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Abstract 

Background Zinc nanoparticles (NPs) are characterized by high bioavailability, small size, and high absorbability. 
The purpose of this experiment was to determine the effect of Zn-NP feed supplementation on ruminal fermenta-
tion, microbiota, and histopathology in lambs. In vitro (24 h), short-term (STE, 28 d), and long-term (LTE, 70 d) experi-
ments were performed. The lambs in STE were fed a basal diet (BD) composed of 350 g/d ground barley and 700 g/d 
meadow hay (Control), BD enriched with ZnO-NPs (80 mg Zn/kg of diet, ZnO-NPs), and BD enriched with Zn 
phosphate-based NPs (80 mg Zn/kg of diet, ZnP-NP). The in vitro gas production technique was used in incubated 
rumen fluid from STE. The lambs in LTE were fed BD (Control), BD enriched with ZnO-NPs (40 mg Zn/kg of diet, ZnO-
NP40), BD enriched with ZnO-NPs (80 mg Zn/kg of diet, ZnO-NP80) and BD enriched with ZnO (80 mg Zn/kg of diet, 
ZnO-80).

Results After 24 h of incubation, dry matter digestibility was higher for ZnO-NP and ZnP-NP substrates than the con-
trol in an in vitro experiment (P < 0.001). The total bacterial population in the STE was lower (P < 0.001) in the ZnP-NP 
group than in the control and ZnO-NP groups, but the protozoan populations were not significantly different. The 
ammonia-N concentration in LTE was lowest in the ZnO-NP80 group (P = 0.002), but the activities of carboxymethyl 
cellulase (P < 0.001) and xylanase (P = 0.002) were higher in the ZnO-NP40, ZnO-NP80, and ZnO-80 groups than in the 
control group. Morphological observation after STE and LTE revealed histological changes (e.g. inflammation 
of the epithelium or edema of the connective tissue) in the rumen of lambs.

Conclusion Zn-NP supplementation up to 70 d improved feed-use efficiency and influenced ammonia-N concen-
tration and activities of hydrolases in the rumen. The active ruminal fermentation affected the health of the ruminal 
papillae and epithelium in the lambs, regardless of the application’s form, dose, or duration. However, by affecting 
rumen microbial fermentation, Zn-NPs could alter fermentation patterns, thereby increasing the capacity of host 
rumen epithelial cells to transport short-chain fatty acids.
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Background
Zinc (Zn) plays catalytic, structural, and regulatory roles 
for enzymes, proteins, and transcription factors and 
improves immunological functions in ruminants [1, 2]. 
Zn in the diet of ruminants is usually supplemented as 
inorganic (e.g. ZnO and  ZnSO4) or organic (e.g. com-
plexes of Zn and amino acids) substances. The require-
ments and recommendations for the content of dietary 
Zn for ruminants are between 40 and 130  mg/kg dry 
weight of the complete diet [3], but the bioavailability of 
Zn depends on the chemical form, content, and inter-
action with other dietary components [4, 5]. The use of 
organic sources of Zn in the diet of ruminants improves 
mineral supply due to the higher bioavailability and lower 
interference with other minerals because the binding of 
organic ligands from the organic form of trace elements 
should be more resistant to interactions in the diges-
tive tract [6–8]. The nutritional effects of Zn sources on 
ruminant performance could be affected by factors such 
as the physiological stage and type of the animal, amount 
of dietary Zn, purity of supplements, presence or absence 
of stressors, storage of Zn in the body, environment, and 
season [8, 9]. The trace element Zn can affect the rumi-
nal microbiota by positively influencing ruminal fermen-
tation by directly acting on the activities of microbial 
enzymes. However, too high a concentration of Zn (add-
ing > 50 μg/mL Zn to in vitro incubation) tends to reduce 
microbial activity, leading to a sharp drop in ammonia 
concentrations [2].

Nanoparticle (NP) minerals, due to their smaller size 
and more accessible transport through the gastroin-
testinal tract, prolong the residence time of the miner-
als, thereby ensuring a more uniform distribution and 
improving absorption into mucosal tissues and cells 
[10]. In  vitro results have indicated that the addition of 
20–30 mg ZnO-NP/kg dry matter (DM) to the diet could 
reduce methane emissions and improve total antioxidant 
capacity, the production of microbial biomass, digestibil-
ity of DM, and the efficiency of ruminal fermentation [11, 
12]. Similarly, positive effects of inorganic and organic 
forms of Zn-NPs on ruminal fermentation, the digest-
ibility of nutrients, antioxidant capacity, growth perfor-
mance, and immunomodulatory and antibacterial effects 
have been described in ruminants [13–16]. The use of 
ZnO-NPs (28  mg Zn/kg DM) can also increase the fer-
ric-reducing antioxidant power in the rumen and blood 
and decrease the level of blood urea-N in sheep [17]. The 
majority of studies support the beneficial effects of Zn 
nanoparticles on animal health [15, 16]. Only some stud-
ies have found cytotoxicity and histopathological changes 
after the administration of Zn-NPs [18, 19].

Currently, there is an urgent need to take advantage of 
advances in molecular chemistry, such as encapsulation 

techniques, to avoid the degradation of various addi-
tives in the rumen (e.g., trace elements, phytochemicals) 
and to use their nanostructures to increase the biologi-
cal activity and availability of main substances that are 
less soluble in water. The higher antimicrobial activity 
of nanoparticles is related to their size in the subcellular 
size range. This allows the penetration of the nanoparti-
cle into the microbial cells and leads to increased activity. 
Due to their small size and high surface-to-volume ratio, 
Zn-NPs are characterized by high bioavailability, result-
ing in their high absorbability and surface reactivity.

