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Nanotechnology using nanoscale materials is increasingly being utilized for clinical 
applications, especially as a new paradigm for infectious diseases. Infections caused by 
multidrug-resistant organisms (MDROs) are emerging as causes of morbidity and mortality 
worldwide. Antibiotic options for infections caused by MDROs are often limited. These 
clinical challenges highlight the critical demand for alternative and effective antimicrobial 
strategies. Nanoparticles (NPs) can penetrate the cell membrane of pathogenic 
microorganisms and interfere with important molecular pathways, formulating unique 
antimicrobial mechanisms. In combination with optimal antibiotics, NPs have demonstrated 
synergy and may aid in limiting the global crisis of emerging bacterial resistance. In this 
review, we summarized current research on the broad classification of the NPs that have 
shown in vitro antimicrobial activity against MDROs, including the ESKAPE pathogens 
(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 
baumannii, Pseudomonas aeruginosa, and Enterobacter species). The pharmacokinetics 
and pharmacodynamic characteristics of NPs and bacteria-resistant mechanisms to NPs 
were also discussed.
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INTRODUCTION

Multidrug-resistant organisms (MDROs) are becoming a growing public health crisis and make 
many healthcare-associated infections difficult to treat with current antibiotics (Boucher et al., 
2009; Peleg and Hooper, 2010). Globally, infections caused by MDROs are emerging causes of 
morbidity and mortality (Ismail et al., 2018; Kuo et al., 2018; Ting et al., 2018; Tsao et al., 2018). 
The development of new antibiotics requires tremendous economic and labor investment and is 
time-consuming (Huh and Kwon, 2011). For these MDRO infections, high doses of antibiotics 
will be administered and may generate intolerable toxic and adverse effects, which will prompt the 
development of alternative strategies.

The application of nanoparticles (NPs) provides a potential strategy to manage infections caused 
by MDROs (Singh et al., 2014; Natan and Banin, 2017; Baptista et al., 2018; Muzammil et al., 2018). 
In this respect, NPs have shown therapeutic promise owing to their unique physical and chemical 
attributes (Pelgrift and Friedman, 2013; Beyth et al., 2015; Hemeg, 2017). NPs exhibiting antibacterial 
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activities can target multiple biomolecules and have the potential 
to reduce or eliminate the evolution of MDROs (Slavin et al., 
2017). However, the translation of NPs to clinical use requires 
not only appropriate methods for the synthesis of NPs but also a 
thorough understanding of the physicochemical particularities, 
in vitro and in vivo effects, biodistribution, pharmacokinetics, 
and pharmacodynamics of NPs (Burdusel et al., 2018).

In this review, we will present a broad classification of the NPs 
that show in vitro antimicrobial activity against MDROs, and 
the synergistic effects of NPs with current available antibiotics, 
pharmacokinetic and pharmacodynamic characteristics, and 
resistant mechanisms will also be discussed.

APPLICATIONS OF NPs AS 
ANTIMICROBIAL AGENTS

NPs possess antimicrobial activity that can overcome common 
resistant mechanisms, including enzyme inactivation, decreased 
cell permeability, modification of target sites/enzymes, and 
increased efflux through overexpression of efflux pumps, to 
escape from the antibacterial activity of antimicrobial agents 
(Mulvey and Simor, 2009; Baptista et al., 2018) (Figure 1). 
Moreover, NPs conjugated with antibiotics show synergistic 
effects against bacteria, prohibit biofilm formation, and have 
been utilized to combat MDROs (Pelgrift and Friedman, 2013; 
Baptista et al., 2018).

Several characteristics of NPs make them alternatives 
to traditional antibiotics. First, the large surface-area-to-
volume ratio of NPs increases the contact area with target 
organisms. NPs can act as nanoscale molecules interacting 
with bacterial cells, regulating cell membrane penetration, and 
interfering with molecular pathways (Rai et al., 2012; Dakal 
et al., 2016; Duran et al., 2016; Hemeg, 2017). Second, NPs 
may enhance the inhibitory effects of antibiotics. Saha et al. 
(2007) demonstrated that gold NPs conjugated with ampicillin, 
streptomycin, or kanamycin could lower the minimum 
inhibitory concentrations (MICs) of the antibiotic counterparts 
against both gram-negative and gram-positive bacteria. 
Likewise, Gupta et al. (2017) demonstrated a synergistic effect 
of functionalized Au NPs and fluoroquinolone antibiotics for 
the treatment of multidrug-resistant Escherichia coli infections. 
However, the complexity of the physicochemical properties, 
including size, shape, chemical modification, solvent, and 
environmental factors, can affect the antibacterial properties 
of NPs during preparation of NPs and interact with bacteria 
(Beyth et al., 2015). Finally, combinations of antibiotics and 
NPs provide complex antimicrobial mechanisms to overcome 
antibiotic resistance (Huh and Kwon, 2011). Gupta et al. (2017) 
demonstrated a synergistic effect using functionalized Au NPs 
and fluoroquinolone antibiotics for the treatment of multidrug-
resistant E. coli bacterial strains.

