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Abstract: The feeding of colostrum and mother’s transitional milk improves immune protection and
neurodevelopmental outcomes. It also helps with gut maturation and decreases the risks of infection.
The supply of nutrients from human milk (HM) is not adequate for preterm infants, even though
preterm mother’s milk contains higher concentrations of protein, sodium, zinc, and calcium than
mature HM. The human milk fortifiers, particularly those with protein, calcium, and phosphate,
should be used to supplement HM to meet the necessities of preterm infants. The management of
fluid and electrolytes is a challenging aspect of neonatal care of preterm infants. Trace minerals
such as iron, zinc, copper, iodine, manganese, molybdenum, selenium, chromium, and fluoride are
considered essential for preterm infants. Vitamins such as A, D, E, and K play an important role
in the prevention of morbidities, such as bronchopulmonary dysplasia, retinopathy of prematurity,
and intraventricular hemorrhage. Therefore, supplementation of HM with required nutrients is
recommended for all preterm infants.

Keywords: preterm infants; human milk; macronutrients; minerals; vitamins

1. Introduction

In developed countries, demographic factors such as maternal age, rates of twinning,
and assisted conception are increasing daily; as a result, the delivery rate of preterm infants
is increasing daily. The survival of preterm infants continues to increase in both developed
and developing countries, which, in part, reflects improvements in nutritional care. The
internationally accepted guidelines for enteral nutrition produced in 2010 have been widely
adopted, with many aspects having been reviewed again more recently [1,2]. The deficiency
of basic food components such as protein, fat, carbohydrate, minerals, and vitamins in the
early life of preterm infants undesirably affects the growth and functions of vital organ
systems. Therefore, all the essential nutrient components need to be supplied to preterm
infants in good time. A number of articles have been published on the nutrition needs of
preterm infants; most of these articles highlight a single nutrient. None of the published
articles focused on the total nutrition of preterm infants. This review article focuses on
the growth, immunological, and neurodevelopmental effects of total enteral nutrition in
preterm infants.

2. Oropharyngeal Colostrum

The colostrum of preterm infant’s mothers is rich in immune-protective components
compared with mature breast milk [3–5]. Initially, exposure to colostrum may not occur
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because feedings are often withheld due to irregular gastric motility. In some cases,
preterm infants have delayed feedings, and the administration of intragastric tube feedings
may be difficult because of their vulnerable health condition [6–8]. The maturation of
immunity in the preterm infant is related to increases in the mother’s milk production and
colostrum feeding [9]. Colostrum also has a role in the microbiome, which is enhanced
lymphoid tissue, bacterial adhesion, and alterations to bacterial colonization in the trachea,
and provides immunoglobulin A (sIgA) to the preterm infants [10,11]. The sIgA inhibits
pathogens growing on the mucosal surface, and lactoferrin plays a role in anti-inflammation;
as a result, the mucosal barrier receives high levels of protection. Colostrum antioxidants
work as a safeguard for preterm infants by protecting the mucosal damage caused by
free radicals and conserving the healthy membrane, and colostrum biofactors protect
from necrotizing enterocolitis (NEC) [12,13]. Colostrum may protect preterm infants from
bronchopulmonary dysplasia and sepsis [14].

3. Human Milk

Human milk (HM) contains hormonal and enzymatic components, anti-infective,
trophic and growth factors, stem cells, prebiotics and probiotics, and a myriad of bioactive
proteins, which make it the gold standard for both full term and preterm infants [15–20].
Preterm infants miss the nutrition from their mother in the third trimester; as a result,
mother’s milk alone is not sufficient to provide adequate nutrition. Therefore, it is essential
to supplement mother’s milk with additional nutrients for the fulfillment of nutrition
requirements to the preterm infants [21]. The supplementation with protein, carbohydrate,
fat, minerals, and vitamins with HM is needed to fulfil the nutritional needs of preterm
infants [22]. Preterm formula that contains required nutritional elements is a suitable option
for preterm infants. Abramovich et al. (2013) found that the nutrients in stored (−80 ◦C)
human milk were not changed, except vitamin C, until 6 months [23]. Therefore, in cases
where the own mother’s milk is unavailable, storage milk from the milk bank can be used
for preterm infants; it is rich in fat, lactose, and vitamins and produced during the 3rd–14th
day postpartum, while transitional milk is followed by mature milk. The milk of mothers
who delivered preterm infants contains higher levels of protein, sodium, chloride, calcium,
zinc, copper, and folate than full-term HM [24]. HM protects preterm infants from NEC and
sepsis [25,26], retinopathy of prematurity (ROP) [27,28], bronchopulmonary dysplasia [29],
and neurocognitive and cardiovascular problems [30,31].