Our recent study showed that the ability of Zn dietary 
supplements (70 mg/kg diet) to affect ruminal microbial 
fermentation in vitro was not confirmed in vivo in lambs 
[20]. The rumen is covered by a stratified epithelium 
consisting of leaf-like papillae that allow the selective 
uptake of nutrients generated by intraruminal microbial 
fermentation [21]. These nutrients come mostly from 
the ruminal fermentation of dietary carbohydrates and 
are absorbed through the rumen epithelium. Therefore, 
we hypothesized that different zinc NPs (i.e., ZnO and 
ZnP) and doses would affect the rumen environment 
during in vitro and short- and long-term experiments in 
lambs. The purpose of this experiment was to determine 
the effect of Zn-NP feed supplementation on rumen fer-
mentation, microbiota, and histopathology in lambs. Our 
objectives were to determine (1) the 24-h in vitro effect of 
Zn-NPs on parameters of ruminal fermentation and the 
protozoan population and (2) the short-term (28 d) and 
long-term (70 d) effects of Zn-NP supplementation on 
ruminal fermentation, the microbiota and histopathology 
in lambs.

Results
Twenty‑four‑hour in vitro experiment
The in vitro dry matter digestibility (IVDMD) was signifi-
cantly higher in the ZnO-NP and ZnP-NP groups than 
in the control (P < 0.001, Table 1). The other parameters 
(pH, ammonia-N concentration, total gas production, 
methane concentration, and the concentrations of short-
chain fatty acids (SCFAs)) were not significantly affected 
by the various Zn-NPs (P > 0.05). The total number of cil-
iates was not affected (P > 0.05).

Short‑term effect on ruminal fermentation 
and the microbiota in lambs
Ammonia-N and total SCFA concentrations and the 
molar proportions of individual SCFAs did not differ 
significantly in the treated lambs (P > 0.05, Table  2). pH 
varied numerically between the groups but did not differ 
significantly. The total bacterial population was affected 
(P < 0.001) and was significantly lower in the ZnP-NP 
group than in the control and ZnO-NP groups. The 
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protozoan population did not differ significantly between 
the groups (P > 0.05). The specific enzymatic activities 
of α-amylase, carboxymethyl cellulase (CM-cellulase), 
and xylanase of the ruminal microorganisms were not 
affected (P > 0.05).

Short‑term effect on ruminal histology
Medium-sized warts, connective-tissue edema, and 
organisms with the morphology of Balantidium coli were 
observed (P = 0.032, Table 3). The epithelial keratinocyte 
layer differed mainly between the ZnO-NP and ZnP-NP 
groups (P = 0.008). The connective tissue of the papil-
lae was inflamed in all sheep. Damage to homogeneous 
papillae and erosion of the hyperplastic stratum corneum 
did not differ significantly between the groups (P > 0.05).

Long‑term effect on ruminal fermentation 
and the microbiota
The concentration of ammonia-N was significantly 
lower in the ZnO-NP80 group than the other groups 
(P = 0.002), and the molar proportion of n-valerate was 
significantly lower in the ZnO-NP80 group than the con-
trol group (P = 0.015, Table  4). The molar proportion of 
caproate differed significantly between the ZnO-NP40 
and ZnO-80 groups (P = 0.030). The activities of CM-
cellulase (P < 0.001) and xylanase (P = 0.002) were signifi-
cantly higher in all three experimental groups than in the 
control group. The protozoan population did not differ 
significantly between the groups (P > 0.05). The popu-
lations of Butyrivibrio proteoclasticus, B. fibrisolvens, 
Fibrobacter succinogenes, Prevotella spp., Ruminococcus 

Table 1 Parameters of in vitro ruminal fermentation (mean ± SEM, n = 9)

SEM standard error of the mean, NPs nanoparticles, IVDMD in vitro dry matter digestibility, SCFAs short-chain fatty acids

a,b: different letters within a row indicate significant differences at P < 0.05

Parameter Control ZnO‑NPs ZnP‑NPs P

pH 7.19 ± 0.04 7.19 ± 0.03 7.19 ± 0.03 0.990

IVDMD (g/kg DM) 451 ± 10.1a 546 ± 10.3b 573 ± 6.47b 0.001

Ammonia-N (mg/L) 113 ± 6.94 113 ± 10.5 120 ± 10.3 0.842

Total gas production (mL/g DM) 184 ± 6.48 184 ± 6.48 180 ± 6.67 0.858

Methane (mmoL) 2.61 ± 0.28 2.20 ± 0.22 2.19 ± 0.19 0.372

Total SCFAs (mM/L) 33.5 ± 1.46 32.1 ± 0.72 32.9 ± 0.99 0.667

Acetate (mol%) 68.6 ± 0.97 69.2 ± 1.06 68.0 ± 0.99 0.700

Propionate (mol%) 15.5 ± 0.52 15.3 ± 0.60 15.1 ± 0.51 0.904

n-Butyrate (mol%) 12.5 ± 0.26 12.2 ± 0.31 12.3 ± 0.29 0.799

iso-Butyrate (mol%) 0.88 ± 0.11 0.89 ± 0.13 0.82 ± 0.08 0.855

n-Valerate (mol%) 1.21 ± 0.09 1.21 ± 0.07 1.10 ± 0.06 0.526

iso-Valerate (mol%) 1.58 ± 0.15 1.62 ± 0.17 1.52 ± 0.14 0.899

n-Caproate (mol%) 0.15 ± 0.02 0.14 ± 0.01 0.12 ± 0.02 0.320

Acetate:propionate 4.47 ± 0.22 4.58 ± 0.27 4.62 ± 0.21 0.899

Total number of protozoa  (103/mL) 6.81 ± 3.44 6.48 ± 3.43 6.24 ± 3.84 0.285

Table 2 Effect of STE on ruminal fermentation and the 
microbiota (mean ± SD, n = 9)

STE short-term experiment, NPs nanoparticles, wRC count per gram wet ruminal 
content, SCFAs short-chain fatty acids. Different letters within a row indicate 
significant differences at P < 0.05

