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Abstract

Inferring the demographic history of species is one of the greatest challenges in populations genetics. This history is often
represented as a history of size changes, ignoring population structure. Alternatively, when structure is assumed, it is defined
a priori as a population tree and not inferred. Here we propose a framework based on the IICR (Inverse Instantaneous
Coalescence Rate). The IICR can be estimated for a single diploid individual using the PSMC method of Li and Durbin
(2011). For an isolated panmictic population, the IICR matches the population size history, and this is how the PSMC
outputs are generally interpreted. However, it is increasingly acknowledged that the IICR is a function of the demographic
model and sampling scheme with limited connection to population size changes. Our method fits observed IICR curves of
diploid individuals with IICR curves obtained under piecewise stationary symmetrical island models. In our models we
assume a fixed number of time periods during which gene flow is constant, but gene flow is allowed to change between time
periods. We infer the number of islands, their sizes, the periods at which connectivity changes and the corresponding rates of
connectivity. Validation with simulated data showed that the method can accurately recover most of the scenario parameters.
Our application to a set of five human PSMCs yielded demographic histories that are in agreement with previous studies
using similar methods and with recent research suggesting ancient human structure. They are in contrast with the view of
human evolution consisting of one ancestral population branching into three large continental and panmictic populations
with varying degrees of connectivity and no population structure within each continent.

Introduction Goldstein and Chikhi, 2002, Hey and Machado, 2003,

Johri et al., 2020, Li and Durbin, 2011). It is an important

Reconstructing the demographic history of populations
from the analysis of genomic data is one of the greatest
challenges of population geneticists (Beaumont, 2004,

Associate editor: Giorgio Bertorelle

Supplementary information The online version contains
supplementary material available at https://doi.org/10.1038/s41437-
021-00426-9.

< Armando Arredondo
arredond @insa-toulouse.fr

< Lounegs Chikhi
lounes.chikhi @univ-tlse3.fr

' Université de Toulouse, Institut National des Sciences Appliquées,

Institut de Mathématiques de Toulouse, Toulouse, France

2 Institut de Mathématiques de Toulouse; UMRS5219. Université de

Toulouse, Toulouse, France

SPRINGER NATURE

and challenging statistical problem, but it is also central to
our understanding of the evolutionary history of species.
Indeed, the demographic history that we assume or infer
for a particular population or species implicitly or expli-
citly provides the null model against which selected loci
could in theory be identified (Beaumont and Nichols,
1996, Cavalli-Sforza, 1966, Goldstein and Chikhi, 2002,
Johri et al., 2020). In a period of global environmental
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change, the reconstructed demographic history should allow
evolutionary biologists to correlate changes in population
size or connectivity with past environmental changes or
species association and interactions (Goossens et al., 2006,
Hecht et al., 2018, 2020, Mona et al., 2014, Quéméré et al.,
2012, Salmona et al., 2017).

In other words, by addressing these challenges we expect
to increase our understanding of the environmental
(including species interactions) and anthropogenic factors
that have influenced genomic diversity in various species.
Also, understanding how past climatic events or human
activities have influenced genomic diversity today may
become particularly illuminating for conservation biologists
regarding the likely long-term consequences of ongoing
climate change and human actions (Poelstra et al., 2021).

However, to understand how the past influenced the pre-
sent patterns of genomic diversity one major question is
whether our conclusions or inferences may fundamentally
change depending on the family of models assumed and the
questions asked (Beaumont, 2004, Chikhi et al., 2018, 2010,
Mazet et al., 2016, Pouyet et al., 2018, Rodriguez et al.,
2018, Wakeley, 1999). Currently, the solutions to this com-
plex inferential problem have been to assume that differ-
entiation between geographic locations can be neglected and
local panmixia assumed, and then infer population size
changes (Li and Durbin, 2011, Liu and Fu, 2015). Alter-
natively, other studies have assumed simplified tree models
with a priori fixed numbers of populations (i.e., the popula-
tion trees are not inferred). Additionally, in the case of human
evolutionary history, the branches of the assumed tree may
represent predefined continental populations. Such models
thus assume panmixia over large geographic regions and
long periods (Gutenkunst et al., 2009, Noskova et al., 2019).
Panmictic and tree models are useful approximations, and in
the last decades they have proven their utility in building
stories of human expansions and population splits (Guten-
kunst et al., 2009, Li and Durbin, 2011). However, the
meaning of such stories is questionable (Mazet et al., 2016,
Scerri et al., 2019, Wakeley, 1999). Also, most tree models
assume the existence of clear splitting events similar to those
separating species, and some tree models assume, as in most
species trees, that there is no gene flow between branches
(even when they represent populations or continents). The
latter assumption may then require the inference of admixture
events (e.g., Kuhlwilm et al., 2016).

Methods can also be classified by the type of data used.
Currently, most genomic methods use the allele frequency
spectrum (AFS) (Excoffier et al., 2013, Gutenkunst et al.,
2009, Liu and Fu, 2015) or the AFS combined with other
summary statistics (Boitard et al., 2016). The AFS can be
computed from RAD-Seq data for many non-model species
(Poelstra et al., 2021) or from full genome sequences for a
still limited number of species (Lapierre et al., 2017). We

stress though that this research field is very active and new
methods are regularly proposed that go beyond the simpli-
fied classifications proposed here. For instance, recent
methods allow to infer complex demographic histories from
full genomes (Steinriicken et al., 2019, Wang et al., 2020).

Here, we propose to use a different strategy based on the
IICR (Inverse Instantaneous Coalescence Rate) introduced
by Mazet et al. (2016). We propose to perform demo-
graphic inference under the piecewise stationary n-island
model (Rodriguez et al., 2018), based on the symmetrical
n-island model (Wright, 1931), using the IICR or estimates
obtained from sequence data. The IICR, as defined by
Mazet et al. (2016) for a sample of size two, is equivalent
to the full distribution of coalescence times for that sample
(i.e., the distribution of 73). Simulations by Chikhi et al.
(2018) and Rodriguez et al. (2018) under various models of
population structure suggest that the IICR is sensitive to
population structure or fluctuations in migration rates (i.e.,
changes in connectivity).