4. Human Milk Fortification

Human milk fortifiers (HMFs) contain several macronutrients as well as minerals—
calcium, phosphorus, sodium, and zinc—and vitamins—A, D, E, K, riboflavin, folic acid,
thiamine, pyridoxine, and nicotinamide. HMFs are available in powdered or liquid form;
powdered fortifiers should be mixed in HM thoroughly considering the optimum osmolal-
ity for better absorption. Pragmatic methods were used to express requirements, including
those for nutrients such as minerals [32,33] (Table 1). However, the requirements are de-
pendent on the gestation age and the clinical condition of preterm infants; therefore, HMFs
should be added on the basis of the specific needs of preterm infants. Some HMFs use
human milk, but most use bovine or donkey milk. HMFs come as multi-nutrient fortifiers
or single-nutrient fortifiers. Recently, donkey milk has been used in HMFs, as it is very
close to HM [34].

Table 1. Requirements for protein and energy; best estimates by factorial and empirical methods (33).

Body Weight (g) 500–1000 1001–1500 1501–2000

Weight gain of fetus (g/kg/day) 19.0 17.4 16.4
Protein gain of fetus (g/kg/day) 4.0 3.9 3.7

Energy (Kcal/kg/day) 106 115 123
Protein/energy (g/100 kcal) 3.8 3.4 3.0
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Multi-nutrient HMFs contain different amounts of protein, carbohydrate, fat, minerals,
trace-elements, and vitamins; the osmolality of the HMFs was reduced by decreasing the
carbohydrate content [35]. The lipids in HMFs improve the status of essential fatty acids
(EFA) in preterm infants [36]. HMFs with higher protein content increase preterm infants’
weight gain [37]. Diehl-Jones et al. (2015) suggested the optimization of HMFs based on
their cellular and genomic study; this minimizes the production of harmful free radicals
in the very-low birthweight (VLBW) preterm infant, who is at great risk of prematurity
diseases [38]. Single-nutrient supplements are useful during individualizing fortification
such as dextrin maltose and medium-chain triglycerides, which are used as supplements
of carbohydrate and lipids, respectively; recently, an HM-derived cream supplement has
been introduced to increase the energy of feeds [39–42]. A partially hydrolyzed protein
is designed to be added to the HMFs [35]. Hossain et al. (2014) reported that HMF sup-
plementation can be optimized to promote the growth of the preterm infant. The optimal
osmolarity should be maintained, as high osmolality could cause prematurity diseases.
Preterm infants fed HM + HMF showed higher lipid oxidation; in addition, HM + HMF
upregulates antioxidant genes in cultured fetal intestinal cells. The HMFs can serve the
nutritional requirements of the preterm infants if we can optimally provide HMFs to the
individual [43].

5. Protein

Preterm infants take in protein in different forms such as amino acids (AA) in par-
enteral nutrition, high-protein preterm formulas, and the supplementation of HM with
liquid protein [44–47]. The supplementary protein, particularly in VLBW preterm infants,
improves growth, including in essential regions in the brain related to cognitive out-
comes [48]. Slower growth rates and poorer cognitive function are the result of the under
nutrition of preterm infants [49]. AA and protein are crucial for normal fetal growth and
development, providing support for the growth of all cells, tissues, and organs by reg-
ulating the metabolism. Leucine and arginine particularly stimulate insulin secretion,
which enhances protein synthesis and protein accretion [50]. Leucine and arginine are the
vital oxidative substrate [51] and basic substrate for nitric oxide [52], respectively; these
play important roles in vascular function and blood flow to growing organs. Addition-
ally, glutamate, serine, and other non-essential amino acids exclusively promote placental
and fetal metabolism [53,54]. The supply of AA has roles in fetus growth and cognitive
development [54].

