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Background: Heart failure (HF) is a rapidly growing public health problem, and its two 
main etiological types are non-ischemic heart failure (NIHF) and ischemic heart failure 
(IHF). However, the independent and common mechanisms of NIHF and IHF have not 
been fully elucidated. Here, bioinformatic analysis was used to characterize the difference 
and independent pathways for IHF and NIHF, and more importantly, to unearth the common 
potential markers and therapeutic targets in IHF and NIHF.
Methods: Two data sets with accession numbers GSE26887 and GSE84796 were down-
loaded from the Gene Expression Omnibus (GEO) database. After identifying the indepen-
dent and communal DEGs of NIHF and IHF, a functional annotation, protein–protein 
interaction (PPI) network analysis, co-expression and drug–gene interaction prediction 
analysis, and mRNA-miRNA regulatory network analysis were performed for DEGs.
Results: We found 1146 independent DEGs (DEGs2) of NIHF mainly enriched in transcrip-
tion-related and 2595 independent DEGs (DEGs3) of IHF mainly enriched in immune- 
related. Moreover, 185 communal DEGs (DEGs1) were found between NIHF and IHF, 
including 93 upregulated genes and 92 downregulated genes. Pathway enrichment analysis 
results showed that GPCR pathways and biological processes are closely related to the 
occurrence of HF. In addition, three hub genes were identified from PPI network, including 
CCL5, C5 and TLR3.
Conclusion: The identification of DEGs and hub genes in this study contributes to a novel 
perception for potential functional mechanisms and biomarkers or therapeutic targets in 
NIHF and IHF.
Keywords: bioinformatical analysis, differentially expressed genes, hub genes, heart failure, 
ischemic heart failure, non-ischemic heart failure

Introduction
Heart failure (HF) is the inability of the heart to deliver sufficient blood to meet the 
demands of our body under normal filling pressure, which ultimately leads to 
a complex and severe disease syndrome.1,2 HF is a rapidly growing public health 
issue with an estimated prevalence of 37.7 million individuals globally, which 
confers a substantial burden to the health-care system.2,3 Although the classification 
system for HF causes remain debated, it’s undeniable that non-ischemic heart 
failure (NIHF) and ischemic heart failure (IHF) are the two main etiological 
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categories of HF.4 IHF, the most common type, is defined 
as left ventricular (LV) systolic dysfunction due to the 
coronary artery disease (CAD).5 NIHF is the other heart 
failure that excludes CAD factors, including all remaining 
heterogeneous HF etiologies, like valvular diseases, toxic 
damage, metabolic conditions and genetic 
cardiomyopathies.6,7 Recent studies have shown that the 
expression levels of cytokines, relating to HF, are signifi-
cantly different between IHF and NIHF.7 Meanwhile, 
large-scale clinical trials have reported that IHF and 
NIHF respond differently to interventional drug 
therapies.4,8 However, the exact biological mechanism of 
above is still unclear. Interestingly, although the etiology is 
different between IHF and NIHF, the pathology is very 
similar, especially in patients with end stage of HF.4 So, 
there could be a common biological mechanism in the 
development of IHF and NIHF.

Therefore, the purpose of this study is to use 
Bioinformatic analysis to characterize distinct and inde-
pendent pathways for IHF and NIHF, and more impor-
tantly, to identify the common biological mechanisms of 
IHF and NIHF, so as to reveal potential biomarkers and 
therapeutic directions of HF. In this study, two mRNA 
microarray data sets were downloaded from the Gene 
Expression Omnibus (GEO) for screening the differen-
tially expressed genes (DEGs) associated with IHF and 
NIHF. Then, gene ontology and pathway enrichment ana-
lysis and protein–protein interaction (PPI) network analy-
sis were performed to help us understand the independent 
and shared molecular mechanisms of DM and HF. In 
conclusion, a total of 185 DEGs and 4 hub genes, which 
might play an important role in the common biological 
mechanisms between NIHF and IHF.