NPs are therefore regarded as next-generation antibiotics. 
In both in vitro and in vivo studies, NPs, mainly metallic, have 

FIGURE 1 | Mechanisms of antimicrobial resistance (Mulvey and Simor, 2009) and actions of nanoparticles (Baptista et al., 2018).
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been shown to exhibit activity against gram-positive and gram-
negative bacteria (Zazo et al., 2016). Though antimicrobial 
mechanisms that depend on the size, shape, ζ-potential, ligands, 
and material used are not well understood (Huh and Kwon, 
2011; Singh et al., 2014; Zazo et al., 2016); currently accepted 
mechanisms include (1) direct interaction with the bacteria, 
leading to the disruption of membrane potential and integrity; 
(2) triggering of the host immune responses; (3) inhibition of 
biofilm formation; (4) generation of reactive oxygen species 
(ROS); and (5) inhibition of RNA and protein synthesis through 
the induction of intracellular effects (Pelgrift and Friedman, 2013; 

Beyth et al., 2015) (Figure 1). NP coatings on implantable devices, 
wound dressings, bone cement, or dental materials can function 
as NP-based antibiotic delivery systems (Wang et al., 2017). 
Furthermore, NPs can be vectors to transfer drugs so that higher 
doses of antimicrobial agents can be delivered to infected sites 
(Pelgrift and Friedman, 2013). Thus, the combination of NPs and 
antimicrobial agents may be beneficial in fighting the ongoing 
crisis of antimicrobial resistance (Baptista et al., 2018). Clinical 
applications of NPs have recently been evaluated to highlight the 
in vitro antimicrobial activities of NPs and the potential adverse 
effects of NPs on human health (Table 1).

TABLE 1 | Nanoparticle activity against multidrug-resistant (MDR) pathogens and mechanisms of action and characteristics.

Nanoparticles 
(NPs)

Size Targeted bacteria and 
antibiotic resistance

Antibacterial mechanisms Factors affecting 
antimicrobial activity/
toxicity

References

Gold (Au) NP 1–100 nm Methicillin-resistant 
Staphylococcus aureus 
(MRSA)

Loss of membrane potential, 
disruption of the respiratory chain, 
reduced ATPase activity, decline in 
tRNA binding to ribosome subunit, 
bacterial membrane disruption, 
generation of holes in the cell wall

Roughness and  
particle size

(Chen et al., 2014; Dizaj 
et al., 2014; Rudramurthy 
et al., 2016; Hemeg, 
2017; Zaidi et al., 2017)

Silver (Ag) NP 1–100 nm Staphylococcus epidermidis, 
MRSA, vancomycin-resistant 
Enterococcus (VRE), 
extended-spectrum beta-
lactamase (ESBL)-producing 
organisms, MDR Escherichia 
coli, Pseudomonas 
aeruginosa, Klebsiella 
pneumoniae, carbapenem- 
and polymyxin B-resistant 
A. baumannii, carbapenem-
resistant P. aeruginosa 
and carbapenem-resistant 
Enterobacteriaceae (CRE)

Reactive oxygen species (ROS) 
generation, lipid peroxidation, 
inhibition of cytochromes in the 
electron transport chain, bacterial 
membrane disintegration, inhibition 
of cell wall synthesis, increase in 
membrane permeability, dissipation 
of proton gradient resulting in lysis, 
adhesion to cell surface causing 
lipid and protein damage, ribosome 
destabilization, intercalation 
between DNA bases

Particle size and shape  
of particles

(Dizaj et al., 2014; 
Cavassin et al., 2015; 
Rudramurthy et al., 2016; 
Hemeg, 2017; Zaidi 
et al., 2017)