Parameter Control ZnO‑NPs ZnP‑NPs P

pH 6.82 ± 0.27 6.90 ± 0.06 6.71 ± 0.21 0.540

Ammonia-N (mg/L) 92.0 ± 21.2 68.4 ± 15.5 61.4 ± 10.1 0.130

Total SCFAs (mM/L) 56.9 ± 16.5 40.9 ± 4.28 53.7 ± 10.1 0.272

Acetate (mol%) 72.3 ± 2.79 70.4 ± 0.20 69.3 ± 3.14 0.374

Propionate (mol%) 13.3 ± 1.09 14.8 ± 1.34 16.8 ± 4.27 0.346

n-Butyrate (mol%) 11.6 ± 0.74 11.4 ± 1.01 11.0 ± 1.72 0.808

iso-Butyrate (mol%) 0.78 ± 0.35 1.08 ± 0.29 0.85 ± 0.23 0.471

n-Valerate (mol%) 0.63 ± 0.12 0.67 ± 0.08 0.81 ± 0.28 0.465

iso-Valerate (mol%) 1.11 ± 0.50 1.32 ± 0.25 1.01 ± 0.14 0.545

Caproate (mol%) 0.25 ± 0.05 0.22 ± 0.05 0.30 ± 0.06 0.240

Acetate:propionate 5.46 ± 0.69 4.77 ± 0.43 4.32 ± 1.16 0.301

Total bacteria  (108/mL) 2.69 ± 0.23b 2.63 ± 0.45b 2.35 ± 0.34a 0.001

Archaea  (107/mL) 7.75 ± 0.20 7.66 ± 0.24 7.93 ± 2.38 0.867

Methanobacteriales  (107/
mL)

2.76 ± 0.50 2.67 ± 0.51 2.77 ± 0.52 0.595

Methanomicrobiales  (107/
mL)

2.67 ± 0.53 2.77 ± 0.52 2.78 ± 0.53 0.562

Total protozoa  (105/g 
wRC)

29.0 ± 2.01 27.4 ± 1.67 27.0 ± 1.96 0.060

Holotricha  (103/g wRC) 0.57 ± 0.21 0.74 ± 0.34 0.61 ± 0.27 0.352

Entodiniomorpha  (103/g 
wRC)

28.2 ± 3.42 26.8 ± 7.10 26.0 ± 4.45 0.457

Specific enzymatic activities of the ruminal microorganisms (µcat/g 
protein)

α-Amylase 1.66 ± 0.80 1.23 ± 0.63 1.86 ± 0.57 0.126

Carboxymethyl cellulase 1.13 ± 0.43 1.45 ± 0.99 1.02 ± 0.55 0.302

Xylanase 179 ± 24.2 189 ± 26.2 202 ± 35.8 0.144
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albus, R. flavefaciens, Streptococcus bovis and Total meth-
anogens were not affected (P > 0.05, Fig. 1).

Effects of long‑term supplementation of Zn on ruminal 
histology
The size of the ruminal papillae varied in all sheep (i.e. 
short and thick, long and thin, and medium length and 
width, Table  5). The epithelial keratinocyte layer dif-
fered mainly between the ZnO-NP40 and ZnO-NP80 
groups (P = 0.038), but connective-tissue edema occurred 
primarily in the control group (P = 0.009). The flat and 
thin or rough layer of desquamating and ballooning 
keratinocytes particularly characterized the histopatho-
logical changes to the ruminal epithelium (i.e., epithe-
lium and lamina propria inflammation with infiltrates 

of inflammatory cells, mainly lymphocytes). Organ-
isms with B. coli morphology were present in almost all 
groups. The histological changes are shown in Fig. 2a and 
b.

Discussion
Our previous in vitro results indicated that the fermen-
tation of 25  mg of organic Zn in the ruminal fluid col-
lected from lambs fed for 70 d with a diet containing Zn 
at a dose of 70 mg/kg DM decreased gas production and 
IVDMD [20]. The present study using a technique of 24-h 
in vitro gas production (IVGPT), however, did not detect 
any adverse effects of the Zn-NPs on ruminal fermen-
tation or the protozoan population. Instead, microbial 
populations and parameters of ruminant fermentation 

Table 3 Effect of STE on the histopathology of ruminal tissues (mean ± SD, n = 9)

STE short-term experiment, NPs nanoparticles, SD standard deviation

a,b: different letters within a row indicate significant differences at P < 0.05

Parameter (%) Control ZnO‑NPs ZnP‑NPs P

Medium-sized warts 89 ± 33.3 100 ± 0.0 100 ± 0.0 0.032

Homogenous papillae 89 ± 33.3 33 ± 50.0 89 ± 33.3 0.282

Inflammation of connective tissue of papillae 100 ± 0.0 100 ± 0.0 100 ± 0.0 –

Connective-tissue edema 100 ± 0.0 89 ± 33.3 100 ± 0.0 0.032

Epithelium (keratinocyte layer) 89 ± 33.3ab 33 ± 50.0a 100 ± 0.0b 0.008

Erosion of hyperplastic stratum corneum 33 ± 50.0 0 ± 0.0 33 ± 50.0 0.157

Other (Balantidium coli) 100 ± 0.0 89 ± 33.3 100 ± 0.0 0.032

Table 4 Effect of LTE on ruminal fermentation and microbiota in lambs (mean ± SD, n = 7)

LTE long-term experiment, SCFAs short-chain fatty acids, wRC count per gram wet ruminal content, NPs nanoparticles, SD standard deviation