The approach presented in the present study differs from
the approaches mentioned above in several ways. First, we
aim at inferring the number of populations rather than
setting it a priori. Second, we ask whether it is possible to
date and quantify changes in connectivity (i.e., gene flow)
rather than changes in population size. For that, we use the
piecewise stationary n-island model in which continuous
gene flow happens between populations at a constant rate
during specific periods (called components) but is allowed
to change between periods (see below and Rodriguez et al.
(2018)). This model differs from tree models in that we do
not estimate parameters such as splitting times which may
or may not be meaningful or appropriate for various spe-
cies (Scerri et al., 2019) depending on their actual
(unknown) demographic history. We acknowledge the
limitations of the n-island model as it ignores spatial dis-
tances and other complexities of real species (Chikhi et al.,
2018), but our choice for the current study is also guided
by simplicity and computational considerations. We focus
on changing patterns of connectivity since they may have
been crucial in the recent evolutionary history of many
species (Fenderson et al., 2020, Goldstein and Chikhi,
2002, Mazet et al., 2016, Quéméré et al., 2012, Salmona
et al., 2017, Scerri et al., 2018, Steinriicken et al., 2019),
particularly in the context of Pleistocene climate change
and habitat fragmentation. Also, it is important to clarify
whether the IICR contains useful information for parameter
estimation and model choice (Mazet et al., 2016). The
work presented here may thus represent an interesting
endeavor, particularly given that there is an increasing
recognition of ancient human structure by researchers of
different fields (Scerri et al., 2019, 2018).

The inferential method is implemented in a program called
SNIF (Structured Non-stationary Inferential Framework).

SPRINGER NATURE
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We validated the method with data simulated under piece-
wise stationary n-island models and inferred connectivity
graphs which are a visual representation of the times at
which gene flow changed and of the magnitude of these
changes. We then applied SNIF to human genomic data
using five published PSMC curves (Prado-Martinez et al.,
2013), allowing in each case the number of components to
vary between analyses, and compared the inferred histories
and connectivity graphs between individuals and with pre-
viously inferred scenarios by Rodriguez et al. (2018) and
Noskova et al. (2019).

Beyond human data we find that a crucial issue is the
estimation of the IICR from genomic data. Indeed, the
stochasticity generated during the estimation of the IICR in
very ancient times, and possibly recent times, with humps
that are difficult to interpret, may lead to the inference of
events that may never have taken place.

Methods

To use the IICR as a summary of genomic information we
first assume that an IICR curve can be obtained, which we
will use as the farget for demographic inference. With
simulated data (sequences or T, values) this target curve can
be obtained under any predefined coalescent model that
could be expressed with a simulation tool (e.g., the ms
program (Hudson, 2002)). With real genome-wide sequence
data, the curve can be estimated with the PSMC method of
Li and Durbin (2011). We then try to identify a piecewise
stationary n-island model that generates an IICR that is
identical or similar to the target [ICR (or PSMC curve). The
similarity between the two IICR curves is quantified with a
distance metric defined below. We use a genetic algorithm
to explore the parameter space (number of populations,
migration rate within a time component, and timing of these
changes assuming a fixed number of components for each
independent analysis) and minimize that distance. We
compute the IICR under the non-stationary structured coa-
lescent (NSSC) of Rodriguez et al. (2018).

The structured coalescent and the IICR

The theoretical framework we use for modeling structure is
based on the finite Herbots’s model of the structured coa-
lescent (Herbots, 1994), which is a backwards-in-time view
of the gene genealogies. We have n populations or demes
that are assumed to behave as haploid Wright—Fisher
models of size N; = 2s;N genes, where s; is the relative deme
size and N is large. Migration occurs between demes as in
each generation a proportion ¢;; of lineages migrates from
deme i to deme j. Herbots denoted by m; the proportion of
the population of deme i that was received from other
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demes in any given generation, such that m;=Y.;g;s/s;.
She also showed that measuring time in units of 2N gen-
erations and making N go to infinity in such a way that the
number of migrants stays bounded, the model converges to
a continuous-time Markov process. It is possible to con-
struct a transition rate matrix Q that provides a good
approximation of the gene genealogies of the discrete time
model. In this transformation, g;; goes to zero in such a way
that the product 2Ngjsi/s; converges and has limit M;/2.
Thus we can express the transition rates in Q in terms
of n, 5;, and Mj;. In the case of the symmetrical island model
(Wright, 1931), all the migration rates M; between any
pair of islands i and j are equal, so we use the notation M =
(n — DMj; to denote the migration rate received by any
given island. In addition to this base model, we use an
extension, the NSSC, presented in Rodriguez et al. (2018)
which allows to introduce demographic events that change
the rate M or relative deme size s at certain points in time
(see section “The piecewise stationary n-island coales-
cent”’). We note however that throughout the manuscript we
will only focus on symmetrical models with constant size
(see section “Discussion” for extensions to symmetrical
models with population size changes).

For the demographic histories under these models, we
study the IICR of a sample of size 2 (see section S1.1 of the
Supplementary Materials), and we use it as a statistic for
demographic inference. We do this by comparing the IICR
of many hypothetical demographic scenarios to a target
IICR curve. This target IICR may be simulated, or it may be
obtained from diploid individuals via full genome studies
(Prado-Martinez et al., 2013). In such cases, these target
IICRs are themselves inferred demographies under the
assumptions of a particular model. For example, the PSMC
method (Li and Durbin, 2011) uses the population size
change model, where a single panmictic population varies
in size according to a function N(7) = N(0)A(?) (see Tavaré
(2004)). It was shown by Mazet et al. (2016) that the IICR
of a sample of size 2 under this model is exactly the A(¥)
relative size changing function, and it relates to the dis-
tribution of the time to coalescence T, as:

P(T2>l) = €xp ‘/\6%7 (l)
ICR(r) = A®r) =112

T ()

The IICR is not tied to any particular model, structured
or otherwise. It is defined using the distribution of the
coalescent times of a sample of size two. It can be
approximated to arbitrary numerical precision under the
assumptions of the NSSC (Rodriguez et al., 2018); it can
also be computed empirically by simulating a sample of
coalescent times (Chikhi et al., 2018); or it can be read from
full sequence genomic data using the appropriate methods
(e.g., Li and Durbin (2011)).
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The piecewise stationary n-island coalescent
The parameter space

We first define the parameter space, as this directly determines
the family of demographic histories that we can explore and
infer from. The piecewise stationarity refers to the fact that,
although migration rate is constant and identical between any
pair of islands, this rate may be different between consecutive
time periods (components), and there is a fixed number y that
represents the number of demographic events. To say that
there are y > 0 changes of gene flow thus means that there are
c=y+ 1 components or periods of constant gene flow.
Likewise, the deme size, which is the same for all islands, may
in theory change through time in the general model presented
in Rodriguez et al. (2018). In the present study we focus on
models with constant population size but we present a more
general model where deme sizes can change between com-
ponents. In this more general case, the parameter space
includes the number of islands 7, the times #; for the demo-
graphic events, and the values of both the migration rate M;
and the local deme size s; at each new demographic period.
Note that # is inferred but it does not change through time. We
thus assume no extinction, no population split, and no creation
of new populations.

