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A B S T R A C T

Patients with drug-resistant focal epilepsy are often candidates for invasive surgical therapies. In these patients,
it is necessary to accurately localize seizure generators to ensure seizure freedom following intervention. While
intracranial electroencephalography (iEEG) is the gold standard for mapping networks for surgery, this approach
requires inducing and recording seizures, which may cause patient morbidity. The goal of this study is to
evaluate the utility of mapping interictal (non-seizure) iEEG networks to identify targets for surgical treatment.
We analyze interictal iEEG recordings and neuroimaging from 27 focal epilepsy patients treated via surgical
resection. We generate interictal functional networks by calculating pairwise correlation of iEEG signals across
different frequency bands. Using image coregistration and segmentation, we identify electrodes falling within
surgically resected tissue (i.e. the resection zone), and compute node-level and edge-level synchrony in relation
to the resection zone. We further associate these metrics with post-surgical outcomes. Greater overlap between
resected electrodes and highly synchronous electrodes is associated with favorable post-surgical outcomes.
Additionally, good-outcome patients have significantly higher connectivity localized within the resection zone
compared to those with poorer postoperative seizure control. This finding persists following normalization by a
spatially-constrained null model. This study suggests that spatially-informed interictal network synchrony
measures can distinguish between good and poor post-surgical outcomes. By capturing clinically-relevant in-
formation during interictal periods, our method may ultimately reduce the need for prolonged invasive implants
and provide insights into the pathophysiology of an epileptic brain. We discuss next steps for translating these
findings into a prospectively useful clinical tool.

1. Introduction

Epilepsy is a common neurological disorder that affects over 50
million people worldwide, (World Health Organization, 2018) one-
third of whom experience uncontrolled seizures despite medication
(Engel, 1996). Within this group, approximately 80% have localization-
related seizures, of which many are candidates for surgical removal of
the seizure-generating region in the brain (French, 2007). Accurate
seizure localization is needed in these patients to maximize chances of
seizure freedom and minimize deficits following surgery. With the

recent development of more targeted alternatives to surgery, such as
laser ablation (Willie et al., 2014), precise localization is becoming
increasingly necessary to guide therapy.

Intracranial EEG (iEEG) is currently the gold standard for localizing
seizures, particularly in patients without clear lesions on clinical ima-
ging (Lachaux et al., 2003). In this approach, implanted subdural and
depth electrodes record brain signals for up to several weeks with the
intent of capturing ictal events and identifying seizure onset regions.
While iEEG can record seizures at high spatial and temporal resolution,
it has important limitations. For example, seizures are often provoked
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during the recording period via medication withdrawal and sleep de-
privation; in some patients, these provoked seizures may be funda-
mentally different from stereotypical spontaneous seizures, and can
misinform localization attempts (Hudgins et al., 2016). Additionally,
seizure provocation and prolonged implantation while waiting to re-
cord seizures increases the risk of complications such as infection, deep
vein thrombosis, musculoskeletal injury, and postictal psychosis
(Sperling, 1997; Hamer et al., 2002). In some cases, seizures may not
occur during the implant period, rendering the study inconclusive.
Prolonged hospitalizations with multiple surgeries – usually at least one
for electrode implantation and one for removal – add greatly to patient
inconvenience and consumption of limited resources. Eliminating the
need to record seizures would be a marked advance in improving pre-
surgical evaluation for epilepsy (Kuruvilla and Flink, 2003; Rolston
et al., 2015). In the long term, a procedure in which interictal re-
cording, stimulation mapping, and subsequent intervention could take
place in a single session, comparable to cardiac electrophysiology,
would have notable benefits compared to current procedures.

Recent evidence indicates that seizures most commonly arise from
abnormal brain networks rather than isolated focal lesions (Bernhardt
et al., 2013; Kramer and Cash, 2012; Shah et al., 2019). Therefore, in
order to accurately map seizure generation, it is important to identify
brain network abnormalities in epilepsy. Functional networks derived
from correlations between iEEG signals show promise in highlighting
seizure onset networks, distinguishing between focal and generalized
seizures, and predicting outcomes (Khambhati et al., 2016; Lopes et al.,
2018; Kramer et al., 2008). While most previous iEEG network studies
analyze ictal and preictal data, recent evidence suggests that interictal
recordings are also informative for localizing epileptic networks (Sinha
et al., 2017). This notion is further supported by recent studies de-
monstrating that ictal and interictal iEEG network subgraphs are to-
pologically similar, and that patterns of high frequency activity pro-
pagation during seizures are recapitulated interictally (Korzeniewska
et al., 2014; Khambhati et al., 2017). Moreover, epileptic brain net-
works are fundamentally altered, as reflected by cognitive deficits and
imaging abnormalities, in many patients in regions associated with
seizures (Duncan, 1997; Bernhardt et al., 2016; La Joie et al., 2013;
Perrine and Kiolbasa, 1999). These findings suggest that iEEG can
provide valuable information without the need to capture seizure
events.

