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Atrial Fibrillation

AF, the most common clinically relevant cardiac arrhythmia, is expected to 
affect >5 million Americans by 2050.1 The diagnosis is frequently 
associated with other cardiovascular comorbidities, including 
hypertension, obesity and sleep apnoea, and AF is an important risk 
factor for stroke, heart failure and overall mortality.2–4 Although treatment 
is available, many people remain untreated because the diagnosis can be 
subclinical or elusive.5,6

Significant efforts are geared towards improving AF screening, early 
detection and treatment.7–9 Among these efforts, artificial intelligence (AI) 
technology has demonstrated clinical utility and promise.10 In recent 
years, AI has enabled wearable technology to aid in the passive detection 
of cardiac arrhythmias and enhanced the diagnostic power of ECG.11–13 AI 
has improved the prediction and detection of AF and may ultimately help 
direct treatment.

In this review, we delineate how AI has enhanced the prediction and 
detection of AF, both inside and outside of the medical setting (Figure 1). 
We also highlight how AI has prognosticated treatment success and 
enhanced intraprocedural techniques. Finally, amidst the great success of 
AI application in the diagnosis and treatment of AF, we outline limitations 
and critical considerations of these newly applied technologies, identifying 
what barriers and future directions exist in this rapidly growing field of 
AI-enhanced medical care.

Artificial Intelligence Prediction of 
AF from Clinical Characteristics
Various patient clinical characteristics (e.g. age, sex, medical 
comorbidities, etc.) are known to predict the risk of developing AF. 
Multivariable prediction models, such as the CHARGE-AF score, integrate 
these risk factors to generate risk estimates and have been extensively 
validated.14–16 These models may be further refined by applying AI and 
machine learning (ML) approaches to electronic health record (EHR) 
data, although the improvement in model performance is variable.17 For 
example, a large study of 2 million patients from the University of 
Colorado used an ML model to evaluate >200 health record features 
potentially associated with AF.18 From this process, an AF-detection 
model demonstrated an area under the curve (AUC) of 0.79 for the 
detection AF over 6 months of follow-up, but this performance was 
comparable with several recent non-AI-based clinical AF risk scores with 
AUCs ranging from 0.71 to 0.78.18–21

In contrast, two larger studies from the UK used similar ML techniques to 
produce models that outperformed the CHARGE-AF score (AUC 0.827 
versus 0.725, respectively).22,23 The authors speculated that the improved 
model performance could have been related to higher-quality data sets 
with longer follow-up or to inclusion of various analytical approaches (e.g. 
considering time-varying covariates).22–24 Investigators are interested in 
not only predicting AF, but also describing its natural history over time.25 
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These AI-EHR-based prognosticating tools may eventually find utility in 
clinical practice for refining screening and treatment protocols.

Artificial Intelligence-enhanced ECG 
Prediction and Detection of AF
The AI-enhanced ECG (AI-ECG) has recently offered a new pathway for 
predicting and identifying AF, even while patients are in normal sinus 
rhythm.26 Due to the slowly progressive and subtle nature of cardiac 
structural changes, and their associated manifestations on ECG, AI 
algorithms theoretically are well suited to detect these findings, which 
might go unnoticed by untrained and trained human observers.27 

An initial AI-ECG algorithm was developed from nearly 650,000 ECGs at 
the Mayo Clinic to predict paroxysmal AF on ECGs from patients in sinus 
rhythm.26 Single AI-ECG recordings identified patients with underlying 
paroxysmal AF with an AUC of 0.87, which increased to an AUC of 0.90, 
when all ECGs during the first month of each patient’s ‘window of interest’ 
were included (e.g. 31 days prior to first recorded AF event).26 A follow-up 
study analysed the value of AI-ECG in the prediction of future AF in 
patients without a prior diagnosis among participants in the Mayo Clinic 
Study of Ageing, and compared AI-ECG future AF prediction with the 
CHARGE-AF score.28 When an AI-ECG predicted a >50% probability for AF, 
the 2- and 10-year cumulative incidence of AF was 21.5% and 52.2%, 
respectively, which was similar in predictive value to CHARGE-AF.28