Copper (Cu) 
NP

2–350 nm MDR E. coli, A. baumannii Dissipation of cell membrane 
potential, ROS generation, lipid 
peroxidation, protein oxidation,  
DNA degradation

Particle size and 
concentration

(Chatterjee et al., 2014; 
Dizaj et al., 2014; 
Cavassin et al., 2015; 
Hemeg, 2017; Zaidi et al., 
2017)

Silica (Si) NP 20–400 nm MRSA Disruption of cell walls through ROS Particle size, shape, and 
stability

(Dizaj et al., 2014; Zaidi 
et al., 2017)

Aluminum (Al) 
NP

10–100 nm E. coli Disruption of cell walls through ROS (Rudramurthy et al., 2016; 
Hemeg, 2017)

Iron oxide NP 1–100 nm MDR E. coli, K. pneumoniae, 
MRSA

ROS-generated oxidative stress: 
superoxide radicals (O2−), singlet 
oxygen (1O2), hydroxyl radicals 
(OH−), hydrogen peroxide (H2O2)

Has high chemical activity, 
tends to aggregate, is 
oxidized by air resulting 
in loss of magnetism and 
dispersibility

(Rudramurthy et al., 2016; 
Zaidi et al., 2017)

Zinc oxide 
(ZnO) NP

10–100 nm Enterobacter aerogenes, 
E. coli, Klebsiella oxytoca, 
K. pneumoniae, MRSA, 
ESBL-producing E. coli, 
K. pneumoniae

ROS production, disruption of 
membrane, adsorption to cell 
surface, and lipid and protein 
damage

Particle size and 
concentration

(Vandebriel and De Jong, 
2012; Cavassin et al., 
2015; Rudramurthy et al., 
2016; Hemeg, 2017)

Titanium 
dioxide (TiO2) 
NP

30–45 nm E. coli, P. aeruginosa, S. aureus, 
Enterococcus faecium

ROS generation, adsorption to the 
cell surface

Crystal structure, shape, 
and size

(Rudramurthy et al., 2016; 
Hemeg, 2017)

Magnesium 
oxide (MgO) 
NP

15–100 nm S. aureus, E. coli ROS generation, lipid peroxidation, 
electrostatic interaction, alkaline 
effect

Particle size, pH, and 
concentration

(Rudramurthy et al., 2016)
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ANTIMICROBIAL ACTIVITY OF NPs

NPs with antimicrobial activity that combats Enterococcus faecium, 
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 
baumannii, P. aeruginosa, and Enterobacter species (Ansari et al., 
2014; Dizaj et al., 2014; Beyth et al., 2015; Hemeg, 2017) include 
NPs containing Ag, Au, Zn, Cu, Ti, Mg, Ni, Ce, Se, Al, Cd, Y, Pd, or 
superparamagnetic Fe (Hemeg, 2017). The antimicrobial activities 
against MDROs, mechanisms of action, and characteristics of 
various NPs are shown in Table 1. Among various metallic NPs and 
their oxides already applied as active antimicrobial agents, silver or 
its ionic form is the most toxic to bacteria (Seil and Webster, 2012). 
This makes silver of particular interest. Silver NPs (Ag NPs) are used 
to a great extent since they have multiple mechanisms of antibacterial 
action (Cheng et al., 2016), high biocompatibility, and functionalized 
potential and are easy to detect (Baranwal et al., 2018). Although Ag 
NPs are difficult to functionalize with biomolecules and antibiotics, 
Ag–gold (Au) alloys provide another path, since they combine the 
antimicrobial effects of Ag with the effectiveness of functionalization 
and the stability of Au in the form of bimetallic NPs (Baptista et al., 
2018). Furthermore, Ag–Au NPs functionalized with tetracycline 
have been shown to have a synergetic effect, which is attributed to 
the generation of ROS (Fakhri et al., 2017).

Ag NPs and Au NPs may exhibit decreased antibacterial 
activity when their surfaces are modified (Rai et al., 2012; Dakal 
et al., 2016; Duran et al., 2016; Hemeg, 2017), and copper (Cu) 
NPs with modified surfaces lose antimicrobial activity and fail to 
change the morphology of microbial cells (Baranwal et al., 2018). 
However, most metallic NPs, through the release of toxic ions, 
inflammatory cytokines, and the generation of ROS, may cause 
immunotoxicity, cytotoxicity, and genotoxicity in both healthy 
and infected cells (Schrand et al., 2010; Ding et al., 2015).