Materials and Methods
Data Source
GEO (https://www.ncbi.nlm.nih.gov/geo/) is a public gene 
expression database created by NCBI, which contains high 
throughput sequencing and microarray data sets.9 Among 
the inclusion criteria were (1) a. NIHF databases: HF 
patients was diagnosed dilated cardiomyopathy or no 
obvious evidence of ischemic heart disease; b. IHF database: 
HF patient was diagnosed with ischemic cardiomyopathy; 
(2) detection of gene level in left ventricular free wall heart 
tissue samples; (3) Datasets that included patients and 
healthy controls. Exclusion criteria included: Patients had 
participated in a clinical trial for drugs or other treatments. 

Finally, two datasets were selected from GEO: accession 
numbers GSE84796 (8 NIHF patients and 10 controls) and 
GSE26887 (12 IHF patients and 5 controls).

Identification of DEGs
GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/) is used 
to identify differentially expressed genes (DEGs).10 

GEO2R is based on limma package that comes with the 
GEO databases. Differentially expressed genes (DEGs) 
were determined by |logFC| > 0.5 and adj.P-value < 0.05. 
Next, the online Venn software (http://bioinformatics.psb. 
ugent.be/webtools/Venn/) was applied to detect the overlap 
DEGs among three datasets.

Enrichment Analyses of DEGs
DAVID 6.8 (https://david.ncifcrf.gov/) was used for 
enrichment analyses to elucidate the biological functions 
of the overlapping DEGs.11 DAVID is a comprehensive 
bioinformatics analysis tool, providing a set of functional 
annotation tools for researchers to analyze the biological 
functions of massive genes. Further evaluation of the path-
way enrichment analyses of DEGs was implemented by 
KOBAS 3.0 (http://kobas.cbi.pku.edu.cn), which annotates 
the input gene set with putative pathways by mapping to 
genes with known annotations from 5 pathway databases 
(KEGG PATHWAY, PID, BioCyc, Reactome and 
Panther).12 P-value < 0.05 was considered significant. 
The genes in modules were also analyzed in the same way.

Protein–Protein Interaction Network 
Construction and Module Analysis
Protein–protein interaction (PPI) network reveals the spe-
cific and unspecific interactions of proteins, and identifies 
the core protein genes. STRING (http://string-db.org, ver-
sion 11.0) database was used to predict the PPI network of 
DEGs and analyze the interactions between proteins.13 An 
interaction with a combined score > 0.4 was recognized as 
statistical significance. The molecular interaction networks 
were visualized using the Cytoscape (version 3.7.0).14 

Subsequently, we used the MCODE plugin to identify 
densely connected modules from the PPI network with 
the criteria of K-core = 2, degree cutoff = 2, max depth 
= 100, and node score cutoff = 0.2.15

Hub Genes Selection and Analyses
The hub genes were selected using the cytoHubba plugin, 
a Cytoscape plugin, was used to determine the hub 
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proteins or genes in the PPI network.16 We randomly 
select 5 of the 12 algorithms in cytoHubba plugin, and 
take the intersection of the 5 algorithms results to deter-
mine hub gene. Subsequently, a network of genes and their 
co-expression genes was analyzed via GeneMANIA 
(http://www.genemania.org/), which is a convenient web 
portal for analyzing gene lists and predicting gene 
function.17 Finally, Drug-Gene Interaction database 
(DGIdb) 3.0 (http://www.dgidb.org/), which helps to pre-
dict drug–gene interaction networks, was adopted here to 
predict drugs based on the module genes.18 After the 
prediction of drug-gene pairs associated with the module 
genes, the network map was then formed by Cytoscape.

Construction of mRNA-miRNA 
Regulatory Network
We used Mirwalk to predict corresponding miRNA of hub 
gene. Mirwalk is a publicly available database that mainly 

focuses on miRNA-target interactions.19 In order to con-
struct further accurate regulatory network, the screening 
condition was that the Predicted miRNA could be verified 
by experiments or other databases. After the prediction of 
mRNA-miRNA by Mirwalk, the regulatory network were 
visualized by Cytoscape.