In this study, we evaluate the utility of interictal network analysis in
mapping seizure networks. While the ground-truth identity of seizure-
generating networks is inherently unknown, rigorously quantified in-
formation about the surgical resection zone combined with outcome
data can serve as a valuable proxy. Namely, if a patient has a good post-
surgical outcome, a reasonable assumption is that vital parts of the
seizure network are contained in the resection zone. In contrast, in
poor-outcome patients, the resection zone likely does not include cri-
tical regions of the seizure-generating network. Therefore, we char-
acterize network connectivity inside and outside of the resection zone
in good- and poor-outcome patients. We hypothesize that patients with
highly synchronous nodes removed are more likely to have good out-
comes. We also propose that this work can further our understanding of
functional network topology in the epileptic human brain, and ulti-
mately reduce the need for prolonged implant times and resulting pa-
tient morbidity.

2. Materials and methods

2.1. Subjects

We retrospectively studied 27 adult patients undergoing pre-sur-
gical evaluation for drug-resistant epilepsy at the Hospital of the
University of Pennsylvania and at the Mayo Clinic. All patients pre-
sented with focal onset seizures and were subsequently treated by
surgical resection, with 1-year post-surgical outcomes as measured by

Engel classification score and/or ILAE criteria. Patients were divided
into two groups based on whether they were free of disabling seizures:
good-outcome (Engel IA-ID or ILAE 1–2) and poor-outcome (Engel II-IV
or ILAE 3–6). All patients gave consent to have their anonymized iEEG
data publicly available on the International Epilepsy Electrophysiology
Portal (www.ieeg.org) (Wagenaar et al., 2013; Kini et al., 2016). Clin-
ical and demographic information is available in Table 1.

2.2. Intracranial EEG acquisition

Cortical surface and depth electrodes were implanted in patients
based on clinical necessity. Electrode configurations (Ad Tech Medical
Instruments, Racine, WI) consisted of linear cortical strips and two-di-
mensional cortical grid arrays (2.3 mm diameter with 10 mm inter-
contact spacing), and linear depths (1.1 mm diameter with 10 mm inter-
contact spacing). All types of electrodes were included in our analysis.
Continuous iEEG signals were obtained for the duration of each pa-
tient's stay in the epilepsy monitoring unit. For each subject, we ob-
tained one clip of interictal data consisting of the first 6 h of artifact-free
recording at least 4 h removed from any seizure event. Time of day was
not explicitly controlled for although the protocol of beginning re-
cordings in the epilepsy monitoring unit after electrode implantation
was the same at each institution. Seizure events were labeled by a
board-certified epileptologist and were checked for consistency with
clinical documentation.

2.3. Electrode and resection zone localization

All patients underwent a clinical epilepsy neuroimaging protocol.
Pre-implant T1-weighted MPRAGE MRI and post-implant CT images
were acquired in order to localize electrodes within or on the surface of
each patient's brain. Furthermore, patients underwent a post-resection
imaging protocol acquired between 6 and 8 months after resection,
which consisted of T1-weighted MPRAGE MRI and axial FLAIR MRI
sequences. Images were anonymized and coregistered to each patient's
pre-implant T1 MRI space for localization and segmentation.

Table 1
Clinical and demographic patient information. Legend - L: Left; R: Right; TL:
Temporal Lobe; FL: frontal lobe, FPL: fronto-parietal lobe, FTL: fronto-temporal
lobe; N/A: not available.