Au–Pt bimetallic NPs have antibacterial activity against 
multidrug‐resistant E. coli through the dissipation of bacterial 
membrane potential and the elevation of adenosine triphosphate 
(ATP) levels (Baptista et al., 2018). Cu–Ni bimetallic NPs 
have been utilized as coating agents but have been used less in 
antimicrobial applications (Baptista et al., 2018)

With biocompatibility and magnetic properties, iron oxide (FeO) 
is well known in the biomedical sector. Recently, the antibacterial 
properties of reduced iron and FeO NPs that damage bacteria cells 
through the disruption of the bacterial membrane and generation 
of oxidative stress inside the cell have been studied (Baranwal et al., 
2018). The characteristic compatibility and safety of ZnO NPs on 
human skin make them appropriate additives for cosmetics, fabrics, 
and surfaces in close proximity to human skin (Dizaj et al., 2014). 
Copper oxide (CuO) NPs have been shown to exhibit excellent 
bactericidal and fungicidal activity (Ren et al., 2009), whereas TiO2 
NPs possess spectacular antimicrobial properties, mainly related to 
ROS formation, particularly –OH free radicals (Baranwal et al., 2018).

SYNERGISTIC EFFECTS OF NPs WITH 
ANTIBIOTICS

To overcome antibiotic resistance, NPs can be tailored and 
packaged with diverse antimicrobial agents. NPs act on 

bacteria through multiple targets and/or a unique mechanism; 
thus, antimicrobial resistance is unlikely to develop if NPs are 
combined with antibiotics since multiple simultaneous mutations 
are required in the same microorganism (Fischbach, 2011; Zhao 
and Jiang, 2013). The functionalization of NPs with antibiotics 
can be a promising regimen to combat bacterial resistance. 
Moreover, NPs can deliver antimicrobial agents to or target the 
infected sites and reduce the dosage and toxicity of antibiotics 
(Hemeg, 2017). For example, the synergistic antibacterial 
efficiency of Ag NPs and antibiotics against S. aureus, beta-
lactamase- or carbapenemase-producing E. coli, P. aeruginosa, 
and A. baumannii strains at extremely low concentrations has 
been found (Naqvi et al., 2013; Panacek et al., 2015; Scandorieiro 
et al., 2016), whereas synergistic antibacterial effects of Ag, 
Au, and ZnO NPs and antibiotics have been observed against 
S. aureus, E. faecium, E. coli, A. baumannii, and P. aeruginosa 
through the penetration of the bacterial cell membrane and the 
interference with important molecular pathways, formulating 
unique antimicrobial mechanisms (Hemeg, 2017). The efficacy 
of antibiotics combined with NPs was identical in both gram-
positive and gram-negative bacteria, unlike the difficulty in 
killing MDROs with antibiotics alone (Hemeg, 2017). The 
combinations of antibiotics and functionalized Ag, Au, or ZnO 
NPs may promote the reversal of antimicrobial resistance and 
boost the antimicrobial effects of several antibiotics, including 
polymyxin B, ciprofloxacin, ceftazidime, ampicillin, clindamycin, 
vancomycin, or erythromycin, against MDROs, including 
antibiotic-resistant A. baumannii, P. aeruginosa, E. faecium; 
vancomycin-resistant Enterococcus (VRE); and methicillin-
resistant S. aureus (MRSA) (Hemeg, 2017).

PHARMACOKINETIC AND 
PHARMACODYNAMIC 
CHARACTERISTICS OF NPs

The pharmacokinetics of NPs depend on numerous aspects, 
such as the particle type, size, surface charge, surface coating, 
protein binding, exposure route, dose, and animal species. A 
comprehensive understanding of their pharmacokinetics is pivotal 
for risk assessment and biosafety in clinical practice (Lin et al., 
2015). The pharmacokinetic and pharmacodynamic characteristics 
of NPs are summarized in Figure 2. The systemic or local activity 
and toxicity of NPs are dependent on the administration route 
and physicochemical characteristics, and chronic toxicity may be 
related to the complicated elimination pathway (Zazo et al., 2016). 
A summary of the present knowledge of the pharmacokinetics and 
toxicity of metallic NPs is provided in Table 2.