Results
Identification of DEGs
After standardization and identification of the microarray 
results, DEGs were selected (Figure 1). There were 2780 
DEGs in the GSE84796 dataset, including 1597 upregulated 
genes and 1183 downregulated genes (Figure 2A) 
(Supplementary Table 1). There were 1331 DEGs in the 
GSE26887 dataset, including 705 upregulated and 626 
downregulated genes (Figure 2B) (Supplementary Table 2). 
A Venn diagram was generated to show the overlap between 
GSE26887 and GSE84796 datasets; these include 93 

Figure 1 Flow diagram of the study design.
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upregulated and 92 downregulated genes (DEGs1) 
(Figure 2C and D). Furthermore, 1146 DEGs (DEGs2) and 
2595 DEGs (DEGs3) were identified independently from the 
DEGs in GSE26687 and GSE84796, respectively.

GO Enrichment Analyses of Independent 
DEGs in IHF and NIHF
To determine the biological functions of DEGs2 and 
DEGs3, GO enrichment analysis was performed 
(Table 1). Results were divided into three functional cate-
gories, including biological processes (BP), cell compo-
nent (CC), and molecular function (MF). GO analysis of 
DEGs2 indicated that changes in BP were significantly 
enriched in the positive regulation of pri-miRNA tran-
scription from RNA polymerase II promoter 
(GO:1902895), amino acid transport (GO:0006865), reg-
ulation of cell shape (GO:0008360) and leukocyte 

migration (GO:0050900). As for CC, DEGs2 were parti-
cularly enriched in extracellular exosome (GO:0070062), 
extracellular matrix (GO:0031012), focal adhesion 
(GO:0005925) and cytosol (GO:0005829). Changes in 
MF were mostly enriched in low-density lipoprotein par-
ticle binding (GO:0030169), amino acid transmembrane 
transporter activity (GO:0015171), RAGE receptor bind-
ing (GO:0050786) and glycoprotein binding 
(GO:0001948). The GO analysis of DEGs3 returned that 
the terms response to immune response (GO:0006955), 
adaptive immune response (GO:0002250), regulation of 
immune response (GO:0050776) and innate immune 
response (GO:0045087) under BP were mainly enriched. 
The terms enriched under CC were external side of plasma 
membrane (GO:0009897), T cell receptor complex 
(GO:0042101), integral component of plasma membrane 
(GO:0005887) and plasma membrane (GO:0005886). 

Figure 2 Identification of gene expression profiles in the two datasets. (A) Volcano plot of NIHF microarray data. (B) Volcano plot of IHF microarray data. (C) Venn diagram 
of the 93 communal upregulated DEGs between NIHF and IHF. (D) Venn diagram of the 92 communal downregulated DEGs between NIHF and IHF.
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Moreover, the terms enriched under MF were receptor 
activity (GO:0004872), non-membrane spanning protein 
tyrosine kinase activity (GO:0004715), protein binding 
(GO:0005515) and receptor binding (GO:0005102).

Protein–Protein Interaction Network 
Construction and Module Analysis
The PPI network of DEGs with combined scores greater 
than 0.4 was generated by Cytoscape, which contained 109 
nodes and 119 edges (Figure 3) (Supplementary Table 3). 
The MCODE plugin identified three densely connected 
modules in which 12 DEGs were among DEGs1 
(Figure 4A). Then, we use online database DAVID 6.8 
and KOBAS 3.0 to analyze the enrichment analyses of 12 
genes. GO analysis of 12 genes were completed by 
DAVID 6.8, genes were significantly enriched in riboso-
mal large subunit biogenesis (GO:0042273) and G-protein 
coupled purinergic nucleotide receptor signaling pathway 
(GO:0035589) in BP. As for CC, genes were particularly 
enriched in nucleolus (GO:0005730) and integral 

component of plasma membrane (GO:0005887). Changes 
in MF were mostly enriched in poly(A) RNA binding and 
G-protein coupled purinergic nucleotide receptor activity 
(GO:0045028) (Figure 4B and C). Pathway analysis which 
was completed by KOBAS 3.0 revealed genes to be 
mainly involved in Class A/1 (Rhodopsin-like receptors) 
(R-HSA-373076), G alpha (i) signalling events (R-HSA- 
418594), P2Y receptors (R-HSA-417957) and GPCR 
ligand binding (R-HSA-500792) (Figure 4D).