6. Fat

Energy is used as a fuel during tissue synthesis. Dietary fat is the primary source of
energy for preterm infants; the oxidation of fat provides energy to support basal metabolic
functions [55]. The fat requirements are based on the amount of energy needed for suitable
growth and the amount of ω3 and ω6 polyunsaturated fatty acids needed for the func-
tioning of the cell membrane, eicosanoid metabolism, and development central nervous
system [56]. Hossain et al. (2016) suggested that metabolites of fatty acids from food sources
of preterm infants are reflected in the circulating plasma fatty acids [57]. The lipid metab-
olizing enzymes, lipases, and carnitine palmitoyltransferase are at low levels in VLBW
preterm infants. Lipase clears the plasma triglycerides, and carnitine palmitoyltransferase
transports long chain fatty acids into mitochondria for energy production through the
oxidation of lipids. Since HM contains lipase and carnitine, enterally feeding HM imme-
diately after a preterm infants’ birth is the best strategy to stimulate lipid oxidation and
energy production. In addition, formulas have more 22:6n-3 (DHA); increased DHA-fed
preterm infants had increased DHA levels and showed higher visual acuity, improved
Bayley mental development, and better MacArthur communicative inventories [58].
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7. Carbohydrate

Carbohydrate is an important source of energy for the growth and development of
preterm infants; HM and many formulas contain lactose as a carbohydrate source [59].
Maltodextrin has helped to reduce the osmolarity and related intestinal distress [60]. On the
other hand, glucose is a major energy source for perinatal brain development under normal
physiological conditions [61]. High glucose levels increase the risks of hyperglycemia,
including reduced insulin secretion, and limit the enteral feedings; hyperglycemia is
associated with an increased incidence and severity of ROP [62]. It also increases the
production of reactive oxygen species, which could cause cellular damage and cell death
as well as inflammation [63,64]. To avoid detrimental effects on outcomes in preterm
infants, the optimal composition of early PN to avoid postnatal growth failure must be
carefully balanced against hyperglycemia risk; hypeglycemia increases the risk of long-
term neurodevelopmental delay in surviving preterm newborns [65]. Bacteria flourish
in high-glucose environments, and hyperglycemia leads to dysfunctional intestinal tight
junctions; as a result, tight junction permeability increases, and finally, microorganisms
may reach the circulatory systems, which might lead to bacterial sepsis and NEC [66]. The
administration of insulin in preterm infants will lower plasma glucose levels; however,
there are several risks, causing significant concern [67].

8. Mineral Requirements for Preterm Infants

Minerals such as iron, calcium, phosphorus, magnesium, potassium, and sodium are
needed for the proper growth and development of preterm infants. Among their other
physiological roles in humans, calcium, phosphorus, and magnesium are essential for bone
development [68], and potassium and sodium play a role in water fluxes and enzymatic
functions [69], while iron is essential for optimal brain development [70].

8.1. Calcium and Phosphorus

An insufficient supply of calcium (Ca) and phosphorus (P) is a major reason for
weakened bone development in preterm infants [71]. In the full-term infant, up to 80%
of the body Ca is grown during the last trimester [72]. Since preterm infants miss the
last trimester, they need mineral supplementation. It is challenging to meet the Ca and
P requirements in preterm infants, as the solubility of Ca and P in parenteral fluid has a
limit, the HM has a low Ca and P content, and intestinal absorption of minerals during
formula feeding is uneven [73,74]. Therefore, Ca and P supplementation is essential to
prevent impaired bone mineralization. Therefore, HMFs with HM are the best option to
provide Ca and P supplementation [75].

8.2. Magnesium

Magnesium (Mg) plays a crucial role in bone matrix growth and the synthesis of
biomacromolecules, including DNA, RNA, proteins, and glycolysis [76]. Electrolytes and
minerals are provided to preterm infants through the administration of Mg in parenteral
nutrition [68]. The fetal need for Mg occurs throughout pregnancy; 3 to 5 mg/kg/day is
necessary during the third trimester. The need for Mg increases with increased gestation
age [77,78]. Therefore, Mg supplementation is essential for preterm infants, since they miss
the in utero use of Mg during the third trimester.