The oral, dermal, or pulmonary absorption of Au NPs, Ag 
NPs, or TiO2 NPs is generally low (Table 2). The parenteral route 
is favored for targeting the liver or spleen. For muscle or skin 
targeting, the administrative route can be topical, intramuscular, 
intradermal, or subcutaneous, whereas oral or intranasal 
administration is used in the case of mucosal targeting (Zazo 
et al., 2016). For example, the absorption of Au NPs by inhalation 
ranges from 0.06% to 5.5%, depending on the size of the NP (Lin 
et al., 2015; Zazo et al., 2016). Oral absorption is approximately 
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0.01–5% for Au NPs, 1–4.2% for Ag NPs, and 0.01–0.05% for 
TiO2 NPs, depending on the size and coating (Lin et al., 2015).

Regardless of the particle type, most metallic NPs are 
distributed mainly in the liver and spleen, but the physicochemical 
properties of Au NPs could be modified to increase their 
distribution to specific target organs (Lin et al., 2015). However, 
long-term studies regarding a full interpretation of the 
toxicological implications of NP absorption and penetration 
through tissues are lacking (Lin et al., 2015).

Dose Optimization
The decision for the optimal dose is crucial for therapeutic 
targets and minimizing toxicity for medical translation (Khan 
et al., 2016; Hua et al., 2018). Thus far, the doses of nanomaterials 
causing cell damage in vitro are unrealistically high and are 
impossible to apply to humans (Khan et al., 2016). The data from 
animal studies may not be directly translated to human beings, 
and appropriate and realistic doses should be studied in the future 
(Khan et al., 2016; Hua et al., 2018). There have been few clinical 
studies on NP dosing. Munger et al. (2014) reported two oral 
doses (10 ppm with a size ranging from 5 to 10 nm and 32 ppm 
with a size ranging from 25 to 40 nm) of a commercial solution of 
Ag NP in healthy adult volunteers that did not prompt clinically 
significant changes in human metabolic and hematologic 
profiles, urine, physical findings, or imaging morphology based 
on comprehensive assays and tests. More clinical studies are 
warranted before the application of NPs to patients.

Clearance and Elimination
The elimination of metallic NPs via urinary and biliary pathways 
is generally low, which leads to their long-term accumulation in 

the liver and spleen (Lin et al., 2015). In addition, NPs do not 
undergo biodegradation into biologically benign components 
and thus exhibit prolonged tissue retention, eventually leading to 
amplified toxic effects (Zaidi et al., 2017). A higher accumulation 
of 10-nm NPs was observed in the kidneys, but this could be 
caused by a lessened availability of the larger NPs due to their 
high accumulations in the liver and spleen (Hoshyar et al., 2016).

The degree of opsonization of NPs by serum proteins is 
determined by the charge and size of the NPs. By opsonization, 
the in vivo hydrodynamic diameter (HD) or the effective size of 
NPs can be altered (Zaidi et al., 2017). The endothelium usually 
has a pore size of 5 nm, and particles with an HD smaller than 
5 nm can equilibrate with the extravascular extracellular space 
(EES). Conversely, larger particles with slow movement across the 
endothelium remain in circulation for extended periods (Zaidi 
et al., 2017). The kidney can remove molecules from vascular 
compartments, but the particles in the range of 10–20 nm are 
excluded from renal filtration and are eliminated through the 
hepatobiliary system (Zaidi et al., 2017). The remaining particles 
that escape degradation by Kupffer cells will be retained in the 
body for prolonged periods (Zaidi et al., 2017). More studies 
are vital to explore the ways to increase biliary and/or urine 
elimination of NPs to reduce organ accumulation and potential 
toxicity (Lin et al., 2015).

Pharmacodynamic Properties
The antimicrobial activity of NPs depends on several 
physicochemical properties, such as their size, shape, solubility, 
and ability to form free biocidal metal ions (Khan et al., 2016). 
Generally, smaller NPs show increased antibacterial activity 
compared to larger NPs (Lu et al., 2013). Gram-positive and gram-
negative bacteria differ in terms of cell membrane components 

FIGURE 2 | Pharmacokinetic (PK) and pharmacodynamic (PD) characteristics of nanoparticles (NPs).
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and structures and have different adsorption pathways for NPs 
(Lesniak et al., 2013). The susceptibility of bacteria to NPs depends 
on their biochemical composition since different NPs target 
different biomolecules (Khan et al., 2016). Moreover, rapidly 
growing bacteria are more susceptible to NPs or antibiotics than 
slow-growing bacteria. This may be due to the variable expression 
of stress-response genes between rapidly growing and slow-
growing bacteria (Stewart, 2002; Khan et al., 2016).