a,b: different letters within a row indicate significant differences at P < 0.05

Parameter Control ZnO‑NP40 ZnO‑NP80 ZnO‑80 P

pH 6.41 ± 0.34 6.50 ± 0.44 6.37 ± 0.29 6.33 ± 0.22 0.124

Ammonia-N (mg/L) 70.1 ± 22.0b 54.5 ± 28.7b 27.4 ± 11.0a 69.1 ± 29.5b 0.002

Total SCFAs (mM/L) 61.1 ± 11.3 50.1 ± 14.5 52.3 ± 6.60 51.4 ± 4.49 0.204

Acetate (mol%) 67.6 ± 3.19 67.8 ± 4.24 68.6 ± 2.09 68.8 ± 2.47 0.875

Propionate (mol%) 17.0 ± 1.44 17.9 ± 2.32 17.4 ± 1.78 17.4 ± 2.34 0.889

n-Butyrate (mol%) 13.2 ± 1.62 12.1 ± 2.64 12.2 ± 1.48 11.8 ± 0.618 0.534

iso-Butyrate (mol%) 0.52 ± 0.41 0.54 ± 0.23 0.41 ± 0.14 0.31 ± 0.10 0.376

n-Valerate (mol%) 1.22 ± 0.16b 1.11 ± 0.11ab 0.92 ± 0.12a 1.06 ± 0.23ab 0.015

iso-Valerate (mol%) 0.39 ± 0.26 0.57 ± 0.17 0.39 ± 0.27 0.51 ± 0.34 0.491

Caproate (mol%) 0.11 ± 0.10ab 0.06 ± 0.06a 0.10 ± 0.04ab 0.18 ± 0.04b 0.030

Acetate:propionate 4.01 ± 0.46 3.86 ± 0.63 3.98 ± 0.51 4.02 ± 0.61 0.954

Total protozoa  (105/g wRC) 20.9 ± 3.56 17.5 ± 5.72 20.7 ± 5.19 17.9 ± 5.82 0.175

Specific enzymatic activities of the ruminal microorganisms (µcat/g protein)

α-Amylase 1.10 ± 0.85 1.75 ± 1.48 1.24 ± 0.94 0.92 ± 0.56 0.210

Carboxymethyl cellulase 0.42 ± 0.22a 1.06 ± 0.37b 0.83 ± 0.20b 0.80 ± 0.32b 0.001

Xylanase 37.2 ± 8.90a 67.4 ± 17.2b 64.8 ± 15.6b 58.8 ± 26.3b 0.002
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could probably be beneficially modified by Zn-NP sup-
plementation [22], and therefore IVDMD was increased. 
Our findings are similar to those observed with diets 
containing 20–60  mg/kg ZnO-NPs using 24-h IVGPT 

[23]. However, inconsistent with the present study, some 
previous studies reported that a dose of 20–80 mg/kg of 
ZnO-NP DM was sufficient to improve ruminal fermen-
tation and reduce the concentration of methane released 

Fig. 1 Effect of the control and experimental groups on the relative abundance of the 16S rRNA gene (expressed relative to the total abundance 
of bacterial genes) of the ruminal bacterial population for Butyrivibrio proteoclasticus, Butyrivibrio fibrisolvens, Fibrobacter succinogenes, Prevotella 
spp., Ruminococcus albus, Ruminococcus flavefaciens, Streptococcus bovis, and Total methanogens. Data are described as specific gene copy number 
per 16 s rRNA gene copy number ± SEM (P > 0.05)

Table 5 Effect of LTE on histopathology of ruminal tissues (means ± SD, n = 7)

LTE long-term experiment, NPs nanoparticles, SD standard deviation. Different letters within a row indicate significant differences at P < 0.05

Histological change (%) Control ZnO‑NP40 ZnO‑NP80 ZnO‑80 P

Size of ruminal papillae 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 -

Epithelium (keratinocyte layer) 57 ± 53.5ab 100 ± 0.0b 29 ± 48.8a 43 ± 53.5ab 0.038

Inflammation of lamina propria 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 -

Epithelial inflammation 43 ± 53.5 71 ± 48.8 86 ± 37.8 86 ± 37.8 0.264

Connective-tissue edema 100 ± 0.0b 86 ± 37.8ab 29 ± 48.8a 43 ± 53.5a 0.009

Other (Balantidium coli) 86 ± 37.8 100 ± 0.0 100 ± 0.0 100 ± 0.0 0.410
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in  vitro [23, 24]. In  vitro measurements after 24  h have 
indicated that methane concentration and total proto-
zoan population tend to decrease more in incubations 
with Zn-NPs than with other sources of Zn (e.g. ZnO) 
[23], consistent with our results. The toxicity of the ZnO-
NPs caused by dissolved metal ions on ciliated ruminal 
protozoa, however, probably decreases after 24 h of expo-
sure due to protozoan adaptation [25]. The microbial 
population and the concentration of fermentation gases, 
however, probably decrease greatly after 72 h of in vitro 
incubation with higher doses of ZnO-NPs (500–1000 mg/
kg) [26]. The dietary substrates containing ZnO-NPs and 

ZnP-NPs at doses of 80  mg/kg DM in our experiment, 
however, had the potential to increase substrate IVDMD. 
Other studies have also described a positive effect on 
the increase in IVDMD by supplementing diets with 
ZnO-NPs [12, 27], consistent with our results. Supple-
mentation with ZnO-NPs at the dose of 30–40  mg Zn/
kg DM increased DM digestibility in the rumen [28] as 
ZnO-NPs have better bioavailability, enhance microbial 
population and increase substrate breakdown thereby 
improving dry matter digestibility of feedstuffs [29]. The 
dose of 90–180 mg/kg DM, however, gradually decreased 
IVDMD, probably due to the antibacterial activity of the 
ZnO-NPs and the suppression of the growth of the rumi-
nal microbial population [12]. The effect on digestibility 
and the microbiota clearly depended mainly on the dose 
of Zn-NPs.

In vitro measurements can predict the parameters 
of ruminal fermentation with reasonable accuracy, but 
we needed to identify the effect of the Zn-NPs in the 
rumen in  vivo. STE with Zn-NP supplementation did 
not affect the parameters of fermentation or specific 
microbial enzymatic activity. The total bacterial popula-
tion decreased, and the protozoan population tended to 
decrease mainly with dietary ZnP-NP supplementation, 
despite the unchanged fermentation profile. Likewise, 
in an in  vivo study, ZnP-NPs may directly affect bacte-
rial activity in the rumen during short-term supplemen-
tation while the group with ZnO-NPs showed no effect 
on bacterial population. ZnP-NPs could probably alter 
microbial populations due to adaptation to a diet without 
adverse effects on fermentation [23]. Moreover, in the 
case of protozoa, both ZnP-NPs and ZnO-NPs showed 
no effect on their population. ZnP-NP supplementation 
can have a short-term effect on the growth of bacteria in 
the rumen, with subsequent impacts on the formation 
of microbial proteins and the use of energy. The produc-
tion of proteins by ruminal microbes, however, is prob-
ably inefficient, mostly due to maintenance functions, 
decreasing bacterial population [12], and the accumula-
tion of reserve saccharides by protozoa [30].