Given a fixed integer y of demographic events to con-
sider (y = 0) and a collection of bounds B in the form of:

B= ([nmin; nmax}v [tl min; f1 max} cee [tymin§ tymaxL

[MO min; M() max] .. [My min» My max]a [SO min; S0 max] cee [xy min; Sy max]) 5

(2)
we define the parameter space @, g as:

3y+3 N
b, 5= {(p = t1...t,,My... M,,50... 5,) € N X R7™ s.t.Vi:
2K nin SRS Mmax; O0<limin 1 < limax;

0<M i min S M; < M;max; O<Simin<si<simax}~

(3)

We define bounds for each variable because we use a
constrained optimization algorithm, for which all para-
meters must be bounded (see section “Optimization frame-
work: search algorithm and optimality criteria”). Also, since
we focus on the case where there are no deme size changes,
we enforce this by using B, as making s;min = Simax = 1 for
all 0 < i<y effectively fixes all deme sizes to 1, and reduces
the number of parameters to 2y + 2.

Computing and scaling the IICR
Given any demographic scenario from ®, p, the associated

coalescent process is an instance of the NSSC of Rodriguez
et al. (2018). Our main object of interest regarding these

scenarios is the IICR. In the Supplementary Materials we
provide a brief overview of how to perform its computation
for any given ¢ € ®,p based on the work of Rodriguez
et al. (2018).

The computation of the IICR uses functions that receive
the time ¢ in units of 2N generations, and return values in
units of N generations per coalescence, so these IICR
functions are dimensionless in the sense that they operate in
a relative frame of reference.

In order to compare the IICR with PSMC inferences, we
need to re-scale both the time and the IICR values by a
reference deme of size N which specifies how many haploid
genes correspond to a local deme size of 1 as follows:

SIICR(g) = N - IICR(g/2N):;

where SIICR(g) refers to the scaled IICR, and IICR(?) to the
unscaled (dimensionless) one. Note that we use g for
generations as the variable name for sIICR to further stress
the difference. The parameter space for the sIICR can be
thought of as a simple one-dimensional addition to @, p:

b,5=1{@=(N,p) € R x ¢, 5 such that 0<Npyin <N < Nua }-

In section S1.2 of the Supplementary Materials, we
present the piecewise-continuous version of this parameter
space for both the scaled and unscaled IICRs, as well as the
relationship between them.

Optimization framework: search algorithm and
optimality criteria

The search algorithm explores the parameter space and uses an
optimality criterion to select the structured scenario that best
explains a given target IICR curve, either scaled or unscaled.
We also assume that the underlying coalescence times for these
target IICRs have cumulative distribution F{, and density f;.

Given a target IICRy and a parameter space ®, 5, we
want to find a parameter tuple ¢ in ®, p such that the exact
IICR curve corresponding to the model defined by ¢
(denoted by IICR,) approximates IICR,. We thus want to
find the minimal distance:

min d(IICR,IICR,). (4)

PED, 5

Regarding the distance d, a straightforward definition
would be:

d(IICR,, IICR,,) = / [TICR(#) — TICR,, ()| w(1)dt,
0
(5)

where w(?) is a weight function that should take into account
the natural distribution of the information in an IICR.

SPRINGER NATURE
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One reasonable solution for w is to take a quantity
proportional to the density fy of the coalescence times
because it ensures that the integral in (5) is finite, and also
because it assigns more weight to the temporal periods where
the target [ICR is expected to be more accurate and reliable
since more coalescences are likely to have happened.

We thus consider the family of weight functions:

0
O =

where || - ||, is the L'-norm and w >0 is a weight-shifting
parameter, with the purpose of dampening (if w<1) or
exaggerating (if @ > 1) the effect of the weight fj. Unless
otherwise noted, we take w =1, which corresponds in
practice to giving more weight to recent periods of the IICR
in direct proportion to the density f; in an n-island model.

In practice, we need to consider that all we know about
IICR, is a stepwise discretization over a bounded interval of
time, so a numerical approximation of the distance (5) is
required. This includes approximating the density f;, of the
underlying 75 distribution. Given a division of time into 7
intervals {[z;_1;7;)} for 1<j<Z, where 70=0 and
77 < 00, we can consider a discrete representation of IICR,
in the form of a collection of Z values {y;} such that:

(6)

HCR()(I) =Y vt € [ijl;Tj), 1<j< 7. (7)

We can use this form to compute a numerical
approximation for the integral in (5). For instance, a first
degree approximation would yield:

z
= Z’y] - HCR(/,(TJ)‘ W(Tj;l) (Tj - Tj,1)4

j=1

d(IICRy, TICR,,)

As for the values of w(z)), notice that from (1) we have the
identity:

1olt) = exp( [ i ) MeRalo)

which, using the representation (7), can be discretized into:
f() (O) = l/y()a
J
folo) = exp( L5421 < T
k=1

We then have that for any given @, w(z;) can be expressed
as:

8} 7j /Z fw
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An alternative option for the definition of d in (4) could
be one that takes into account the ultimate visual nature of
the curve fitting task. Assuming that the points {z;} are log-
distributed and that they will be used for visualization
purposes in a horizontally log-scaled plot like Fig. S37, then
the definition:

T
d(IICR,, TICR,,) = Y "|y; — TICR,(1;), (8)
=1

captures the perceived visual difference between the plots of the
two curves. We distinguish distance (5) from (8) by denoting
them d, and d. respectively. We keep both definitions
because we found that the weighted family of distances
generally performs better than the visual distance under certain
validation tests, but also that the d.;,, distance can be used to
choose the optimal weight parameter in d,, (see Fig. S46).
Regarding the optimization problem (4) itself, we use the
Differential Evolution method (Storn and Price, 1997). As a
genetic meta-heuristics, this algorithm maintains and evolves
(using mutation and recombination parameters) a population
of solutions iteratively. As a global optimization algorithm,
it features mechanisms for escaping local optima of the
parameter space. In section S2.3 of the Supplementary
Materials, we explore the potential effects on the inference
results of tuning some of the parameters provided by this
algorithms implementation. For our validations, the method
runs by using multiple steps of optimization which we refer
to as rounds. In addition, we stress that the method should
be used multiple times on real data sets. We set a maximum
number of allowed rounds, as well as a tolerance ¢ for the
distance which controls the minimum number of rounds.

Validation framework

We applied the SNIF inferential method to target IICRs
generated under piecewise stationary n-island models of
increasing complexity (i.e., number of components) and with
known parameter values (N, n, t;,, M;) and then compared the
inferred parameter values to those actually used (see Fig. 1).
In what follows we present various ways of generating
random demographic scenarios and then computing
appropriate IICR curves from them for use in validation.