8.3. Sodium

Sodium (Na) plays a vital role in the growth, DNA synthesis, cell proliferation, and
absorption of nutrients in preterm infants [78,79]. The recommended daily Na intake
in healthy infants is 2 to 3 mEq/kg/d, compared with 3 to 5 mEq/kg/d in preterm
infants [80]. Kidney function in preterm infants is usually established by 32 to 34 weeks of
gestation age; the distal tubule and loop of Henle are responsible for sodium excretion and
reabsorption [81]. Preterm infants need to absorb and excrete Na under inadequate and
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excess Na conditions [82]. Therefore, Na is essential in preterm infants to reduce the risk
for Na deficiency.

8.4. Potassium

Potassium (K) plays an important role in protein synthesis, cell growth, and cell
volume regulation. Preterm infants with a birth weight of 1 < kg and gestation age of <30
weeks showed 6 meq/L mean plasma K+ in the first day of life; the K+ stabilizes between
days 4 and 5 [83]. It is important to keep the reference values of K+, as hyperkalemia can
cause serious complications in preterm infants. The value of plasma K+ in preterm infants
is elevated compared to older infants, children, and adults.

8.5. Iron

Iron deficiency affects the growth and functions of multiple organ systems in preterm
infants [84]. Preterm infants miss the iron deposition from their mother during the third
trimester [85]. Therefore, preterm infants are at high risk of iron deficiency, and the supple-
mentation of iron is essential for their normal growth and an early inception of erythro-
poiesis [86]. During iron supplementation, the dose should be optimized, as excess iron
produces circulating Fe2þ ions, which can lead to the production of reactive oxygen species
that can affect the heart, liver, pancreas, and developing brain functions [87]. To achieve the
optimum dose, international consumption recommendations for enteral iron in preterm
infants are 2–3 mg/kg/d from the age of 2–6 weeks until at least 6–12 months [2,88]. Qasem
et al. (2017) found that iron-fortified complementary feeding developed the infant’s gut
microbiota [89]. Iron-fortified HMF may develop the gut micribiota of preterm infants.

9. Preterm Trace Mineral Requirements

Trace minerals such as iron, zinc, copper, iodine, manganese, molybdenum, selenium,
and chromium are essential, and humans need to receive them in diet [90]. The role of
selected trace minerals, symptoms of deficiency, and ASPEN and ESPHAN recommenda-
tions for trace mineral intake in preterm infants are summarized in Table 2 [91–93]. HM
is the “gold standard” for trace mineral content for the healthy full-term infant, while no
gold standard exists for preterm infants. Therefore, the supplementation of trace mineral
intakes is essential through parenteral and enteral nutrition in preterm infants [90,94].

9.1. Zinc

Zinc (Zn) is a crucial factor in growth and cell differentiation and the metabolism
of proteins, carbohydrates, and lipids; it also plays a vital role in hormone structure,
metalloenzymes, the maturation of intestine, immune function, and genetic transcription
factors [90,95]. Preterm infants need Zn supplementation due to the insufficient accretion
of Zn stores, and excretion through an immature intestinal tract [96]. Two-thirds of the
total body Zn is transferred from maternal stores to full-term infants during third trimester,
while preterm infants are susceptible to Zn deficiency if Zn supplementation is not available
early. A double-blind, randomized controlled study showed significantly lower morbidity
and mortality in the VLBW preterm infants supplemented at a dose of 10 mg/d Zn at
postnatal day 7 compared with the control group [97]. Preterm neonates may have higher
parenteral requirements for zinc than previously recommended during the first week
of life [98]. Zinc supplementation for >2 weeks improved fronto-occipital circumference
growth but not linear growth or weight gain [99].
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Table 2. Role, deficiency symptoms, and ASPEN and ESPHAN recommended dose of trace minerals [90–92].

Trace Minerals Role Deficiency Symptoms

ASPEN
Recommended

Dose for
Preterm Infant

(µg/kg/day)

ESPHAN
Recommended

Dose for
Preterm Infant

(µg/kg/day)

Zinc

Cofactor for >300 metalloenzymes;
important for growth, cell

differentiation, and the metabolism of
proteins, carbohydrates, and lipids;
plays a role in hormone structure,
gastrointestinal (GI) development,

immune function, and genetic
transcription factors

Poor growth; weight loss; periorificial
dermatitis; glossitis; increased

susceptibility to infections; diarrhea
300 400–500

Copper

Free radical scavengers-help protect
cell membranes from oxidative
damage; essential to the proper

functioning of organs and
metabolic processes

Hypochromic anemia resistant to iron;
pancytopenia; poor wound healing;

osteopenia; fractures
20 40

Selenium
Free radical scavenger; antioxidant;
can reduce the risk of sepsis; plays a
role in thyroid hormone metabolism