Hub Gene Selection and Analysis
In the present study, we used cytoHubba to choose hub genes. 
According to the five classification methods (BottleNeck, 
Closeness, DMNC, EPC, Stress) in cytoHubba, the top 15 
hub genes selected by these ranked methods in cytoHubba are 
shown in Table 2. Finally, three central genes were identified 
by overlapping the first 15 genes (Figure 5). CCL5, C5, TLR3 
were the three central genes, and three central genes were all 
upregulated genes. A network of the hub genes and their co- 
expression genes was analyzed by GeneMANIA online 

Table 1 The GO Enrichment Analysis of DEGs2 and DEGs3 (Top 4 Terms According to p.adjust)

DEGs Ontology ID Description Counts P-value

DEGs2 BP GO:1902895 Positive regulation of pri-miRNA 9 1.00E-05
GO:0006865 Transcription from RNA polymerase II promoter amino acid transport 11 2.46E-05

GO:0008360 Regulation of cell shape 22 7.99E-05

GO:0050900 Leukocyte migration 20 0.000103362

CC GO:0070062 Extracellular exosome 221 5.37E-07
GO:0031012 Extracellular matrix 38 7.68E-06

GO:0005925 Focal adhesion 44 3.64E-05

GO:0005829 Cytosol 237 1.72E-04

MF GO:0030169 Low-density lipoprotein particle binding 6 0.001280536
GO:0015171 Amino acid transmembrane transporter activity 10 0.001473392

GO:0050786 RAGE receptor binding 5 0.002823533

GO:0001948 Glycoprotein binding 10 0.013472827

DEGs3 BP GO:0006955 Immune response 113 6.15E-19

GO:0002250 Adaptive immune response 53 1.50E-14
GO:0050776 Regulation of immune response 55 4.16E-12

GO:0045087 Innate immune response 93 7.36E-10

CC GO:0009897 External side of plasma membrane 64 1.01E-13

GO:0042101 T cell receptor complex 15 7.68E-11

GO:0005887 Integral component of plasma membrane 221 4.77E-08
GO:0005886 Plasma membrane 545 4.96E-07

MF GO:0004872 Receptor activity 56 2.57E-09

GO:0004715 Non-membrane spanning protein 18 4.02E-06

GO:0005515 Tyrosine kinase activity protein binding 1057 3.21E-05
GO:0005102 Receptor binding 64 8.95E-05
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platform (Figure 6). The three genes showed the complex PPI 
network with the Physical interactions of 67.64%, Co- 
expression of 13.50%, Co-localization of 6.17%, Predicted 
of 6.35%, Pathway of 4.35%, Genetic Interactions of 1.40%, 
and Shared protein domains of 0.59%. Finally, based on the 
DGIdb predictions of the hub genes, we obtained 14 drug– 
gene interaction pairs, including two hub genes (C5, TLR3) 
and 14 drugs (FDA-listed + antitumor drugs) (Figure 7). 
These results may reveal the therapeutic targets related to HF.

mRNA-miRNA Regulation Network 
Construction
We used MiRwalk databases to predict the miRNAs of 
three hub genes and found a total of 45 miRNAs through 
screening condition that the predicted miRNA could be 
verified by experiments or other databases. The data of 
these hub genes and their miRNAs were integrated into 
a regulatory network, and visualized using Cytoscape soft-
ware (Figure 8).

Figure 3 Based on database STRING and Cytoscape software, PPI networks of the DEGs were constructed. The pink point represents upregulated genes, and purple point 
represents downregulated genes.
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Discussion
In this study, we identified 185 overlapping DEGs 
(DEGs1) in both NIHF and IHF, of which 93 were 
upregulated and 92 were downregulated genes. 
Independent DEGs included 612 upregulated and 534 
downregulated genes in NIHF (DEGs2), and 1504 upre-
gulated and 1091 downregulated genes in IHF (DEGs3). 
GO analysis revealed that DEGs2 were mainly enriched 
in transcription-related, while DEGs3 were mainly 

enriched in immune-related. Enrichment analyses of 
the genes in the key modules of the constructed PPI 
network revealed that they were mainly enriched in 
some GPCR pathways and biological processes. 
Finally, three hub genes, CCL5, C5 and TLR3 were 
found in the PPI network. Then, we analyzed 
a network of the hub genes and their co-expression 
genes, predicted drug–gene interactions and construct 
mRNA-miRNA Regulation Network.