Sampling the parameter space

Given a parameter space @, g (we only discuss the unscaled
case here for brevity, but the same principles apply to a
scaled parameter space), we sample demographic scenarios
from which we compute the corresponding IICRs. We used
two sampling strategies which we call continuous and dis-
crete sampling.
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Continuous sampling Assuming that we want to realize L
independent tests, this sampling strategy consists in using
uniform or log-uniform distributions for each of the 3y + 3
random variables:

nn~ U{nmin;nmin +1,.. 7nmax}a
t1 ~ LUo[t1 min; fimax)s -+ 5y ~ LU0ty mini ty max],
M() ~ U[MOmin;M()max]a aM}' ~ U[M;/min;M}'max]v

S0 ~ U[SOmin§sOmax]7 cee Sy Y U[Symin§Mymax]a

©)

where U denotes a uniform distribution (discrete in the case
of n and continuous for the rest) and LU,y denotes a log-
uniform distribution of base 10. This distribution is used for
sampling the times of changes in a logarithmic space in
order to take into account the natural distribution of
information in an IICR.

After sorting the times f;, we can define the L sampled
scenarios by constructing, for 1<j<L, the tuple
(nj,ﬂ tJ;,MJ(')... M{,,s{)... s{,) This sampling strategy
makes it very unlikely to sample exactly the same parameter
values twice or to sample exactly the same M; values in two
consecutive components. However, it sometimes produces
demographic scenarios in which consecutive ¢; and/or M;
values may be close to each other, and thus difficult to
distinguish. This makes it thus harder on our inferential
framework compared to cases where we would choose
contrasted scenarios with clearly separated events with
major changes in migration rates. In other words, our
inferential method was sometimes inferring parameters in
the case of extremely difficult scenarios as we show below.

In section “Validation” we show the results obtained using
this sampling method with L = 400 scenarios. The bounds for
sampling and inferring are shown in Table S1. In particular,
we note that in practice we disallow deme size changes by
fixing the bounds of the s; to 1, which consequently reduces
the parameter space to just 2y 4 2 parameters.

Discrete sampling Here we sampled L = 100 independent
scenarios from the same parameter space, but using the
following set of predefined values:

nen=1{25,10,15,20},
tet=1{1/10,1/2,1,2,5,10,20,50} Vi,
M:eM={1/10,1/5,1/2,1,2,5,10,20,50} Vi,
s;es={1} Vi

The inference process was, however, done within the
continuous space. For instance, under this validation
scheme (see section “Validation using T-sim IICRs”) we
only simulated data with 2, 5, 10, 15, 20 islands but the

inference process always allowed n to take any value
between 2 and 50. The choice of the L independent
simulated data sets was done using the following procedure.
We first considered the following cartesian product of
dimension 2y + 2:

K=nxt xM" x{1}.

and then uniformly drew L tuples from K without
replacement. We then sorted the sampled event times
obtaining thus a set of L demographic scenarios. We drew
randomly (without replacement) from the set K, rejecting
scenarios with identical M; values in two consecutive
components, until we reached L accepted scenarios.

The three types of target IICRs

We explored three different types of target IICRs (see
Fig. S3) that could be obtained given a scenario ¢ € ®, .
All IICRs were discretized so as to be comparable to PSMC
plots (see eq. (7)).

Validating SNIF on PSMC plots across the parameter
space described above would be extremely time consuming
as it would require simulating genomes and then running
the PSMC method (or other related methods) on these
genomes before applying our approach. We thus only ran
the PSMC method in the case of the scenarios inferred for
the human data so as to integrate the uncertainty due to the
PSMC inferential process. The issue of uncertainty is cru-
cial but our aim is not to test the PSMC or other inferential
methods. To clarify this we explain below the different
types of IICR that could be computed given a scenario ¢ €
®, 5 (see also Fig. 1).

Exact IICR We can compute the IICR for any n-island
model at any time value #, but to generate input data we
need a discretization as in (7), so considering that we take a
log-distributed sample of size I in the interval [fiin, fmax], W
end up with a suitable IICR,. Note that even though this
IICR has been discretized, its values are exact within
machine precision, so it is still an artificial product com-
pared to real data.

For the validations using the exact IICR in section
“Validation using exact target IICRs” we chose for the
distance tolerance between a target and an inferred IICR a
value of £ = 10~'° for the unscaled IICRs and an equivalent
value of & = 10~ for the scaled IICR (since the simulated N
was always 1000). It should be noted that this value of ¢ is
quite small even for double-precision floating-point arith-
metic, and thus is only a reasonable choice for validation
using exact IICRs (i.e., those where the distance could
theoretically be zero).

SPRINGER NATURE
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Fig. 1 Flowchart of the validation procedures. Starting from a
parameter space (i),,g we use one of two sampling methods (section
“Sampling the parameter space”) to generate a demographic history ¢
defined (for the scaled case) by the parameters (N, n, t;, M;). We then
compute the IICR of that demographic history using one of three
methods (section “The three types of target [ICRs”) to obtain the target

T-sim IICR The T-sim IICR is obtained by simulating a
finite collection of 7, realizations using ms and then
building an empirical IICR as in Mazet et al. (2016), using
the Kaplan—Meier estimator (Kaplan and Meier, 1958), with
log-distributed times. We stress that ms scales time in units
of 4N generations whereas our models use a scale of 2N
generations (see the example in Fig. S3), so this must be
kept in mind when writing ms commands.

Seg-sim IICR  We simulate genomic sequences with ms and
then apply the PSMC method for obtaining the IICR to be
used by the inference method. Since simulating genomes
and performing PSMC analyses is significantly more time
consuming than the other two methods, we limited our-
selves to validating the Seq-sim IICR for the human PSMC
based scenarios that we obtain after performing the demo-
graphic inference described in section “Application to
humans”. The results of this step are shown in section S5.1
of the Supplementary Materials.

Application to humans

We applied our method to the human genomes published
in the great apes study by Prado-Martinez et al. (2013).
Namely, we used the PSMC files of five sampled humans
identified as Dai, French, Karitiana, Sardinian, and Yor-
uba (see Fig. S37). For each human PSMC curve we
performed demographic inference independently within
the following bounds:

ne{2,3,..,100};

€[4 x10%4x10°] Vi
M; € [1/20,20] Vi; (10)
si=1 Vi

N € [10%,10%.
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IICR. After that, we run the inference algorithm on this target IICR
curve (using wider bounds than those in B) to obtain an estimated (or
inferred) demographic history @, = (N°,n° ¢, M?), which we then
compare to the known ¢ in order to assess the accuracy of the infer-
ence methodology (section “Results”).