Myocardial disorders; skeletal muscle
disorders; erythrocyte macrocytosis;

fingernail-bed abnormalities;
pseudoalbinism; growth

retardation; alopecia

2 7

Manganese
Cofactor for several enzymes,

including superoxide dismutase and
pyruvate carboxylase

Affects mucopolysaccharide and
lipopolysaccharide formation; impaired

skeletal development and ataxia
(animal models)

1 ≤1

Chromium
Important for macronutrient

metabolism; enhances the action
of insulin

Insulin-resistant hyperglycemia; glucose
intolerance; weight loss; high plasma free

fatty acid concentrations
0.0006 0

Molybdenum
Required by 3 enzymatic systems:
xanthine dehydrogenase/oxidase,

aldehyde oxidase, and sulfite oxidase

Cardiac and neurologic symptoms,
including tachycardia and coma; high

blood levels of sulfite and urate
NG 1

Iodine

Major component of thyroid hormones
that regulate key biochemical reactions

in energy and protein metabolism;
necessary for growth, development,

and maturation

Hypothyroidism; poor growth; poor
neurodevelopment; cretinism; goiter NG 1–10

9.2. Copper

Copper (Cu) is a component of numerous metalloenzymes and thus plays a vital
role in metabolic processes. The superoxide dismutases and ceruloplasmin protect cell
membranes from oxidative damage and work as the major Cu transporter in plasma, re-
spectively [100]. Preterm infants have lower plasma Cu levels at birth, with mean serum Cu
levels ranging from 20 to 50 mcg/dL at 1 week of postnatal age [90]. The Cu requirements
in VLBW preterm infants are higher than for full-term infants; in addition, hepatic Cu
in VLBW preterm infants is lower than in full-term infants. The symptoms of Cu defi-
ciency are hypochromic anemia resistant to iron supplementation, pancytopenia, poor
wound healing, and a variety of bone abnormalities [97,101]. Erythrocyte superoxide
dismutase and cytochrome oxidase are important bio-indicators of Cu status in the preterm
infant [101].

9.3. Selenium

Selenium (Se) works on antioxidant defense through glutathione peroxidase, which
participates in antioxidant defense and helps scavenge free radicals to protect the body
from oxidative damage [102]. The intrauterine accretion of Se stores mainly occurs in the
third trimester in preterm infants, as Se concentrations in the plasma are lower compared to
full-term infants [103]. Makhoul et al. [104] also found that Se concentrations increase with
increased gestation age after 36 weeks of gestation. A randomized double-blind study on
VLBW preterm infants receiving Se supplementations at concentrations of 7 mcg/kg/d par-
enterally and 5 mcg/kg/d with HM or formula or no additional supplementation showed
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that Se concentrations were significantly lower in the no supplementation group [105]. The
symptoms of Se deficiency are myocardial disorders, skeletal muscle disorders, erythrocyte
macrocytosis, fingernail-bed abnormalities, and pseudoalbinism [106].

9.4. Manganese

Manganese (Mn) plays important roles in manganese-dependent superoxide dismu-
tase and pyruvate carboxylase and other enzyme systems [90]. Mn is found in a high
concentration particularly in the liver and brain even though it is found in all tissues of
the body. Mn deficiency affects mucopolysaccharide and lipopolysaccharide formation,
impaired skeletal development, and ataxia [90,91]. Liver cholestasis, insomnia, hyperbiliru-
binemia, headache, anxiety, rapid hand movements, cerebral and hepatic complications,
and Parkinson disease are the symptoms of excessive intake of Mn in PN [107–109].

