrow indicates the highest predicted species richness in each decade. Arrow sequence from left to right: 2000s, 2020s, 2040s, 2060s, and 2080s.

doi:10.1371/journal.pone.0159795.g004
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diversity, characterized by an increase in richness along a latitudinal gradient. Due to this pen-
insular topographical effect, numerous cold-adapted species tend to decrease in abundance
since they have lower thermal requirements compared to warm-adapted species [16]. However,
it may be difficult for recently warm-adapted species to migrate and occupy vacant habitats on
the Korean Peninsula due to geographical barriers, such as the sea. This may in turn cause
insect fauna on the peninsula to become more vulnerable to global warming compared to the
species that inhabit non-peninsular landmasses. For example, the risk of aquatic insect species
extinction in two major catchments in the Korean Peninsula was expected to be 50.4%–54.6%
by the end of this century [7].

Shifts in species distribution
Ant community composition in the temperate forests in Korea were predicted to change rap-
idly. However, the expected responses among ant species were different according to the ther-
mal origins of the species. The warm-adapted species acclimated to high optimal temperatures
may increase in abundance in suitable geographic areas; whereas the cold-adapted species
acclimated to low optimal temperatures may decrease in abundance. In the present study,
nearly one-third of the Korean ant species surveyed are expected to decrease in abundance in
suitable geographic areas in response to global warming, whereas one-fifth is expected to
increase. This is in line with our previous study [17], in which we found that more species were
expected to decrease in number rather than increase.

The distribution of the 29 ant species is predicted to shift upwards by 4.9 m yr−1 from the
2000s to the 2080s (confirming the second hypothesis), which was similar to what was found
in butterflies in Europe [8]. The range shift in suitable geographic areas revealed that the high-
est species richness was projected to be at the low-altitudes in the 2000s and at the mid-alti-
tudes in the 2080s. Previous studies have revealed that species richness peaks at mid-altitudes
(where it is bell-shaped) in the tropics in a worldwide survey of leaf litter ant diversity, whereas
it decreases continuously with altitude (monotonic decrease) in temperate regions [43, 44]. For
example, Fisher [45] reported that ant richness peaks at a mid-elevations of approximately 800
m in four mountains in tropical Madagascar, whereas Sanders et al. [46] found that ant species
richness is negatively related to temperature in deciduous forests along an altitudinal gradient
in the temperate regions of the Great Smoky Mountains. Similarly, ant richness monotonically
decreased along an altitude gradient in 12 high mountains in South Korea with the highest
richness at approximately 160 m [44].

Interestingly, the cold-adapted ant species displayed the highest richness at mid-elevations
[44]. Species richness of cold-water adapted organisms such as stoneflies and caddisflies were
predicted to decrease monotonically as a function of altitude in Korean streams, whereas that
of warm-water adapted organisms, such as dragonflies, was projected to increase [16]. Altitu-
dinal diversity patterns may be determined by the thermal origins of the relevant species
with the following patterns: the dominance of warm-adapted species leads to a monotonic-
decrease, a balance between warm-adapted species and cold-adapted species leads to a bell-
shaped pattern, and finally the dominance of cold-adapted species leads to a monotonic-
increase [44]. These results indicate that an increase in warm-adapted species and a decrease
of cold-adapted species may lead to a clear monotonic-decreasing pattern in the future. How-
ever, our projection revealed an altered distribution in species richness from a monotonic-
decrease (in the 2000s) to a bell-shaped pattern (2060s–2080s) due to global warming, con-
firming the second hypothesis. This change might be caused by an upward shift in lowland
(warm-adapted) species and a decrease in highland (cold-adapted) species across mid to high
altitudes. To a certain extent, ant diversity in South Korea therefore is likely to change from a
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temperate pattern (characterized by a low-elevation peak) to a tropical pattern (with a mid-
elevation peak) during the 2060s.

Limitations of the study
Similar to most studies implementing SDMs, our study has some limitations springing from
various sources, including the uncertainty of the previously determined models [47, 48]. First,
SDM is a statistical-correlative forecast approach. An assumption of SDM is that species can
move to all potentially suitable areas without limitations; however, in reality, a species may not
occur at a suitable location because of the potential threats or challenges (e.g., dispersal barriers
and habitat fragmentation) [49]. Concerning the uncertainty in the forecasting of species distri-
bution, Buisson et al. [47] revealed that SDMs contribute to the highest variation expected in
the projections. Through utilizing SDMs, Hof et al. [50] reported that the ratio of observed to
predicted range size of European odonates ranged between 0.6 and 0.9, inferring that the
uncertainty (i.e., 1 –predictive accuracy) of SDMs ranged from approximately 10% to 40%. In
our case, our model uncertainty ranged between 0.15 (the mean of AUC) and 0.38 (the mean
of sensitivity). We, therefore, deduced that the overestimation of ant species potential distribu-
tion areas is approximately 10%–40%.

Second, the simulated climate data also have uncertainty due to climate models. The uncer-
tainty of the climate models originates from the input values of greenhouse gasses and also
depends on how these models are weighted [48]. Although the climate models used in this
study have been verified in several areas in Korea [23–25], uncertainty still exists, which is
likely to influence the output of the SDMs implemented.

Third, the modeled risk of extinction for ant species may also be overestimated due to spe-
cies’ ecological and evolutionary adaptations to environmental changes [49]. For example, for-
est ant species have much higher physiological temperature tolerance than other fauna, which
may mitigate the effects of global warming on ant species.

Fourth, climate change may impact the physiology of organisms as well as their habitats. In
this study, we focused only on physiological aspects affecting species distribution, while due to
a lack of data, other potentially important aspects, such as local habitats (e.g., vegetation and
soil types) and interactions were not accounted for in our species distribution model [49].
When we consider a change of habitat and other possible factors, the results of the model
might be influenced. For example, it has been reported that recent forest canopy closure in
northern-hemisphere temperate forests has buffered the impact of global warming on plant
communities, which delays changes in community composition [51]. In future studies, it is,
therefore, necessary to simultaneously assess the impacts of projected climate change on the
habitats and, in turn, the changes in habitat influencing species distribution. Despite these
potential limitations, our results are comparable with other studies, and provide a first glance
at the possible response of ant species to future global warming.

In response to global warming, species can shift their distribution ranges to move to favor-
able habitats [1, 16, 52], or might persist in their original habitats invoking genetic strategies
such as phenotypic plasticity or rapid evolutionary adaptation [53, 54]. Ant species can
quickly adapt to environmental change, and in particular, they can avoid extremely low or
high temperatures through physiological and/or behavioral adaption. For example, most
ground foraging ant species overwinter in deep soils. In addition to temperature control,
length of foraging time might be another important factor constraining species distribution.
However, we did not consider the ability of species to adapt to global warming in the present
study, and our results could be altered if the ability of each species to adapt is implemented in
the model. Therefore, follow-up studies on the response of the entire community to global
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warming are required and should incorporate the ability of individual species to adapt to their
environment.
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