A separate deep-learning AI-ECG risk model predicted 5-year AF-free 
survival with an AUC of 0.823 in three independent cohorts (n>80,000). 
Interestingly, corresponding saliency maps identified the P-wave segment 
as the algorithm’s region of interest – a biologically plausible finding.29 
Wu et al. used the Physionet database of 100 patients (50 with underlying 

paroxysmal AF) with 30-minute recordings during sinus rhythm to develop 
AI models with three different learning methods, and compared them.30 
Bagging, AdaBoost and stacking were compared, and stacking was found 
to have the best AUC of 0.911 (all three AUCs range 0.88–0.91), although 
the model has not undergone external validation.30

In addition, the AI-ECG for AF prediction was studied in the application of 
patients with embolic stroke of unknown source, where underlying, silent 
AF is frequently the suspected culprit.31 While AI-ECG-determined AF 
probability did not differ in the group with embolic stroke of unknown 
source compared with patients with strokes from other mechanisms, 
patients with embolic stroke of unknown source who did show a high AI-
ECG probability of AF demonstrated a significantly higher future detection 
of AF on ambulatory monitoring.31

More recently, the clinical application of AI-ECG for the detection of AF 
was demonstrated in a prospective interventional trial. Investigators 
combined AI-ECG probability of paroxysmal AF alongside EHR-based 
patient characteristics to determine which patients would benefit most 
from prolonged ECG monitoring to detect AF.32 Patients who qualified for 
the study had no prior AF diagnosis, with both elevated probability of AF 
on sinus rhythm AI-ECG and relevant clinical risk factors indicating 
anticoagulation need if AF were diagnosed (e.g. elevated CHA2DS2-VASc 
score). Notably, clinical risk components were identified through both 
structured and unstructured EHR data via natural language processing.33 
Eligible patients who were at elevated AI-ECG risk were fivefold more 
likely to have a diagnosis of AF on 30-day monitoring compared with their 
‘low AI-ECG probability for AF’ control counterparts.32 This study implicates 
the significant, potential impact of clinically applied AI for targeted AF 
screening strategies.

Figure 1: AF is Frequently Subclinical and Elusive, Making Diagnosis and Treatment Difficult
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Frequently, multiple detection methods are employed to uncover ‘silent’ disease, as there is a high risk of complications (e.g. stroke) for patients with other cardiac comorbidities (centre). Even after AF is 
discovered, treatment, such as cardioversion, is not always successful (centre). Artificial intelligence application to electronic health records, electrocardiograms and intra-cardiac electrograms have 
demonstrated promising results for the detection, diagnosis and treatment of AF (right). AI = artificial intelligence; EHR = electronic health record; PVI = pulmonary vein isolation. 
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Overall, there is a growing body of evidence demonstrating the 
effectiveness of AI-ECG in detecting underlying paroxysmal AF patients 
presenting in normal sinus rhythm and with associated clinical risk factors. 
With these recent groundbreaking advances in clinically applied AI, one 
can expect to see applied AI-ECGs in clinical practice complimenting the 
traditional methodology of care.

Artificial Intelligence to Detect AF 
by Photoplethysmography
While a standard ECG is the most widely accepted methodology of AF 
diagnosis, it is now commonplace for patients to report AF diagnosis from 
their Apple Watch or other wearable device. Photoplethysmography (PPG) 
has allowed for real-time, automated detection of AF in non-clinical 
settings from wearable devices and smartphones.34,35 Notification of 
potential AF from these consumer-based PPG technologies (Apple, FitBit, 
Huawei Watch, etc.) is based on several temporal and morphological 
features to differentiate the arrhythmia from sinus rhythm.

The Apple Heart study used a decentralised recruitment process to enrol 
patients in a watch-based remote-monitoring study.11 In this study, 
participants downloaded a study app that would subsequently passively 
monitor the regularity of heart rate via PPG. Patients with irregular pulse 
notifications would subsequently be considered for remote monitoring to 
formally monitor and potentially diagnose AF. A total of 34% of patients 
who were notified of having an irregular pulse and underwent testing 
were diagnosed with AF, and 84% of these irregular pulse notifications 
were indicative of AF on ECG.11

The Huawei Heart study similarly exhibited the strength of wearable PPG 
technology to identify AF in a decentralised study.12 Of participants who 
received notification of ‘suspected AF’, 87% (n=227) were confirmed to 
have AF with a positive predictive value approaching 92%.12 Both of these 
significant studies demonstrated the scalability of AF screening using PPG 
via consumer-based wearable technology, allowing for a streamlined 
pathway for clinical data from beyond the clinic walls.