The antibacterial effects of NPs have been noted to be 
more pronounced for gram-positive bacteria than for gram-
negative bacteria. Such a finding may be related to the fact 
that the nonporous cell walls of gram-negative bacteria serve 
as penetration barriers for the entry of NPs (Zaidi et al., 2017). 
Cell walls of gram-positive bacteria with covalent links with 

neighboring proteins and components are relatively porous and 
allow the penetration of foreign molecules (Zaidi et al., 2017).

TOXICITY

Local and systemic toxic complications, as well as deleterious 
effects on beneficial bacteria in humans, are concerns for the 
use of NPs (Zhang et al., 2010; Khan et al., 2016). Both NPs 
themselves and toxic degradation products of NPs can cause 
hemolysis and interfere with blood coagulation pathways (Kandi 
and Kandi, 2015). The exact mechanism of toxic complications 
is unclear, but it has been observed that the larger the size of the 
NP is, the greater the risk of adverse health effects (Dos Santos 

TABLE 2 | Comparisons of the pharmacokinetic characteristics and toxicity of metallic nanoparticles (NPs).

Type of NP Absorption Tissue distribution Metabolism Elimination Toxicity

Au NP *T1/2: increases with 
decreasing particle size

*Distributed to the liver 
(51.3–96.9%) and spleen 
(2–11.4%) after venous 
injection

Degraded within the 
endosomal compartments 
in mammalian cells

*Low renal elimination: 
9% for 1.4-nm Au NPs 
within 24 h after parenteral 
injection (rats)

Cellular membrane toxicity

*Low oral absorption: 
0.37–0.01% for large size

*Crosses the blood–brain 
barrier (BBB) to a low 
extent

*Negatively charged 
Au NPs have a higher 
absorption than positive 
particles (0.37% vs. 
0.14%, respectively;  
2.8 nm) in rats

*Placental transfer 
depends on both the 
stage of embryonic/
placental maturation and 
the surface composition

*Renal elimination: more 
efficient than biliary 
excretion, if size < the 
threshold value of 5.5 nm

*Inhalational absorption: 
0.06–5.5%

*Distributes to tissues and 
remains for a long time  
(>6 months)

*Biliary excretion is higher 
than urinary excretion if 
size = 13 nm

Ag NP T1/2: 4.1 days (rats) 
and 11.7–16.3 days 
(rabbits) for 7.9 nm after 
parenteral injection

*Mainly distributed to liver 
and spleen followed by 
kidneys, regardless of the 
exposure route

*Release Ag+, which can 
precipitate with Cl− in the 
stomach

Elimination profiles: size 
<5.5 nm not reported;  
>5.5 nm: biliary elimination 
is more efficient than urine 
elimination

Allergies; cytotoxicity; 
neurologic, renal, 
hepatic, and blood cell 
complications; skin 
discoloration; mitochondrial 
toxicity; and oxidative stress 
in brain tissue

*≥80 nm: mainly 
distributed to the 
spleen; ≤60 nm mainly 
accumulated in the liver
*Both Ag NPs and Ag 
ions pass the BBB, but 
micronized Ag particles 
cannot: Ag NPs have been 
detected in neuronal cells

*In blood, Ag+ can bind to 
proteins with thiol groups 
and distribute to various 
tissues

Other 
metallic 
NPs

*T1/2 of FeO NPs: shorter 
than Au NPs and Ag NPs 
(ferumoxtran-10: 2.6 h in 
rats and 5.7 h in monkeys)

The liver and spleen are 
also the primary organs of 
distribution for FeO NPs, 
TiO2 NPs, and ZnO NPs

FeO NPs: progressively 
degraded and eliminated 
primarily in urine; >80% 
remain in the body for 84 
days after exposure

*FeO NPs: elimination 
is mainly via the biliary 
route, excreted in urine 
and feces

*High toxicity of CuO NPs 
causes oxidative lesions
*DNA damage induced by 
ZnO and TiO2 NPs

*Low oral, dermal, or 
pulmonary absorption of 
TiO2 NPs

TiO2 NPs are able to cross 
the placenta to reach 
the fetus and stay in the 
offspring’s brain up until at 
least the juvenile period

*TiO2 NPs: more excretion 
via urine than via feces

*ZnO NPs cause lung 
inflammation and systemic 
toxicity

Remarked 
issue

Limited pharmacokinetic 
data of metallic NPs in 
large laboratory animals 
(e.g., pigs)