The bounds for the #; are specified in generations, so
given a generation time of 25 years, we effectively allowed
for the inference of demographic events between 10 thou-
sand and 10 million years ago. Regarding the number of
components, we choose ¢ € {2,3,4,5}; i.e., between one
and four demographic events in agreement with Mazet et al.
(2016) who suggested that a minimum of three events were
necessary to explain the two humps, and in agreement with
our validation simulations which suggest that inference
above five components is difficult.

Some of the analyzed PSMC curves exhibit an increase
in effective size in the recent past, which could be due to a
genuine population growth as noted by Mazet et al. (2016).
Given that we choose to specifically rule out changes in
deme sizes, we account for this fact by running every
inference a second time, ignoring this period of possible
recent expansion. This is accomplished using an option that
allows to limit the interval where the distance function is
computed. In this case, we restricted both this range and the
bounds for the ¢; to be between 50 thousand and 10 million
years ago, thus ignoring any population size change that
may have happened in the last 50,000 years. Note that this
option is also useful to ignore very ancient sections of the
PSMC plots which may be difficult to trust.

Since real human PSMCs are unlikely to have been
generated by an n-island model, the default value of @ used
for simulated data may not be the most appropriate, and we
thus performed inferences with we {1, 0.5, 0.2}.
Decreasing values of @ give increasing weight to the most
ancient part of the PSMC (see the weighted distances (6)).
The resulting inferred demographic scenarios are shown in
section “Application to humans”.

To validate the inference process using PSMC outputs,
we generated 10 Seq-sim IICRs corresponding to the
inferred demographic scenarios for the French, Karitiana,
and Yoruba individuals. We exclude the Dai and Sardinian
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populations from this analysis because their corresponding
inferred histories are similar to the other three (see Figs. S40
through S46). For each one of the selected scenarios we
simulated nreps =30 chromosomes of length L=10®
base pairs, using the effective size N inferred by SNIF, a
per-base per-generation mutation rate of u=1.25x 1078
(see (Scally and Durbin, 2012) and references therein).
We kept for consistency the scaled recombination rate of
p=20/5 as in Li and Durbin (2011), and we ran the ms
command with § = 4uLN using:

ms 2nreps-tf@-r L-p8-I...

where the rest of the command follows according to the
inferred demography (see Fig. S3 for a reference). After that
we prepared a .psmcfa file as input for PSMC, always
choosing a bin size of s = 100. Then we ran the PSMC with
the command:

psmc -N25 -t15 -r5 —p "44+25%2+446" ...

following Li and Durbin (2011) on human data. We then
scaled the resulting curve using the information in the
generated .psmc file and used these PSMC curves as targets
to determine whether we could indeed infer the parameters
used for such complex scenarios.

We also applied SNIF to genomic data simulated under
the scenarios used to describe recent human evolutionary
history by Gutenkunst et al. (2009) and Noskova et al.
(2019). Here, we thus ask the following two questions: if
human evolution were indeed closer to such splitting
models, would our method infer again an n-island model
with similar parameters to those inferred from the humans
PSMCs? additionally, do these models generate IICR
plots that are similar to the human PSMCs? The results of
these validations are shown in section S5.1 of the Sup-
plementary Materials.

Results

In this section we show the results of validating SNIF using
target IICRs from known demographic histories; the
application of the method to real human data; and the
comparison of the obtained results with previously pub-
lished demographic histories for humans.

The results of the validations are presented in Figs. 2—4
in the main manuscript and Figs. S6-S36 in the Supple-
mentary Materials. Another set of figures (Figs. 5-8 and
Figs. S40-S46) present the results of the application to
human data.

Validation using exact target IICRs

A first set of figures (Fig. 2, Figs. S6-S11 and S13-S18)
represents the simulated and inferred parameter values on
the horizontal and vertical axes, respectively, using the
continuous sampling strategy. As explained in section
“Sampling the parameter space”, the range of possible
values in the inference process was always wider than the
range used for the simulated values (see Table S1 for the
exact values). We quantified the inference error for each
parameter by computing the Normalized Root-Mean-Square
Deviation (nRMSD). This value is displayed in the lower-
right corner of each panel of the previously mentioned
figures, and summarized for all parameters in Fig. S20. For
reference, we also highlight the y = x line, indicating what
would be a perfect inference, and the region corresponding
to 10% of relative error around this line (50% of relative
error in the case of the #; parameters). A summary of how
many tests fall within this margin of error (and others) is
displayed in Figs. S12 and S19. Altogether, these figures
always show the data points near the y=x, hence sug-
gesting that the inferred parameter was identical or very
close to the simulated parameters. This is particularly
obvious for all the parameters corresponding to scenarios
with up to four components, where the nRMSD values
stayed below 0.5 (the case of the f; parameters is excep-
tional, since the exponential distribution of its range dis-
proportionately affects the error measures). For instance,
Fig. 2a shows the results for a model with three compo-
nents, in which there is a nearly perfect match (nRMSD
close to or below 0.1 for the non-¢ parameters) between the
simulated and inferred values for the model parameters. For
five- and six-component scenarios the results are still nearly
perfect for most of the simulated scenarios but we observe
an increasing number of cases (i.e., simulated scenarios)
where the parameters are poorly estimated, with the
exception of n, M, (and N for scenarios with scaled IICRs)
which are almost always well estimated also in such cases
(nRMSD values consistently close to or below 0.1). In
particular, we can appreciate a gradual degradation of the
correspondence between simulated and inferred migration
values when the number of components ¢ increases, as the
nRMSD monotonically increases to over 0.5 for c¢=6.
These cases can be identified by the dots scattered in the
different panels. They start to appear in scenarios with
three components, but their number grows with the number
of components.

These poorly estimated parameters are surprising given
the near perfect estimation obtained for most parameter
combinations. This is particularly striking because these
dots do not seem to be distributed in any clear area of the
parameter space. We see at least two possible and non-
exclusive interpretations for this result. One is that the
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Fig. 2 Scatter plots of simulated and inferred parameters. a Cor-
responds to scenarios with ¢ =3 components, and b to scenarios with
¢ =6 components. The different sub-panels represent the simulated

search algorithm had not yet converged when the maximum
number of rounds was reached.

The maximum number of rounds was set to 500 in all
simulations because we had found that less than 50 rounds
were more than enough in the first tests carried out with
one or two components. The search algorithm might
however need more than 500 rounds to reach the optimal
solution for scenarios of increasing complexity. We thus
asked whether the maximum the number of rounds had
been reached in the scenarios analysed and whether the
proportion of scenarios with 500 rounds increased with the
number of components. We found indeed that the pro-
portion of simulations for which that maximum was
reached increased with the number of components. For
instance, all five- and six-component scenarios stopped
their parameter search at 500 rounds, hence suggesting that
at least some had not yet reached an optimum solution. For
the cases with one- and two-component scenarios, all 800
independent simulations reached convergence in less than
150 rounds (see Fig. S4). Again, the choice of the tolerance
€ plays a role in these results, and selecting larger toler-
ances will tend to produce earlier convergence in general,
but not necessarily better results.