Figure 4 (A) Top modules from the protein–protein interaction network. (B) The biological process in functional enrichment of the DEGs in Modules was performed using 
the online biological tool DAVID between HF and T2DM with P-value and (C) gene count. (D) The pathway analysis of the DEGs in Modules by KOBAS 3.0. The abscissa 
represents the P-value, and the ordinate represents the terms. The size of the circle represents the number of genes involved, and the color represents the frequency of the 
genes involved in the term total genes.

Table 2 The Top 15 Hub Genes Rank in cytoHubba

BottleNeck Closeness DMNC EPC Stress

LRRK2 LRRK2 NOC2L LRRK2 LRRK2

PARD3 TLR3 P2RY13 CCL5 RHOBTB1
BCAR1 CCL5 P2RY14 TLR3 PARD3

RHOBTB1 RHOBTB1 C5 P2RY14 BCAR1

RRAD TUBB4B NOP16 IFIT2 NF2
TLR3 TUBB2A RRP12 C5 TLR3

NF2 RRAD BYSL TUBB4B WWC1
CCL5 CFL2 PES1 TUBB2A NOP16

WWC1 IFIT2 TUBB2A P2RY13 RRAD

NOP16 BCAR1 TUBB4B CASP1 CCL5
C5 DYNC2H1 TLR3 RRAD PES1

CFL2 C5 CCL5 DYNC2H1 RPL27A

CD59 CASP1 SLC5A6 SAMD9L C5
TUBB4B P2RY14 SLC16A9 RHOBTB1 DYNC2H1

BYSL CTSK XAF1 CFL2 CD59

Abbreviations: HF, heart failure; NIHF, non-ischemic heart failure; IHF, ischemic 
heart failure; DEGs, differentially expressed genes; GEO, Gene Expression 
Omnibus; PPI, protein–protein interaction; BP, biological processes; CC, cell com-
ponent; MF, molecular function.

Figure 5 Three hub genes were identified by overlapping the first 15 genes in the 
five classification methods of cytoHubba.
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G protein-coupled receptors (GPCRs), as we know, 
are a major target of therapeutic intervention in most 
physiological processes including vision, smell, taste in 
addition to neurologic, cardiovascular, endocrine and 
reproductive function. GPCRs play a prominent role 
in the regulation of cardiovascular function.20 β- 
adrenergic receptors (Ars), as a member of a family 
of GPCRs, is widely confirmed closely related to the 
development of heart failure. Therefore, beta-blockers 
which can block Ars become one of the classic heart 
failure drugs.21,22 At present, most studies focused on 
the GRK, especially the GRK2 and GRK5.20 In the 
model of IHF, Phosphorylated GRK2 modified and 
desensitized AdipoR1 in failing cardiomyocytes, 

leading to post-MI remodeling and HF progression.23 

Meanwhile, there is also some evidence indicate that 
GRK2 plays an important role in the development of 
NIHF. Rockman et al uncovered that upregulating level 
of GRK2 was closely related to the onset of dilated 
cardiomyopathy (DCM), and the effect could be 
reversed by GRK2-inhibitor peptide.21,24 Similarly, an 
experiment was also designed to use paroxetine to 
specifically inhibit GRK2 in mice and found an 
improvement in heart failure.25 Additional, GRK5 is 
a regulator of fibroblast activation and cardiac 
fibrosis.26 In conclusion, the GRCP-related field, espe-
cially CRK, remains a potential direction for various 
heart failure mechanisms and treatments.