Limited information 
about the effects 
of physicochemical 
properties of metallic 
NPs on specific tissue 
distribution

*No published in vivo 
studies on the metabolism 
of Au NPs

Limited data to increase 
biliary and/or urine 
excretion of metallic NPs

No conclusive evaluation of 
the exact mechanism for NP 
toxic complications

*Enzymes that mediate 
metabolism or degradation 
of metallic NPs have yet to 
be identified

*The asterisks indicate the different subitems, and there will be no asterisk if there was one subitem.
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et al., 2014). Among metal NPs, the toxicity of Ag NPs has been 
studied extensively, and Ag NPs were shown to be more toxic 
toward cell lines. However, most studies were performed in vitro 
(Bondarenko et al., 2013; Ivask et al., 2014). The deposition of Ag 
NPs in the liver, spleen, lungs, and other organs results in organ 
damage and dysfunction and seriously decreases their efficacy 
(Hemeg, 2017). Elevated Ag levels have been found in both blood 
and urine by the leaching of Ag from Acticoat®, a nanocrystalline 
Ag wound dressing, into the bloodstream (Khan et al., 2016) and 
were confirmed in burn patients (Vlachou et al., 2007). Al2O3 NPs 
that interact with cellular biomolecules and cause adverse effects 
of neurotoxicity could serve as broad-spectrum bactericidal 
agents, regardless of drug resistance mechanisms (Ansari et al., 
2014). The oxidative damage of CuO NPs and DNA damage 
induced by ZnO NPs or TiO2 NPs limit their use (Hemeg, 2017).

Intravenously administered NPs could accumulate in the colon, 
lung, bone marrow, liver, spleen, and lymphatic system (Hagens 
et al., 2007), and inhalation might cause cytotoxicity in the lung 
(Leucuta, 2013). The generated free radical-mediated oxidative 
stress by CuO NP could interact with cell components and induce 
hepatotoxicity and nephrotoxicity (De Jong and Borm, 2008; Lei 
et al., 2008; Baptista et al., 2018). Though several in vivo studies 
have reported no apparent life-threatening toxicity related to 
NPs (Pfurtscheller et al., 2014; Sengupta et al., 2014; Wei et al., 
2015; Zazo et al., 2016), chronic toxicity, such as nephrotoxicity, 
hepatotoxicity, or pulmonary toxicity, can result from the 
accumulation of metallic NPs in these tissues (Duncan and Gaspar, 
2011; Arvizo et al., 2012; Wei et al., 2015; Zazo et al., 2016).

However, the evaluation of toxicity at the cellular and systemic 
levels remains important for clinical translation, and several 
parameters, such as the administration route for a desired 
therapeutic effect (Khan et al., 2016) and the nature and extent 
of the interactions between NPs and cells, tissues, and organs, 
should be considered (Sandhiya et al., 2009). Detailed in vivo and 
clinical studies assessing the toxicity of NPs are highly desirable 
before the routine application of NPs in combating difficult-to-
treat infections due to MDROs.

RESISTANCE TO NPs

NPs have multifunctional mechanisms to attack bacteria that 
are different from those of the currently available antibiotics 
(Figure 1), and the combination of NPs and clinically available 
antibiotics allows for recovery of antimicrobial efficacy (Zhao 
and Jiang, 2013; Zazo et al., 2016). Microbial cells need to acquire 
multiple mutations to develop resistance toward NPs (Singh et al., 
2018). Furthermore, the synthesis of NPs that bind with proteins, 
polysaccharides, or small bioactive compounds would further 
enhance their antimicrobial activity toward MDROs (Singh et al., 
2018). Resistance to NPs is always a clinical concern (Zhao and 
Jiang, 2013). Though rare, bacteria resistant to Ag, Au, or Cu 
NPs have been reported even after exposure to one dose of NPs 
(Zhao and Jiang, 2013; Finley et al., 2015; Zazo et al., 2016). The 
resistance might be related to changes in the permeability of the 
outer membrane and high expression of efflux pumps (Zhao and 
Jiang, 2013; Finley et al., 2015).