The optimal level of ammonia-N in the rumen (20–
100  mg/L) [31] was not exceeded in LTE. Ammonia-N 
is normally the most abundant source of N required 
for microbial growth, and its lower concentration in 
the rumen may be due to the higher consumption of 
ammonia-N by microorganisms, the presence of low-
level rumen degradable protein, and optimum pH in the 
rumen [2]. The decrease in ammonia-N concentration 
in the ZnO-NP80 group was not correlated with the sig-
nificant changes to the ruminal microbiota, although its 
decrease may have been due to the higher use of ammo-
nia-N by the microbial population. If ruminal micro-
organisms have access to a readily available source of 

Fig. 2 a Histological changes to ruminal tissue in LTE: Ruminal 
papillae with the desquamation of keratinocytes. b Histological 
changes to ruminal tissue in LTE: Focal aggregates of inflammatory 
cells with a predominance of neutrophils in the epithelium 
of the ruminal papilla
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energy, they increase their synthesis of proteins using 
amino acids as a microbial source of energy [32]. The lack 
of significant differences in the microbiotas in the experi-
mental groups may have been due to the different forms 
of Zn used than in our previous study [20]. The relatively 
high standard deviations of the means of the bacteria in 
the experimental groups indicated a potentially differ-
ent effect between lambs, suggesting that different forms 
and doses could also have different antibacterial and anti-
methanogenic effects and may promote fermentation 
in the rumen to reduce the concentration of methane 
released in the long term [24] (e.g. by Total methanogens, 
Fig. 1). The LTE diets containing ZnO-NPs and ZnO did 
not significantly affect total SCFA concentration or the 
microbiotas in the rumens of the lambs. Similarly, the 
metabolism of dietary saccharides was probably unaf-
fected; the concentrations of individual SCFAs changed 
only slightly (a slight effect on n-valerate and caproate). 
Zn in the diet, however, can substantially affect ruminal 
fermentation [33, 34], although probably weakly at low 
doses (20–70 mg Zn/kg diet) [35, 36]. Higher doses (250–
1100 mg Zn/kg diet) can affect the population of ruminal 
protozoa and protein degradation [37]. ZnO supplemen-
tation at a dose of 10–50  mg Zn/kg DM increased the 
concentration of total SCFAs, despite the likely low solu-
bility of ZnO in the rumen [38]. Only a small part of the 
Zn supplement is probably solubilized during fermenta-
tion; ZnO is poorly assimilated by ruminal bacteria, and 
ruminal protozoa preferably assimilate highly soluble Zn 
[38], which may indicate a shift in saccharide fermenta-
tion by the protozoal population at the expense of bac-
terial fermenters [39], which our experiment did not 
detect.

Finally, supplementation with ZnO-NPs (30–40  mg 
Zn/kg DM) in the pre- and post-partum periods in 
sheep can increase the total SCFA concentration in the 
rumen [28]. This finding may also indicate an improve-
ment in the activities of digestive enzymes, especially 
protease, amylase, and lipase, leading to higher starch 
digestibility and thus higher SCFA concentrations [40]. 
Too much or too little Zn in the diet of ruminants, 
however, probably has the opposite effect [41, 42]. LTE 
in our study did not affect the ruminal microbiota, 
unlike STE. This finding probably indicates a gradual 
adaptation of the microbiota to the zinc diets during 
LTE [43]. Ruminal microbiotas, however, have differ-
ent sensitivities to Zn, and the currently recommended 
levels of Zn intake are defined to meet the needs of the 
animal, not the requirements of the ruminal microbiota 
[23, 38]. Our results suggest that the effects of Zn on 
ruminal fermentation and the microbiota also strongly 
depend on the duration of Zn supplementation. The 

different forms of Zn applied, such as NPs or ZnO, had 
very similar effects during LTE. The lack of an appar-
ent inhibition or improvement of the parameters of 
ruminal fermentation, though, suggests that the rumi-
nal microbiota may have too low a requirement for Zn 
supplementation [38]. The increased specific enzymatic 
activities of the ruminal microorganisms, especially 
cellulase and xylanase, however, indicated that Zn is 
incorporated into enzymes throughout the body and is 
crucial for most metabolic processes in ruminants [44]. 
Zn is therefore involved in a wide range of physiologi-
cal processes, such as the digestion of nutrients, which 
can be affected by long-term Zn supplementation. The 
ruminal microbiotas of the Zn groups in our experi-
ment were probably more than the control associated 
with cellulase and xylanase activities that accelerated 
biodegradation during the ruminal processing of sub-
strates [45]. Zn likely supports the efficient digestion 
of complex substrates in the rumen, which requires 
the coordinated action of many enzymes that can act 
individually and synergistically, or individual enzymes 
could assemble into multienzyme complexes [46].