As a test we randomly identified a couple of scenarios
with six components that had bad estimates and re-ran the
algorithm with 5000 rounds. We found that the distance
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(horizontal axis) versus inferred (vertical axis) parameter values for all
the parameters (or a representative selection of parameters in the case
of b) of L =400 unscaled simulated scenarios.

value consistently decreases with more rounds (see Fig. S5),
but the inferred parameter values may not converge to the
simulated ones because with more components there is a
higher probability that two consecutive simulated M; values
are very close, thus making the corresponding time of the
event challenging to infer.

The second possible reason for the poorly estimated
parameters in Fig. 2 may be related to the fact that some
simulated components may have a short duration that do not
leave a significant mark on the IICR curve, thus leading
them to be “skipped”. We refer to this issue as component
misidentification or misassignment, which could lead to a
particular estimated parameter to be plotted in the wrong
panel. For instance, the method may miss the first change in
migration rate at #; and identify the second change in
migration at #,. In such a case the method will assign the
inferred #, value to the set of inferred ¢, values and plot it in
the #; panel. This wrongly assigned 7, value will thus appear
away from the diagonal in the #; panel even if it was well-
estimated. Such misassignment cases for one parameter will
also have consequences for the M; plots, and thus will
generate several misassignments across panels. They are
also expected to increase in frequency as the number of
components increases and as the #; values become closer to
each other. This phenomenon can be observed clearly in the
right panels of Fig. 3. We also present an attempt at
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Fig. 3 Connectivity graphs of
100 independently inferred

(a)

histories obtained by sampling
for each scenario from the
values indicated by the dotted
lines. a Scenarios with ¢ =3
components. b Scenarios with

¢ =4 components. The right
sub-panels show a side
histogram with only the inferred
migration rates for those
components with a specific
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quantifying it for the case of ¢ =5 in Fig. S21. One way to
mitigate the effect of this misassignment issue in the ana-
lysis of the results is to visualize the simulated and inferred
scenarios using what we call a connectivity graph. This
connectivity graph represents the times at which migration
changes against the values of the migration rates. Such
connectivity graphs are featured in the next section.

Validation using T-sim IICRs

The connectivity graphs and IICR plots obtained from
simulated 7, values show that again the scenarios are gen-
erally very well reconstructed (Fig. 3 and Figs. S22-S36).

In Fig. 3 the connectivity graphs obtained for all the
scenarios simulated with three and four components show
that the inferred times at which migration rates changed
(green vertical lines) and the inferred migration rates (green
horizontal lines) are generally overlapping close to the
simulated values (dotted vertical and horizontal gray lines).
In the right panels of this figure, we show a subset of the
inferred migration histogram (in red). Namely, we show the
distributions of the migration values that were inferred for
components with a simulated migration value of M; = 10 for
panel (a) and M; =1 for panel (b). This allows us to better
appreciate the variance of the inferred migration values in
the context of the simulated ones, as well as the component
misassignment effect mentioned earlier. Indeed, we note

T
102 103 10*
Time in generations

10° 102 108 104 10°
Time in generations

here that the incorrectly inferred migration values are
clustered around other simulated values, indicating a mis-
match in a particular component assignment which does not
affect the rest of the inferred demographic history (we
present a quantification of this effect for a particular case
in Fig. S21).

For example, consider the right sub-panel of (a). We see
that most repetitions correctly inferred a value close to M =
10 for the components with that simulated migration rate.
However, there were cases where a given component i was
simulated with a migration rate of M;= 10, but it was
missed entirely (maybe because it did not generate a very
different IICR or because it had a short duration), and thus
the inferred migration value for component i ultimately
reflected either M; ;| or M;,,. In panel (b) we can observe
the same effect with higher intensity because with more
components it is more likely for them to be misassigned or
misidentified during inference. See Fig. S21 for a quantifi-
cation of this effect on scenarios of ¢ =5 components.

These connectivity graphs (and the one obtained for five
components shown in Fig. S34) also show that there are
regions of the parameter space where the green lines are
more widely distributed. For instance, in the recent past of
Fig. 3b (1;< 107> generations) when the simulated M; value
was 0.1 or 0.2 the inferred values seem to vary between
0.05 and 0.3, suggesting that the method identifies periods
with low migration rates but that the exact value is difficult
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to estimate properly, at least in the recent times. These
graphs however summarize extremely different scenarios,
including scenarios in which consecutive M; values may be
similar. We thus stress that the quality of the inference is
dependent on the timing of the changes in migration rates
and on the size of the change in M; values.

Figure 4 shows the results for four different scenarios.
In each of the four panels, we represented the inferred and
target IICR plots, connectivity graphs, N (the size of each
the islands) and n (the number of islands) for the corre-
sponding model. Panels (a) and (b) correspond to three-
and four-component scenarios, whereas panels (c) and (d)
show the results for two five-component scenarios, one for
which we obtained very good estimates and one for which
the estimates were poorer. In panels (b) and (c) the
inferred and simulated M; and ¢; values are on top of each
other as can be seen in the connectivity graphs. Similarly,
N and n are also well estimated. Here, the IICR plots also
overlap, although this does not always guarantee perfect
parameter estimation, as is the case in panels (a) and (d).
Interestingly, in panel (a) the first change in migration
rate (at #{ =200 generations) is estimated at around 900
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generations due to the stochasticity of the IICR plot. This
appears to generate some variance in the estimates of N
and n but the connectivity graph shows the same trend
(increasing connectivity) as in the simulations. In the case
of panel (d) we can see that the method had some diffi-
culty in estimating several of the changes in M; values.
This is not surprising as some of the randomly simulated
changes do not seem to lead to major changes in the IICR
curves. This generates again some variance in the N and n
estimates. We also observe a significant variance in the
connectivity graph even if several runs overlap nearly
perfectly with the simulated connectivity graph.
Altogether the validation tests and figures above suggest
that our framework is able to infer changes in connectivity
under the n-island model, and that some scenarios can be
extremely well inferred whereas others may be more diffi-
cult depending on their effect on the IICR plots. We also
observe that for real data it may be helpful to run the ana-
lyses for a varying number of rounds, since too few rounds
may negatively affect the quality of the fit. Also, once a
scenario has been inferred, it is advisable, as an additional
validation step, to simulate data under the inferred scenario
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Fig. 5 Results of performing demographic inference on the French
PSMC curve. a Shows the IICR plot inferred for ¢ =5 components
and a weight parameter of w = 0.2. The vertical lines represent the
inferred times of the demographic events. b Shows the connectivity
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graph for the same inferred scenario. As a reference point, the con-
nectivity graph of the scenario proposed in Rodriguez et al. (2018) is
also shown. The vertical axis in b represent migration rates (M).