9.5. Chromium, Molybdenum, and Iodine

Chromium (Cr) plays vital roles in protein, carbohydrate, and lipid metabolism. The
symptoms of Cr deficiency are weight loss, high-plasma free fatty acid concentrations,
and glucose intolerance. Cr supplementation in parenteral nutrition is recommended in
preterm infants for 4 weeks [94]. A randomized controlled study showed that Cr intake for
3 weeks significantly increased the creatinine values in preterm infants [110]. Molybdenum
(Mo) is essential for enzymatic systems such as xanthine dehydrogenase/oxidase, aldehyde
oxidase, and sulfite oxidase [111]. The deficiency symptoms are tachycardia and coma and
high levels of sulfite and urate in the blood. It was found that 1 mcg/kg/d of parenteral Mo
and 4–6 mcg/kg/d of enteral Mo were adequate for LBW preterm infants [112]. Iodine (I) is
a component of the thyroid hormones triiodothyronine (T3) and thyroxine (T4), which reg-
ulate protein metabolism. Preterm infant formulas, own mother’s milk, and donor human
milk contain 20–170, 50–150, and 33–117.5 mcg/L iodine, respectively [113,114]. Studies
of balance suggest that iodine intakes of ≥30 mcg/kg/d are required for preterm infants
to maintain a positive balance. A parenteral intake of 1 mcg/kg/d was recommended to
avoid the risk of iodine deficiency in preterm infants [92].

10. Recommendations Concerning Vitamins
10.1. Fat-Soluble Vitamins
Vitamin D

The deficiency of vitamin D in preterm infants is common, as infants have missed
the opportunity to store vitamin D from the mother during the third trimester, lacked
sunlight exposure during the sick period, and face difficulties in adequate enteral nutrition.
The supplementation of vitamin D is necessary to provide a sufficient vitamin D level to
preterm infants; the daily vitamin D supplementation recommendation is from 800 to 1000
and 400 IU/day for preterm infants in Europe and western countries, respectively [115].

Vitamin A

ROP is a common visual disorder in preterm infants, associated with the regulation of
the vascular endothelial growth factor and insulin-like growth factor [116,117]. Vitamin A
deficiency is prominent in VLBW preterm infants, as infants have missed the opportunity
to store it from their mothers during the third trimester, receive an insufficient intake from
enteral feeding, and have poor gastrointestinal absorption [118]; hepatic storage of vitamin
A is not as efficient in extremely preterm infants [119]. The intramuscular supplementation
of vitamin A may prevent the ROP [120], and supplementing the feeds with 5000 IU
of vitamin A per day could mitigate the vitamin A deficiency; it was associated with a
decreased incidence of Type 1 retinopathy of prematurity and may also have a positive
impact on reducing bronchopulmonary dysplasia [121,122].
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Vitamin E

Vitamin E works as a free radical scavenger [123,124], which can prevent bronchopul-
monary dysplasia, ROP, and intra-ventricular hemorrhage [123]. The American Academy
of Pediatrics suggests supplementing vitamin E in all preterm formulas and parenteral nu-
trition for preterm infants [125]. In addition, Kositamongkol et al. [126] found a deficiency
in 77.4, 16.1, and 35.7% of 35 VLBW preterm infants at birth, at the postnatal age needed to
reach full feedings and at term postconceptional age, respectively.

Vitamin K

Vitamin K is essential for preterm infants, where deficiency may kill or cause a perma-
nent, serious handicap [127]. The activity of hepatic vitamin K1 2, 3-epoxide reductase is
low in preterm infants; as a result, less efficient recycling of vitamin K is observed in preterm
infants [128]. HM contains very low concentrations of vitamin K1 [127]; therefore, HM-fed
preterm infants need vitamin K supplementation to avoid the risk of deficiency [129].

11. Conclusions

Preterm infants have insufficient nutrient stores at birth, and nutrient supplementation
is essential for the growth and functions of vital organs. This review has highlighted the
need of total enteral nutrition for preterm infants to improve early growth, immune status,
and neuronal effects. In addition, based on this review, we suggest that the following
clinical practice points are considered:

1. Oropharyngeal colostrum administration appears to be safe and promotes immuno-
logical maturation;

2. HM can provide many essential elements for preterm infants; if it is not available,
donor HM can be provided, even if it is not an equivalent to the own mother’s milk;

3. Earlier feeding initiation, human milk fortification, and certain formulas appear to
improve the growth and neurodevelopmental outcomes;

4. Carbohydrate, protein, fat, minerals, trace minerals, and vitamins should be provided
through PN or EN considering the requirements of preterm infants for their better
growth and development.
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