The ruminal papillae in STE were homogeneous and 
associated with inflammation of the connective tissue 
in almost all lambs. The keratinocyte layer of the epithe-
lium was badly damaged in the ZnP-NP group, which 
may have negatively affected the epithelium because the 
outer layer of keratinized cells of the ruminal epithelium 
is an absorption barrier for the transport of molecules 
from the rumen to the blood [47]. Almost all lambs in 
STE had connective-tissue edema, which in LTE was 
mainly in the control group. The ruminal papillae in LTE 
were short and thick, long and thin, medium long, and 
wide, but inflammation of the lamina propria was pre-
sent in all lambs. Other damage (e.g. inflammation and 
connective-tissue edema) was probably caused by dys-
trophic epithelial changes that led to cellular degenera-
tion and the infiltration of leukocytes. These lesions can 
affect absorption capacity and stimulate inflammation 
and secondary ruminal infection by the resident micro-
bial population [48]. Butyrate stimulates the development 
of ruminal papillae [49], but the molar proportion of 
butyrate was not affected in our experiments. The growth 
and development of the ruminal papillae therefore prob-
ably depended mainly on the type of feed consumed. 
However, the end products of ruminal fermentation 
such as butyrate production rather than the nature of the 
feed, stimulate the development of ruminal papillae [50]. 
The inconsistent results for valerate in LTE may there-
fore indicate increased surface area and epithelial thick-
ness associated with an increased absorptive capacity for 
valerate with diffuse uptake [51]. SCFAs in the rumen are 
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absorbed through the ruminal epithelium, and the rate 
of absorption is primarily influenced by their concentra-
tion, the surface area of the papillae in the rumen, and 
the availability of transport proteins [52, 53]. SCFAs, as 
products of ruminal fermentation, generally induce mor-
phofunctional changes to the ruminal papillae [54] and 
probably moderate the effect on the keratinocyte layer 
of the epithelium and connective-tissue edema in some 
lambs, but further studies are needed.

Conclusion
Our research pointed out the potential of the Zn-NP sup-
plementation to improve feed-use efficiency in the LTE 
up to 70 d. The ability of long-term Zn-NP supplementa-
tion to affect ruminal fermentation parameters was sup-
ported by its effect on ammonia-N concentration and 
microbial hydrolase activity. The active microbial fermen-
tation in the rumen was likely to affect the health of the 
ruminal papillae and epithelium in the lambs, regardless 
of the application’s form, dose, or duration. However, by 
affecting rumen microbial fermentation, Zn-NPs could 
alter fermentation patterns, thereby increasing the capac-
ity of host rumen epithelial cells to transport SCFAs.

Methods
Ethical study
This study was conducted following the guidelines of 
the Declaration of Helsinki and national legislation in 
the Slovak Republic (G.R. 377/2012; Law 39/2007) for 
the care and use of research animals. The experimental 
protocol was approved by the Ethical Committee of the 
Institute of Animal Physiology, Centre of Biosciences of 
the Slovak Academy of Sciences on 07 March 2023 (pro-
tocol code 1046/2023).

Animals, diets, and design of STE
Twenty-seven lambs (5–6-month-old rams, Improved 
Valachian) were housed in separate pens for 30 days for 
acclimatization with free access to water. The number 
of animals used in the experiment was assigned accord-
ing to VICH GL13 guidelines proposed by the Euro-
pean Medicines Agency. The lambs were obtained from 
a commercial farm (PD Ružín–Ružín farm, Kysak, Slo-
vakia) and were housed at the Research Centre of the 
Institute of Animal Physiology of Centre of Biosciences 
of Slovak Academy of Sciences. No criteria for inclusion 
and exclusion of animals were used during the experi-
ment. The confounders were not controlled. After accli-
matization the lambs with body weights of 21.2 ± 1.1  kg 
(mean ± standard error of the mean) were fed an experi-
mental diet in three groups (n = 9/group): (a) a basal diet 
(BD) composed of 350  g/d ground barley and 700  g/d 

meadow hay, (b) BD enriched with ZnO-NPs (80 mg Zn/
kg of diet, ZnO-NPs) and (c) BD enriched with Zn phos-
phate-based NPs (80  mg Zn/kg of diet, ZnP-NP). The 
ZnO-NPs were a commercial product (zinc oxide nano-
powder, < 100  nm particle size, Sigma-Aldrich, Saint-
Louis, USA). The ZnP-NPs were chemically synthesized 
(Department of Inorganic Chemistry, Palacky Univer-
sity, Olomouc, Czech Republic) following the published 
method described in detail [55]. ZnP-NPs were charac-
terized (particle size and shape, structural analysis) by 
scanning electron microscopy, transmission electron 
microscopy, and X-ray diffraction (unpublished data). 
The study design is experimental and includes compared 
groups of animals including control groups. For the treat-
ment groups, aliquots of zinc supplements were mixed 
directly with the feed concentrate (ground barley) for 
each meal to provide an additional zinc diet. The experi-
mental period was 28 d and the lambs were euthanized 
following the rules of the European Commission (Coun-
cil Regulation 1099/2009) [56]. Twenty-seven lambs were 
killed over three consecutive days and the rumen fluid for 
in vitro experiments was pooled. All lambs with an aver-
age body weight of 24  kg were euthanized by using an 
overdose of 96  mg/kg of pentobarbital (Dolethal, Veto-
quinol, UK, Ltd.) on 28 d of the experiment (abattoir of 
the Centre of Biosciences of SAS, Institute of Animal 
Physiology, Košice, Slovakia, No. SK U 06018). Pento-
barbital overdose had a negligible effect on the estimated 
parameters of the ruminal environment in lambs. The 
carcasses were sent to the Department of Pathological 
Anatomy and Pathological Physiology, University of Vet-
erinary Medicine and Pharmacy in Košice in the Slovak 
Republic.

Twenty‑four‑hour in vitro experiment
The Zn-NPs were incubated in vitro in the ruminal fluid 
(RF) to assess their effect on the parameters of ruminal 
fermentation (pH, ammonia-N concentration, gas pro-
duction, methane concentration, and SCFA concentra-
tions). RF was collected from the ruminal contents of 
slaughtered lambs at the end of STE. RF was obtained 
before morning feeding, strained through four layers 
of gauze into thermal flasks, and immediately trans-
ported to the laboratory to exclude external factors that 
may affect the estimated parameters. RF was mixed 
at a 1:2 ratio with McDougallʼs buffer [57], and purged 
with  CO2. The RF inoculum was dispensed in volumes 
of 35 mL into serum bottles (120 mL) containing 0.25 g 
of substrate. Ground barley without (Control) or with 
Zn-NPs (80 mg Zn/kg DM, ZnO-NPs or ZnP-NPs) and 
meadow hay (350:700, w/w) were used as substrates for 
the in vitro experiment and fermented with buffered RF. 
ZnO-NPs (zinc oxide nanopowder, < 100 nm particle 
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size, Sigma-Aldrich, Saint-Louis, USA) and ZnP-NPs 
(Department of Inorganic Chemistry, Palacky Univer-
sity, Olomouc, Czech Republic) were used. The serum 
bottles with buffered ruminal fluid and substrate were 
filled with  CO2, closed with rubber stoppers and sealed 
with aluminum cups. Then the bottles were incubated in 
an incubator (Galaxy 170R, Eppendorf North America 
Inc., Hauppauge, NY) for 24 h at a temperature of 39 
˚C in an anaerobic condition with periodical mixing of 
the contents. The experimental design used the in  vitro 
gas production technique as a relatively simple method 
to evaluate feedstuffs in ruminants. Three replicates 
(three incubation serum bottles) were prepared for each 
substrate (i.e., Control, ZnO-NPs, ZnP-NPs), and the 
experiment was conducted three times within three con-
secutive days (n = 3 × 3). Three replicate bottles were also 
used for the blank (ruminal inoculum, no substrate).