Another example of resistance to NPs is that after exposure 
to Cu++ and Cu-doped TiO2 NPs, reduced antimicrobial activity 
of TiO2 NPs to Shewanella oneidensis was noted. This effect is 
likely to be associated with decreased uptake and/or increased 
efflux of Cu++ and Cu-doped TiO2 NPs (Wu et al., 2010; Hajipour 
et al., 2012). Reduced toxic effects of both TiO2 and Al2O3 NPs 
to Cupriavidus metallidurans were possibly due to less uptake of 
plasma membrane or cell wall or increased efflux of NPs (Pelgrift 
and Friedman, 2013).

The increasing clinical application of Ag NPs still raises the 
concern of bacterial resistance to Ag NPs (Barros et al., 2018). 
Resistance to Ag NPs attributed to sil genes has been reported 
in clinical K. pneumoniae and Enterobacter cloacae isolates from 
burn cases (Finley et al., 2015). Genetic changes in bacteria may 
result in the rapid evolution of resistance to Ag NPs (Graves 
et al., 2015), and Al2O3 NPs could trigger increased expression 
of conjugation-promoting genes and promote the horizontal 
transfer of antibiotic resistance genes (Hemeg, 2017). The 
phenotypic change in the production of flagellin in E. coli isolates 
resistant to Ag NPs was found to readily induce NP aggregation 
and attenuate the antimicrobial activity of Ag NPs (Finley et al., 
2015; Panacek et al., 2018).

STRENGTHS AND LIMITATIONS OF THE 
APPLICATION OF NPs AGAINST MDROs

NPs have the potential to treat bacterial infections (Table 3), 
but several challenges remain for their successful translation to 
the clinic, including further assessment of the interactions of 
NPs with cells, tissues, and organs; optimal dose; recognition of 
appropriate administration routes; and toxicity following acute 
and long-term exposure (Sandhiya et al., 2009; Huh and Kwon, 
2011; Baptista et al., 2018).

The unique physical structure of NPs offers distinctive advantages 
over conventional antibiotics in terms of antibiotic resistance (Zazo 
et al., 2016). The current state of NPs exhibits a strong potential to 
topically treat skin infections in the near future (Zazo et al., 2016). 
Efforts have been made to apply NPs on the contact surfaces of 
medical devices, fibers, and textiles (Zazo et al., 2016). However, 

TABLE 3 | Advantages and disadvantages of antimicrobial nanoparticles.

Advantages Disadvantages

Targeted drug delivery via specific 
accumulation

Accumulation of intravenously injected 
nanomaterials in tissues and organs

Fewer side effects of chemical 
antimicrobials

High systemic exposure to locally 
administered drugs with proper doses 
for desirable therapeutic use

Less prone to bacterial resistance High systemic exposure to locally 
administered drugs with proper doses 
for desirable therapeutic use

Can cross tissue barriers (e.g., blood–
brain barrier)
Extended therapeutic lifetime due to 
slow elimination

Nanotoxicity (lung, kidney, liver, brain, 
germ cell, metabolic, etc.)

Controlled drug release
Broad therapeutic index Lack of characterization techniques 

that are not affected by the properties 
of nanoparticles (NPs)

Improved solubility
Low immunosuppression
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systemic administration of NPs still requires multiple aspects to be 
addressed (Zazo et al., 2016; Zaidi et al., 2017).

Formulation of proper guidelines for the production 
and scaled-up manufacturing of these nanomaterials, the 
characterization of the physicochemical properties and their 
effect on biocompatibility, standardization of nanotoxicological 
assays, and protocols to compare data originating from in vitro 
and in vivo studies are urgent for clinical translation (Duncan 
and Gaspar, 2011; Beyth et al., 2015; Rai et al., 2016; Zazo et al., 
2016). Further preclinical studies have to consider the therapeutic 
efficacy parameters in clinical trials and the safety of NP systems 
(Zazo et al., 2016). Finally, the economic impact of clinical 
translation of these NPs must be addressed with regard to their 
therapeutic efficacy (Duncan and Gaspar, 2011; Zazo et al., 2016).

CONCLUSION AND FUTURE DIRECTIONS

Given their therapeutic potential, it is essential to determine 
the mechanisms by which NP complexes inhibit or kill bacteria. 

However, there is limited information about the metabolism, 
clearance, and toxicity of NPs; the nature of optimal targets 
for certain infections; and the optimum dose for therapeutic 
activity at the pathogen target sites. Specific combinations of 
NPs and antibiotics can prevent the emergence of resistance 
or drive resistant bacteria back toward drug sensitivity, but 
translation into the clinic requires an in-depth perception of the 
pharmacokinetics/pharmacodynamics of NPs.
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