These algorithms have evolved from the use of simpler regression models 
and feature extraction to more complex ML models that include support 
vector machines, decision trees and deep learning models.36,37 While 
more advanced deep learning techniques learn and extract relevant 
features automatically compared with simpler techniques (which required 
initial manual data extraction), deep learning approaches require a large 
amount of data to train and extract features to make decisions. It must be 
noted that more mainstream algorithms, such as those used in the Apple 
Watch study and Huawei Heart study, remain proprietary and undefined.12,38

These nuanced technologies are promising, but there are certain factors 
that must be considered before routine application and use. A problem 
that surrounds the use of PPG data is significant concerns with artefacts 
and noise that may contribute false positive test results.39 In turn, some 
false positives may also be seen as a result of another arrhythmia, such as 
atrial flutter or atrial multifocal tachycardias, which may not be 
differentiated on PPG-based devices.

One must also consider the acceptance of these innovative tools by a 
younger, more tech-savvy population, implicating future research efforts 
to focus on participants with advanced age at higher arrhythmogenic and 
thrombogenic risk to assess the accuracy and validity of these novel 
approaches. An example of this age-targeted evaluation is seen in the 
eBRAVE-AF trial, which tested PPG wave assessment comparing a 

smartphone app against routine symptom-based screening in patients 
aged 50–90 years.35 Digital app-based screening in this population 
significantly increased the diagnosis of clinically relevant AF compared 
with usual care (OR 2.12 in Phase I; 2.75 in Phase II).40

With continuous refinement of technology, and validation efforts in 
clinically relevant populations, novel solutions will improve the 
performance of these algorithms over time, suggesting the possibility of 
widely accepted, large-scale AF screening from consumer-based PPG 
products in the near future.

Artificial Intelligence for AF for Risk Stratification
In the setting of a new AF diagnosis, AI/ML techniques may also offer the 
opportunity to stratify patients for outcomes, such as stroke risk or the 
expected success of cardioversion. Investigators in Korea extracted 65 
features from 750,000 patients with AF to develop a deep-learning model 
to determine the risk of ischaemic stroke. This model was subsequently 
tested on 150,000 patients and demonstrated an AUC of 0.73 for the 
prediction of ischaemic stroke, as compared with CHA2DS2-VASc, which 
had an AUC of 0.65.41

Similarly, there have been several efforts to use AI/ML to identify potential 
clinical characteristics that may predict the success of cardioversion. 
Vinter et al. evaluated a sex-specific model for the success rate of 
electrical cardioversion with both ML and logistic regressions.42 Several 
factors, including comorbidities, echocardiogram information and 
medications, were included in the model (n=332 women and n=790 men); 
however, each analysis demonstrated only modest predictive values, with 
an AUC between 0.56 and 0.6 for both women and men.42

A separate effort validated an ML model to predict cardioversion success 
from patients referred for electrical cardioversion (n=429), and compared 
the algorithm predictions with the CHA2DS2-VASc and HATCH scores, 
which have both been shown to be predictive of AF recurrence following 
cardioversion in a few studies.43–45 The results from this study were mixed. 
The ML models were able to better predict 6-month AF recurrence, 
6-month rhythm control and success of pharmacological cardioversion 
better than the CHA2DS2-VASc and HATCH scores; however, the model 
was less favourable than these scores at predicting electrical cardioversion 
success. While the results of this study require external validation and 
further sharpening prior to clinical application, the study did report 
‘feature importance’ to help determine the ML-based value of pertinent 
patient clinical characteristics in prediction strategy.43

These AI/ML risk stratification and treatment success investigations will be 
a crucial clinical tool following further validation, particularly as the 
medical management of AF is a multistep, shared-decision pathway to 
help mediate disease risks and treatment recommendations.