Animals, diets, and design of LTE
Twenty-eight male lambs (4 months of age, Improved 
Valachian) were housed in common stalls for 30 days for 
acclimatization with free access to water. The number 
of animals used in the experiment was assigned accord-
ing to VICH GL13 guidelines proposed by the European 
Medicines Agency. The lambs were obtained from a 
commercial farm (PD Oľšavica-Brutovce, Slovakia) and 
were housed at the Research Centre of the Institute of 
Animal Physiology of the Centre of Biosciences of Slo-
vak Academy of Sciences. No criteria for inclusion and 
exclusion of animals were used during the experiment 
and the confounders were not controlled. After acclima-
tization the lambs (body weights of 20.19 ± 0.50 kg) were 
fed an experimental diet in four groups (n = 7/group): 
(a) BD composed of 350 g/d ground barley and 700 g/d 
meadow hay, (b) BD enriched with ZnO-NP (40 mg Zn/
kg of diet, ZnO-NP40, SkySpring Nanomaterials, Inc., 
Houston, USA), (c) BD enriched with ZnO-NPs (80 mg 
Zn/kg of diet, ZnO-NP80, SkySpring Nanomaterials, 

Inc., Houston, USA), and (d) BD enriched with ZnO (80 
mg Zn/kg of diet, ZnO-80, Sigma-Aldrich, Saint-Louis, 
USA). The experimental period of LTE was 70 d. The 
study design was experimental and included compared 
groups of animals including control groups. For the treat-
ment groups, aliquots of zinc supplements were mixed 
directly with the feed concentrate (ground barley) for 
each meal to provide an additional zinc diet. All sheep 
with an average body weight of 35  kg were euthanized 
using an overdose of 140 mg/kg of pentobarbital (Dole-
thal, Vetoquinol, UK, Ltd.) at the end of the experiment 
at the abattoir as described in STE. Pentobarbital over-
dose had a negligible effect on the estimated parameters 
of the ruminal environment in lambs. The carcasses were 
sent to the Department of Pathological Anatomy and 
Pathological Physiology, University of Veterinary Medi-
cine and Pharmacy in Košice in the Slovak Republic.

Measurements and chemical analysis
The dietary substrates were analyzed in triplicate using 
standard procedures [58]. The DM content was obtained 
by drying the samples at 105  °C for at least 24  h in an 
oven (method no. 930.15). The total ash content of the 
samples was determined by ashing overnight at 550  °C 
(method no. 942.05) in a muffle furnace. Nitrogen con-
tent (method no. 968.06) was determined using a FLASH 
4000 analyzer (Thermo Fisher Scientific, Cambridge, 
UK). Crude-protein (CP) content was calculated by mul-
tiplying the total N content by 6.25 (method no. 990.03). 
The acid-detergent and neutral-detergent fiber contents 
were analyzed as described previously [59] using an 
ANKOM 2000 analyzer (ANKOM Technology, Macedon, 
USA) with heat-stable α-amylase. The chemical composi-
tions of the dietary substrates are provided in Table 6.

pH was measured using a pH meter (InoLab pH 
Level 1, Weilheim, Germany). IVDMD was estimated 
as the difference in substrate weights before and after 
incubation [60]. The concentration of ammonia-N in 

Table 6 Chemical composition of the dietary substrates (g/kg DM)

STE short-term experiment, LTE long-term experiment, MH meadow hay, BG ground barley, NPs nanoparticles, DM dry matter, NDF neutral-detergent fiber, ADF acidic-
detergent fiber, CP crude protein, N nitrogen. The aliquots of the Zn supplements were directly mixed with the BG for each meal to provide a Zn diet (i.e., ZnO-NPs, 
ZnP-NPs, ZnO-NP40, ZnO-NP80 and ZnO-80, respectively)

STE LTE

Substrate MH BG ZnO‑NPs ZnP‑NPs MH BG ZnO‑NP40 ZnO‑NP80 ZnO‑80

DM (g/kg) 884 879 882 881 896 880 879 877 878

NDF 691 266 275 265 716 327 292 305 307

ADF 365 85 90 91 351 103 108 109 127

CP 44 130 124 125 41 112 114 113 106

N 10 21 20 20 7 18 18 18 17

Ash 43 38 39 41 52 29 34 34 37
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the ruminal fluid was determined using the phenol-
hypochlorite method [61]. The volume of accumulated 
gas/pressure released by IVGPT after 24 h of in vitro fer-
mentation was determined using a mechanical manom-
eter fitted to a transducer (Premagas, Stará Turá, Slovak 
Republic) [62].