Fig. 6 Results of performing

demographic inference on the
human PSMC curves. a Shows
the inferred number of islands »
and b the inferred reference sizes
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and use SNIF to re-infer the parameters. This is what we do
with the real human data in the next section.

Application to humans

Figures 5 and 6 show the results of using SNIF on the
human data.

In Fig. 5, panel (a) shows the PSMC curve of the
French individual (scaled with a mutation rate of u =
1.25x 107% and a generation time of 25 years) together
with the best fitting IICR for the model with ¢ =5 and
@ = 0.2. Panel (b) shows the connectivity graphs of the
same inferred demographic scenario. We note that the
connectivity pattern consisting of a period of relatively
high connectivity between roughly 500 kya and 2 Mya
agrees with previous results published in Rodriguez et al.
(2018). Note that this study used a mutation rate of u =
2.5x107% and not 1.25x107% as we do here and as
originally stated. The absolute timing of events and
deme sizes are thus different (see corrections in
Rodriguez et al., 2021).

1,000 -1

2,000

1,000 -

French KaritianaSardinian Yoruba

The full set of results related to the inference of human
demographies can be found in Figs. S40-S46, which were
placed in the Supplementary Materials for the sake of
brevity. The most striking feature of this extended set of
plots is the sensitivity of the fit to the value of the weight-
shifting parameter . Smaller values allow the optimizer to
distribute more of the demographic events towards the
ancient past and thus allows this region to be better fitted by
the inferred IICR. This functionality (together with being
able to ignore certain parts of the plots for the computation
of the distance function) can be used to make explicit the
knowledge (or beliefs) of the researcher regarding the
accuracy of the PSMC curve. We notice that the Yoruba
individual cannot be well fitted in the recent past for any
value of w, even outside of the designated period of recent
population expansion.

Figure 6 shows in panel (a) the number of demes »n and in
panel (b) the reference size N that were inferred from each of
the five fitted human PSMCs. Of note here is that all indi-
viduals except the Yoruba show a consistent value for these
inferred parameters across both number of components and
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Fig. 7 Application of our inference method to a tree-like human
demographic scenario with three modern populations. a IICR plots
showing the resulting IICR curve of the European population under
this model and the inferred IICR curve obtained with our method
(where the recent period of human expansion was ignored) for ¢ =5
components and a weight parameter of w =0.25. For reference

Fig. 8 Application of our
inference method to a
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purposes, we also show the real PSMC curve of the French individual.
The gray vertical lines indicate the inferred event times in the C3PO
model, and the colored vertical lines the inferred event times by SNIF.
b Connectivity graph of the inferred scenario. For reference, we show
the inferred event times in the C3PO model as gray vertical lines.
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value of w. The larger variance of the estimated values for
the Yoruba individual suggests that a symmetrical island
model may not be enough to explain the patterns of diversity
in all five sampled human IICRs.

Figures 7 and 8, and S38 show the results of applying our
method to the IICR curves associated with the demographic
model for human expansion published by Noskova et al.
(2019), which we will refer to as the Classical 3-Populations
model—C3PO for short. The C3PO model is a tree-like
model with three modern populations that exchange gene
flow asymmetrically. It is based on the model of Gutenkunst
et al. (2009) and has the same structure but with a higher
likelihood and thus can be seen as an improved model with
a better fit to the data. The model stipulates the existence of
an ancestral population that experienced an increase in size
around 275 thousand years ago (Kya), and then a splitting
event at about 150 Kya. This split resulted in two popula-
tions that exchanged gene flow asymmetrically: a large one
that eventually became the modern African population, and
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a smaller one ancestral to the modern Eurasian population,
whatever this terminology may mean. This ancestral lineage
split about 22 Kya into the precursors of the European and
Asian populations, which at this point began an exponential
increase in size that continued to present day. During this
period, all three lineages continued to exchange gene flow
asymmetrically. The times for these resize and splitting
events are represented as dotted vertical gray lines in Fig. 7.

It is clear that the nature of this model does not lend itself
to be exactly modeled by a symmetrical n-island model, but
the piecewise stationarity of our family of models should
still be able to pick up the main demographic events. For
example, from an n-island perspective, a merger or joining
of two populations (going backwards in time) may be
represented by an increase in gene flow, although this effect
may be confounded by the actual changes in both the sizes
of the populations and migration rates taking place during
these events. Also of note is the fact that the first merger
event is not visible to our method because it marks the start
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of the recent population expansion and is thus excluded
from the distance computation.

As can be seen in panel (a) of Fig. 7, these IICRs do not
exhibit any major features past the 300 Kya mark, so they do
not agree with the human PSMCs of Fig. S37 (of which the
representative ones are again shown in Fig. 7 in dashed trace
for reference), and they also do not generate significant events
in the inferred demographic histories. Particularly, varying the
value of the weight-shifting parameter @ did not make a great
effect in this set of inferences (which is in contrast with the
results shown in Fig. 5). This inferred demographic history
can be roughly summarized from panel (b) as having a period
of relative high gene flow followed by a sharp decrease near
the 300 Kya mark, which can be very clearly attributed to the
size increase of the ancestral population in the C3PO model.

The inferred number of demes and their relatives sizes
for each population can be observed in Fig. 8. The numbers
for the African population is in sharp contrast with the other
two populations. We can also observe that for the three
populations there is more variance (compared to the results
from Fig. 6) in the inferred values of n and N across the
different values of ¢ and w. This may indicate a weaker link
to an underlying n-island model.

In general, there is little agreement between the demo-
graphic histories inferred by our method from the PSMC data
and the simulated IICRs from the C3PO model. This is
expected because of how the two models have fundamentally
incompatible structures, not only regarding the island versus
tree aspect, but also due to the size changes in the C3PO
model that affect the IICR potentially as much as gene flow
does. However, we do identify the approximate timings of
the two visible demographic events when using ¢ =5 com-
ponents and the more recent-weighted value of @ = 1. These
results also serve as additional validation that our method
will not return the same parameter values regardless of the
source of the data. They also suggest that the C3PO model is
unlikely to be a good model to understand questions about
ancient human structure and evolution.