Figure 6 Hub genes and their co-expression genes were analyzed using GeneMANIA.
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CCL5 (C-C motif chemokine ligand 5) is one of sev-
eral chemokine genes clustered on the q-arm of chromo-
some 17. Chemokines form a superfamily of secreted 
proteins involved in immunoregulatory and inflammatory 
processes.27,28 Moreover, CCL5 functions as one of the 
natural ligands for the chemokine receptor 5 (CCR5), 
which is a chemokine receptor belonging to the GPCR 
superfamily.28,29 CCL5 has been suggested to drive cell 
migration toward the heart tissue of patients with HF, 
which plays an important role in the occurrence and devel-
opment of non-ischemic cardiomyopathy.30,31 The impor-
tant role of CCL5 in IHF has also been revealed in 
numerous experiments. Stevenson et al found that CCL5 
level increased significantly in the human hearts with 
ischemic cardiomyopathy compared to control nonfailing 
hearts.32 What’s more, Montecucco et al reported that the 
incidence of postinfarct heart failure was significantly 

reduced by treatment with anti-CCL5 mAb in chronic 
cardiac ischaemia mouse models.27 These findings show 
that CCL5 play an important role in the process of IHF 
and NIHF. So, we speculate that it could be a potential 
target for the common treatment of all types of HF.

Complement C5 (C5) encodes a component of the 
complement system, a part of the innate immune system 
that plays an important role in inflammation, host home-
ostasis, and host defense against pathogens.33 Moreover, 
C5 could be cleaved into the anaphylatoxin C5a and frag-
ment C5b by convertases. During activation and amplifi-
cation, C5a are constantly released and trigger 
proinflammatory signaling via their corresponding 
GPCR.34 Egerstedt et al observed that C5a and other 
complement levels were significantly elevated in the 
blood of patients with heart failure.33 Meanwhile, 
Lindsey et al reported that C5 gene levels were 

Figure 7 Based on the DGIdb predictions of the module genes, we obtained 14 drug–gene interaction pairs, including two hub genes (C5, TLR3) and 14 drugs. Yellow circle 
indicates the differentially expressed gene and blank square indicates the drug.

Figure 8 mRNA-miRNA regulation network of hub genes was constructed by MiRwalk.
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significantly higher in the extreme ventricular dilatation 
group than the moderate ventricular dilation group after 
MI.35 The strong association of C5a with HF and enrich-
ment of complement activation pathways suggests activa-
tion of the complement cascade in subjects at risk of HF. It 
is exciting that recent experiment has pointed to a central 
role of C5a in myocardial repair and regeneration.36 

Therefore, C5 is likely to be a potential marker and pro-
vide new therapeutic approaches.

TLR3 is a member of the Toll-like receptor (TLR) 
family which plays a fundamental role in pathogen recog-
nition and activation of innate immunity. TLR3 primarily 
protects the heart against viral infection, also mediates 
inflammatory effects that may exacerbate heart 
damage.37–39 TLR3 has been widely confirmed as 
a potential target for the treatment of HF, Gao et al 
reported that germline knockout of TLR3 could attenuate 
HF and improve survival in mouse model of chronic 
myocardial infarction.40 However, the mechanisms and 
therapeutic direction is still unclear. Loniewski et al 
reported that the levels of GRK2 protein are markedly 
increased by TLR2, 3, 4 and 7, which uncover potential 
cross-talk mechanisms between TLRs and GPCRs.41 As 
previous researches mentioned, CRK2-related mechanisms 
have been confirmed to be closely related to the develop-
ment of heart failure. So, we believe that potential cross- 
talk mechanisms between TLRs and GPCRs may be an 
important HF therapeutic direction.

Finally, based on the DGIdb predictions of the hub genes, 
we obtained 14 drugs (FDA-listed + antitumor drugs). These 
results may show potential treatment options to HF, but more 
experiments should be carried to verify and explore these 
possibilities. We used MiRwalk databases to predict a total of 
45 miRNAs of three hub genes, which could reveal the poten-
tial mutual regulation between genes, allowing us to better 
understand the relationship and the potential regulation 
between hub genes.

Our study has some limitations.: The identified hub 
nodes need to be validated in future studies and the sample 
size in this study was relatively small. Hence, large sample 
size and further mechanism experiments are still needed to 
confirm our conclusion.

Conclusion
In conclusion, the independent DEGs provide us new perspec-
tives on different mechanisms between NIHF and IHF, and 
communal DEGs identified in our study reveal potential com-
mon mechanism of NIHF and IHF. Besides, a total of three hub 

genes (CCL5, C5, TLR3) have been identified, which can be 
used as biomarkers for HF or as therapy targets.
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