The SCFA and methane concentrations were ana-
lyzed using a Clarus 500 gas chromatograph (Perkin 
Elmer, Inc., Shelton, USA) [63]. The chromatograph was 
equipped with a flame ionization detection system for 
estimating the SCFA and methane concentrations. The 
SCFAs were separated using a stainless-steel packed col-
umn (2 m × 2 mm i.d.) with a phase composition of 10% 
Carbowax 20  M-TPA + 1%  H3PO4 on a 100/120 Supel-
coport support (Supelco, Bellefonte, USA). The meth-
ane concentration was analyzed using a 10% Squalane 
Chrom P mesh side 80/100 packed column, 2 m × 2 mm 
i.d. (Supelco, Bellefonte, USA), and a peak was observed 
at 0.33  min. The column oven temperature was pro-
grammed at 150  °C. Injector and detector temperatures 
were programmed at 230  °C. The rates of gas flow were 
40 mL/min for hydrogen and 400 mL/min for air in both 
analyses. The average flow of nitrogen carrier gas was set 
at 36 psi for SCFA and 14 psi for methane.

Specific enzymatic activities
The specific enzymatic activities of the ruminal micro-
organisms were determined by preparing a cell-free 
homogenate from the ruminal content of the lambs 
[64]. Activity was expressed in units of specific cata-
lytic activity (cat/g of protein). The activity of α-amylase 

was determined using 0.2% (w/v) maize starch (Merck 
KGaA, Darmstadt, Germany) resuspended in 0.05  M 
phosphate-citrate buffer. The activity of CM-cellulase 
was determined using 1% (w/v) carboxymethyl cellulose 
(Merck KGaA, Darmstadt, Germany). Xylanase activ-
ity was determined using 1% (w/v) Beechwood xylan 
(Merck KGaA, Darmstadt, Germany) resuspended in the 
same phosphate-citrate buffer. Enzymatic activities were 
determined by measuring the amount of reducing sugars 
released from cell-free samples of ruminal homogenate 
after 15 min at 39 °C.

Microbial analyses and quantification
Samples for counting ciliate protozoa (i.e., in vitro, STE, 
LTE) were fixed in equal volumes of 8% formaldehyde, 
and the protozoa were counted and identified micro-
scopically [65]. In the STE experiment total bacteria, 
Archaea, Methanobacteriales, and Methanomicrobiales 
were quantified using fluorescence in situ hybridization 
[66]. In the LTE study, samples were isolated by Pure-
Link Microbiome DNA Purification Kit (Invitrogen, 
Thermo Fisher) according to manufacturer protocol. The 
concentration of DNA was measured using Nanodrop 
1C. Quantitative PCR was performed on Roche Light 
Cycler 480 II using standard curves for absolute quanti-
fication of specific taxa and total bacteria by 16S subunit 
gene amplification. The primers used are summarized 
in Table 7. Data are presented as a copy number of spe-
cific amplicon per total bacteria in the sample. Data are 
described as specific gene copy numbers per 16 s rRNA 
gene copy number ± SEM.

Table 7 The sequences of primers specific to the analyzed bacteria species

Species Primer sequences Reference

Ruminococcus flavefaciens F – 5’ CGA ACG GAG ATA ATT TGA GTT TAC TTAGG 3’
R – 5’ CGG TCT CTG TAT GTT ATG AGG TAT TACC 3’

 [67]

Fibrobacter succinogenes F – 5’ GTT CGG AAT TAC TGG GCG TAAA 3’
R –5’ CGC CTG CCC CTG AAC TAT C 3’

 [68]

Streptococcus bovis F – 5’ TTC CTA GAG ATA GGA AGT TTC TTC GG 3’
R – 5’ ATG ATG GCA ACT AAC AAT AGG GGT  3’

 [69]

Butyrivibrio proteoclasticus F – 5’ TCC TAG TGT AGC GGT GAA ATG 3’
R –5’ TTA GCG ACG GCA CTG AAT GCCTA 3’

 [70]

Ruminococcus albus F – 5’ CCC TAA AAG CAG TCT TAG TTCG 3’
R – 5’ CCT CCT TGC GGT TAG AAC A 3’

 [71]

Butyrivibrio fibrisolvens F – 5’ ACA CAC CGC CCG TCACA 3’
R – 5’ TCC TTA CGG TTG GGT CAC AGA 3’

 [72]

Prevotella spp. F – 5’ GAA GGT CCC CCA CATTG 3’
R – 5’ CAA TCG GAG TTC TTC GTG  3’

 [69]

Total methanogens F – 5’ GAG GAA GGA GTG GAC GAC GGTA 3’  [73]

R – 5’ ACG GGC GGT GTG TGC AAG  3’

16 S V4 F – 5’ TAT GGT AAT TGT GTGNCAGCMGCC GCG GTAA 3’  [74]

R – 5’ AGT CAG TCA GCC GGA CTA CHVGGG TWT CTAAT 3’
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Histology
Histological examinations were performed on samples of 
fresh ruminal tissues washed in a phosphate buffer (0.1 
M, pH 7.4), put in plastic containers, and fixed in a 10% 
buffered formalin solution as pieces of tissue spread on 
flat polystyrene [20]. The fixed material was processed 
using a series of reagents and embedded in Paraplast 
PLUS paraffin blocks (Leica, Buffalo Grove, USA), which 
were then cut using a rotary microtome into Sects.  3.5 
μm thick. Slides with a paraffin section were automati-
cally stained with hematoxylin and eosin (Varistain 
Gemini Thermo Scientific, Runcorn, UK). An Axio Lab. 
1 microscope (Carl Zeiss, Jena, Germany) equipped with 
a Zeiss Axiocam ERc5s digital camera and Imager.M2 
Axio (Carl Zeiss, Jena, Germany) was used for histologi-
cal evaluation. Photographs were analyzed and recorded 
using ZEN 2.3 (blue edition) software (Carl Zeiss Micros-
copy GmbH, 2011).

Statistical analysis
The data were analyzed using one-way ANOVAs (Graph-
Pad Prism 9.2.0 (332) 2021; GraphPad Software, Inc., San 
Diego, USA). Individual differences were determined 
using Tukey’s multiple-comparison post hoc test and 
were considered to be significant at P < 0.05. The micro-
bial population data were evaluated using the nonpara-
metric Kruskal–Wallis method.
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BD  Basal diet
CP  Crude protein
CM-cellulase  Carboxymethyl cellulose
DM  Dry matter
IVDMD  in vitro Dry matter digestibility
IVGPT  in vitro Gas production technique
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