Discussion

Our validations show that the inference framework presented
here is able to accurately infer structure parameters (number
of islands and their sizes) within a symmetrical island model
given an IICR estimate like the PSMC. It is also able to date
up to five events of changes in migration rate (i.e., six com-
ponents) with good precision and consistency, as long as the
underlying model is compatible with a symmetrical island
model. The nRMSD (Fig. S20) of the simulated vs. inferred
scenario parameters is zero for stationary scenarios (c = 1),
and increases linearly with the number of components. For the
M parameters it reaches a value of about 0.5 at six

components, and we see that the first and last components are
better estimated than the middle ones. It is likely that the
component misidentification phenomenon is contributing to
this effect. The number of islands n and the reference effective
size N are consistently well estimated, reaching an nRMSD of
about 0.1 in the worst cases. The #; parameters exhibit the
worst nRMSD values, varying between 1 and 2 in the worst
cases. Although in these cases, the fact that time is log-spaced
and spans several orders of magnitude causes outliers to have
a disproportionate contribution to this statistic.

Human evolution

An application of our method to five publicly available
human PSMCs suggests that the backwards long term his-
tory of the sampled individuals, when accounting for pos-
sible recent expansions and the noise introduced by the
PSMC method, can be accurately modeled in the framework
of a symmetrical island model of ~10-12 demes with
varying levels of connectivity through time. Only one of the
five samples (Yoruba) displayed less consistent evidence of
this finding, which may indicate that more complex models
(possibly including asymmetric gene flow, spatial modeling
of the environment, or changes in deme sizes) could be
needed to explain the full complexity of the data.

These findings regarding changes in connectivity and
number of islands are in agreement with the results of
Rodriguez et al. (2018), in which a hand-fitting approach of
the IICRs was used to arrive at an estimate of 10 islands
with a similar value of N and a comparable period featuring
a significant increased of gene flow between 600 Kya and
2 Mya. Note that the timing in years and the deme sizes in
Rodriguez et al. (2018) differ due to the change in mutation
rate (Rodriguez et al., 2021).

We also compared our results with the tree model for
human evolution published by Noskova et al. (2019) (the
C3PO model), which is a revision of the model from
Gutenkunst et al. (2009) and represents a simplified model
of human evolution (Jouganous et al., 2017, Kamm et al.,
2019). The C3PO model proposes an ancestral human
population that experiences two splits: an old one that
resulted in the current African “population” and another
more recent one that resulted in the current European and
Asian “populations”. The parameters of this model include
the times of these events, the population size history of
these populations and their ancestral branches, and the
migration rates between them. The summary statistic tar-
geted by these methods is the AFS, and we see that a fitting
AFS does not guarantee a fitting IICR and vice versa
(Beichman et al., 2017, Chikhi et al., 2018). Indeed, the
IICRs of the populations from the C3PO model do not
resemble those of the real humans. Likewise, when we use
the C3PO model to generate IICR curves, and infer the
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corresponding demographic history using SNIF, we find
results that do not resemble those obtained from the human
IICRs, and are less consistent across different runs than
when inferring directly from the human IICRs.

These findings suggest that tree models fitted with the
AFS like those considered here do not offer a definitive
answer to the question of human evolution and other
families of models should be explored (Goldstein and
Chikhi, 2002, Scerri et al., 2019, 2018). It remains to be
seen however how well models inferred with our method fit
the real AFS of their respective human populations. A
general treatment of this question is beyond the work
presented here. However, in section S5.2 of the Supple-
mentary Materials we compare the AFS of a sample of 216
humans from the Yoruba population (Lapierre et al., 2017)
to the one inferred by the GADMA method from Noskova
et al. (2019) and the one corresponding to three variations
of the inferred demographic model by our method (see
Fig. S47). These simulations suggest that existing AFSs
could be easily fitted with a structured model similar to
those inferred by SNIF, but in which we would allow for a
recent population size change.

Future work

One novel aspect of our approach is that the number of
demes gets inferred as one of the model parameters, and it
is in fact the best estimated parameter, which is in agree-
ment with Mazet et al. (2015) that used information from
the distribution of 7, values and a likelihood approach.
These authors however, only analysed stationary models.
Here we found that other parameters were also well esti-
mated when the number of components was low, but we
also observed that the estimated value of n scaled well
with increasing model complexity. A similar consistency
can be observed with the deme size parameter N (see Fig.
S20). We give up some flexibility in the model by keeping
the number of demes constant throughout the history of the
population, so the timed demographic events cannot
represent splits or joining of populations even though such
events are likely to have taken place in the history of
species. Additionally, in the n-island model we do not
account for possible asymmetrical gene flow or different
deme sizes, even when the theoretical framework does
allow for such representations. However, it is a more
challenging problem to validate due to the fact that during
any given component, changing both the migration rate
and the deme size have confounding effects on the IICR
curve which can be hard to separate. This requires a
dedicated study with a different methodology which we
will explore in a future work.

Another potential direction is to use multiple IICR curves
simultaneously during the inference process. These multiple
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IICRs may come in the form of more than one IICR sam-
pled from an asymmetrical demographic model (for which
the initial sampling deme does result in different curves
(Chikhi et al., 2018), as opposed to the n-island model
where demes are by definition indistinguishable). They may
also be in the form of multiple IICR; curves where & is the
number of sampled haploid genomes. Indeed, the IICR of
Mazet et al. (2016) was defined for k=2, and this is the
IICR that we have been studying in our previous works.
However, the concept can be extended to more haploid
genomes in the same way that the MSMC method (Schif-
fels and Durbin, 2013) is an extension of the PSMC to
multiple genomes, which takes into consideration the dis-
tribution of the coalescent time 7. The precise concept of
the IICR;, is currently being developed in a separate study.
These approaches may prove beneficial in choosing
between structured and non-structured models. Indeed,
Grusea et al. (2018) shows that using more than one IICR
curve can help discriminate between structured and non-
structured scenarios in the n-island model. Finally, the
incorporation of larger samples not only enables exploring
more complex scenarios, but it also allows using other
summary statistics to complement the IICR, most notably
among them the AFS, which is widely used for the pur-
poses of demographic inference.

Conclusion

In summary, we have presented here an inference method
for automatically estimating demographic parameters under
a piecewise stationary symmetrical island model that uses
the IICR as its summary statistic. The underlying metho-
dology consists in quantifying the discrepancy between a
target IICR and many simulated IICR curves for a large
number of candidate scenarios, and using this metric to
drive a global optimization process. With a large number of
validations we have shown that the method works accu-
rately and consistently for a diverse range of parameter
values, and we additionally showed an application to human
data that agrees with and improves upon previously pub-
lished results using similar approaches.

We believe that despite its current scope, our method can
be of great value during the initial exploration of the
parameter space for simple models, and thus can also pro-
vide a starting point for manually fitting the IICR with
models that could express spatial structure and varying N
(Rodriguez et al., 2018).

Data availability
The implementation of SNIF its documentation, and the

data and scripts required to reproduce our results can be
found in github.com/arredondos/snif.
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