Artificial Intelligence for AF Using 
Intracardiac Signals
Implantable cardiac devices often misclassify atrial flutter, atrial 
tachycardia or even premature atrial ectopic beats as AF based on the 
rate or irregularity of the intracardiac signals. Rodrigo et al. created a 
deep learning algorithm to distinguish AF from other tachycardias based 
on intracardiac electrogram (EGM) features.46 This deep learning algorithm 
demonstrated excellent performance, with an AUC of 0.95–0.97, 
depending on unipolar or bipolar EGM, compared with traditional single 
EGM features, which demonstrated an AUC of 0.67–0.75. These results 
support the continued evaluation of deep learning as a tool to better 
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identify AF from other arrhythmias using EGMs from cardiac implantable 
electronic devices.

Application of neural networks in electro-anatomic cardiac mapping has 
similarly been explored. In a study by Lebert et al., a convolutional neural 
network (CNN) was used to predict phase maps, rotor positions and phase 
singularities with accuracy approaching 95%. According to this study, the 
model was less limited by noise and more generalisable across different 
species compared with classic phase mapping techniques.47 In another 
study, a deep learning-based approach was applied to unipolar EGM 
signals to automate focal source detection as targets for ablation with 
performance similar to practising cardiologists.48 ML algorithms have also 
been tested to predict the success of catheter ablation procedures using 
intracardiac EGM and a composite of EGM, ECG and clinical features in a 
fusion model with strong performance (AUC approaching 0.86).49 It is 
clear the novel application of neural networks into electrophysiological 
practice may complement and enhance patient care at the treatment/
interventional level.

Artificial Intelligence to Detect AF by Other Means
Chest radiography is a simple and frequently used examination tool in 
clinical practice. The most common cardiac pathology seen on a chest 
radiograph is cardiac enlargement, which may be a non-specific marker 
of underlying cardiac disease.50 Atrial size can be seen on chest 
radiography, and atrial enlargement could be a radiographic marker of 
AF.51 However, as AF is typically diagnosed by ECG, diagnosing arrhythmias 
by radiographic means remains challenging.52 On a posteroanterior 
image view, the left atrium is located at the most dorsal part of the heart 
and is often overshadowed by other cardiopulmonary anatomy. However, 
this anatomic pattern may be useful for AI-based detection of AF, as it is 
commonly caused by pathological changes involving the areas of the 
pulmonary veins and the left atrium.53

Matsumoto et al. studied patients with and without AF with corresponding 
posteroanterior chest radiograph view images (n=13,868). An AI model 
for determining AF by chest radiographs was developed using deep 
learning, which demonstrated an AUC of 0.81 (95% CI [0.78–0.85]). 
Corresponding saliency maps visually indicated that the AI model paid 
most attention to the upper left segment of the heart shadow, consistent 
with the left atrial region.52 However, this AI system was not entirely 
transparent (‘glass box’), as the AI was unable to describe if the area of 
interest was specifically the left atrium or other structures/features in 
that area (e.g. descending aorta, cardiac border, etc.). It was also noted 
by the investigators that the model was much more sensitive in 
detecting permanent AF compared with paroxysmal AF, likely as a result 
of varying cardiac anatomy between these AF classifications.52 As 
mentioned aptly in the writing, this type of AI-based radiographic 
diagnosis of AF requires external and prospective validation before true 
clinical application.

Another novel CNN-based AF detection method was described by Yan et 
al., who used facial PPG signals from digital camera images.54 In this 
proof-of-concept study, 20 patients with permanent AF were matched 
with sinus rhythm control patients, and five patients at a time were filmed 
for 1 minute using a digital camera while sitting 1.5 m away from the lens. 
Extracted facial PPG from these videos were processed by the previously 
trained deep CNN to detect AF from PPG waveforms. There was significant 
agreement between facial CNN prediction of AF and patient ECGs, with an 
AUC of 0.99, and all five patients’ rhythms were simultaneously correctly 
identified in nearly 80% of the total videos (n=51/64).54 This work is 

particularly novel, as the CNN was able to accurately detect AF with 
simultaneous patient analysis without physical contact.

In each of these studies, AI and CNNs significantly enhance tools that are 
commonly used in medical practice (chest X-ray) and everyday life (digital 
videography) to identify clinically relevant AF. These alternative methods 
will require ongoing testing; however, the consequences of incidental 
discovery of AF by these methodologies could enhance and guide non-
invasive, touch-free screening strategies.

Limitations: Accuracy, Pitfalls and Perceptions
While there has been tremendous success in the application of AI to AF 
screening, diagnosis and treatment, these systems have their own set of 
pitfalls and limitations.

Although many of these AI algorithms undergo testing and training in 
large populations, there is typically a lack of racial diversity in these 
training/testing cohorts, which may limit use for individuals typically 
marginalised by the medical system until demographic-specific 
validations take place.55 On a similar note, while AI applications in 
themselves are relatively inexpensive, the technology to which the AI is 
applied (e.g. Apple Watch) may not always be affordable to those who 
already experience limited access to medical care.56 However, with the 
potential acceptance of AI-applied technology in medical practice, one 
could hope these AI-enhanced technologies will be viewed as vital and 
cost-effective medical tools, allowing for greater access and cost 
coverage in the future.

Our team, identifying these potential racial and economic barriers to AI-
based health technology, performed the first-of-its-kind proof-of-concept 
AI-ECG study in a community-based participatory research effort.57 
Twelve-lead ECGs, collected as part of a church-based, African-American 
heart health effort, were analysed by our CNNs for AI-ECG determination 
of age, patient sex and heart failure, validating that our AI-ECG performed 
well with ECGs collected outside the clinic walls, in a classically 
underrepresented and medically underserved cohort.57,58 This is the first 
step that could eventually help mediate healthcare disparities, allowing 
for cardiac disease screening at the bedside (or via portable/wearable 
technology) and identifying individuals who may be at elevated need for 
expedited specialist referral in resource-limited areas.

It must be carefully noted that while many of these algorithms demonstrate 
excellent performance at the institutions in which they were developed, 
there must be significant effort spent to externally validate the algorithms 
at other healthcare systems and environments before widespread 
application. Our team has worked on external validation efforts with the 
various AI-ECG algorithms developed at our centre, and we aim to move 
forward with external validation of our AI-ECG for AF in the near future to 
thoroughly assess its validity and widespread applicability.59

While AI applications are becoming increasingly more transparent, many 
systems in clinical practice still operate from a ‘black box’ or ‘grey box’ 
model, where little to no explanation is offered behind AI-based results.60 
For example, the AI-enhanced ECG to predict AF from a sinus rhythm ECG 
will give a probability based on a CNN analysis trained and tested on 
>600,000 ECGs.26 However, the current results from this clinical tool is a 
simple probability (%) that falls above or below a previously established 
diagnostic threshold for further testing. There have been strides using 
saliency mapping and other tools to highlight features (in this specific 
example, ECG features), which give better insight into the AI rationale, 
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although it may not offer a complete explanation.61 There is a continued 
push for ‘glass box’ AI, which provides rationale or explanation for AI-
based decisions, as this would also potentially provide insight for clinicians 
to identify novel approaches to disease treatment otherwise previously 
unidentified (e.g. subtle ECG markers for disease otherwise overlooked 
via general interpretation methodology).62

It must be considered that the majority of the studies mentioned, including 
our own, focus on performance with respect to discriminative power (e.g. 
AUC/sensitivity/specificity etc.). However, the calibration of the models 
being analysed is infrequently reported or available. Moving forward with 
external validation and application of models in varying environments 
(e.g. more confounding factors, varying disease prevalence), reporting 
calibration alongside discriminatory testing must be considered, 
particularly as algorithmic adjustment may be necessary for varying 
environments.63

Similarly, these models are always tested on independent samples 
unrelated to the training/testing data sets (establishing internal validity 
and guarding against overfitting), and, increasingly, these models are 
being tested in external data sets (for external validation). In our own 
work, we aimed to use a simple model with raw ECG features, absent of 
manual ECG feature selection, on very large cohorts for training and 
testing to reduce the possibility of overfitting. AI/ML algorithms using 
smaller data sets or complex feature extraction must undergo thorough 
validation and calibration to investigate proper statistical fit.

Given these known limitations of AI, there must be considerations for the 
patients at the receiving end of these therapies. A recent study evaluated 
patient perceptions of AI application in medical care, which revealed 
mixed perceptions of excitement and concern.64 Study participants share 
similar excitement to those developing and implementing these 
technologies because multifaceted AI technologies may help advance the 
diagnoses and treatment of diseases, as we exemplify in this review. 
However, participants aptly remark on the safety and accuracy of these 
technologies with particular focus on AI data integrity, future autonomy in 

decision-making, clinically appropriate AI application and expected 
physician oversight of implemented AI technologies.64

Along these lines, physicians’ perceptions of AI-based technology in 
healthcare are mixed. While studies have highlighted a potential 
improvement in diagnostic efficiency and a reduction of provider workload 
in some practices, the potential risk of misdiagnosis, development of 
operator dependence and downstream costs or increases in healthcare 
usage associated with AI remain present concerns with this technological 
jump.65,66 With the continued growth and development of AI-based tools 
in healthcare, it is vital these pertinent perceptions and apprehensions be 
considered before wide-scale use. Similarly, while practising evidence-
based medicine with the incorporation of AI, there is still the need for 
continued validation, checks/balances and calibration as required in each 
of these AI systems, particularly if there is suspected model/data drift or 
shift over time.67

Future Directions
With the significant advances in AI/ML technology application for 
arrhythmia screening and diagnosis, therein lies the question of how does 
one pragmatically incorporate this new technology into clinical practice.

At the Mayo Clinic, each standard 12-lead ECG is processed through our 
various AI-ECG CNNs to give the probability of various cardiac pathologies, 
including AF (e.g. heart failure with reduced ejection fraction, aortic 
stenosis, cirrhosis, etc.).13 The data from these AI-enhanced ECGs are 
available in real-time via EHR-based ‘AI-ECG dashboard’ to all clinical staff 
providing patient care at the Mayo Clinic (Figure 2).13,68 As these data have 
been made easily accessible through Epic-EHR integration, our team 
performed a pragmatic clinical trial to assess how these available AI-ECG 
data may impact clinical care/ordering of diagnostic testing.69

In a large, multisite pragmatic trial conducted within our medical system, 
primary care practitioners were randomised to use the AI-ECG dashboard 
as a screening tool for heart failure with reduced ejection fraction.69 This 
study demonstrated that a positive AI-ECG score, indicating potential heart 

Figure 2: Electronic Health Record-integrated Artificial Intelligence-enhanced ECG Dashboard at the Mayo Clinic
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failure with reduced ejection fraction, can lead to earlier detection of 
disease in patients with minimal symptoms.69 This pragmatic effort illustrated 
how these integrated AI-ECG data could impact clinical care at the bedside. 
Similar case-by-case examples have been reported of how the data 
available on the AI-ECG dashboard led to or could have led to expedited 
diagnosis of underlying cardiac disease.68,70 As is reflected at our medical 
centre, other institutions have integrated AI-based data within their EHR or 
within reports of AI-enhanced tests (e.g. coronary CT scans).71

As further research clarifies the appropriate clinical implementation of 
these AI/ML-enhanced screening and diagnostic tools, we anticipate 
other institutions will continue to integrate these systems within their EHR 
or diagnostic reporting. However, as discussed previously, there must be 
thorough investigation and education regarding the use of these systems 
to avoid inappropriate or spurious use when further diagnostic testing 
may be inappropriate or potentially a harm.

Conclusion
The application of AI to medicine is beginning to sharpen the diagnosis 
and treatment of AF. Application of AI and ML techniques to clinical 
variables, EHR data, diagnostic testing (ECGs, chest radiographs, 

videography), intracardiac signals (derived from implanted devices or 
during invasive procedures), and wearable devices has facilitated the 
prediction and detection of AF in many clinical and non-clinical settings. 
Despite its early promise, we must remain vigilant to ensure equitable, 
generalisable, transparent and rigorous work in this emerging field. 
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