Patient ID Age Sex Resected Region Outcome

HUP64_phaseII 21 M LFL Engel 1D
HUP65_phaseII 37 M RTL Engel 1B
HUP68_phaseII 28 F RTL Engel 1A
HUP70_phaseII 33 M LFPL Engel 1B
HUP73_phaseII 40 M RFL Engel 1C
HUP74_phaseII 25 F LTL Engel 1A
HUP75_phaseII 57 F LTL Engel 2D
HUP78_phaseII 54 M LTL Engel 2A
HUP80_phaseII 41 F LTL Engel 2B
HUP82_phaseII 56 F RTL Engel 1A
HUP83_phaseII 29 M LPL Engel 2A
HUP86_phaseII 25 F LTL Engel 1C
HUP87_phaseII 24 M LFL Engel 1D
HUP88_phaseII 35 F LTL Engel 1D
HUP94_phaseII 48 F RTL Engel 1B
HUP105_phaseII 39 M RTL Engel 1A
HUP106_phaseII 45 F LTL Engel 1B
HUP107_phaseII 36 M RTL Engel 1A
HUP111_phaseII 40 F RTL Engel 1B
Study012 37 M RFL ILAE1
Study016 36 F RFTL ILAE4
Study017 N/A M RTL ILAE4
Study019 33 M LTL ILAE5
Study020 10 M RFL ILAE5
Study022 N/A F LTL ILAE5
Study028 5 M LFPL ILAE4
Study029 N/A F RTL ILAE5
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Electrodes were identified via thresholding of the CT image and
labeled using a semi-automated process (Wu et al., 2012). For all sub-
jects, all images were registered to the pre-implant MRI space using 3D
rigid affine registration, with mutual information as the similarity
metric. Pre-implant MR images were diffeomorphically coregistered to
post-resection MR images to quantitatively identify the resection zone.
Resection zones were segmented semi-automatically via the ITK-SNAP
random forest classifier feature using coregistered MPRAGE and FLAIR
imaging. The resection zone was dilated by 5% of the iEEG network
electrodes in order to mimic effects of gliosis and scarring adjacent to
surgically removed tissue (Alsaadi et al., 2001). Using these resected
regions along with the electrode localizations, we determined the
identities of the electrodes present in the resection zone. Coregistration
steps utilized Advanced Normalization Tools (ANTs) software (Avants
et al., 2009; Avants et al., 2011). A board-certified neuroradiologist
visually inspected and confirmed image coregistration, electrode loca-
lizations, and resection zone segmentation results.

2.4. Functional network analysis

Following removal of electrode channels obscured by artifact
(marked by a board-certified epileptologist), interictal iEEG clips were
common-average referenced to reduce potential sources of correlated
noise (Ludwig et al., 2009). Each clip was then divided into 1 s non-
overlapping time windows in accordance with previous studies
(Khambhati et al., 2016; Khambhati et al., 2017; Khambhati et al.,
2015; Kramer et al., 2010). To generate a network representing
broadband functional interactions between iEEG signals for each 1 s
time window, we employed a method described in detail previously
(Khambhati et al., 2017). Signals were notch-filtered at 60 Hz to re-
move power line noise, low-pass and high-pass elliptic filtered at
115 Hz and 5 Hz to account for noise and drift, and pre-whitened using
a first-order autoregressive model to account for slow dynamics.
Functional networks were then generated by applying a cross-correla-
tion function between the signals of each pair of electrodes within each
time window which was normalized by mean subtraction and division
by signal standard deviation. Next, to gain an understanding of iEEG
networks across different frequencies, we generated functional net-
works across physiologically relevant frequency bands as described in
detail in a previous study (Khambhati et al., 2016). Specifically, mul-
titaper coherence estimation was used to compute functional coherence
networks for each 1 s window across four frequency bands: alpha/theta
(5–15 Hz), beta (15–25 Hz), low-gamma (30–40 Hz), and high-gamma
(95–105 Hz). Both broadband and frequency-specific networks were
represented as full-weighted adjacency matrices. In this model, each
electrode serves as a node of the network, and measurements of con-
nectivity between pairs of electrodes serve as edges. The networks were
averaged across the full 6 h to obtain one functional network for each
patient for each frequency band. A schematic of this pipeline is pro-
vided in Fig. 1.

To quantify the degree of synchrony of each node in the network,
we computed the nodal strength, defined for each node as the sum of
the weights of all edges connected to that node (Bullmore and Sporns,

2009; Rubinov and Sporns, 2010). We defined “highly synchronous
nodes” to be nodes with a value of strength that is at least 1 z-score
above the mean. Next, we defined the strength selectivity of the resection
zone as the spatial overlap between the nodes within the resection zone
and the highly synchronous nodes. Overlap was computed using the
Dice Similarity Coefficient (DSC), which ranges from 0 to 1 and is de-
fined as = +DSC A B( , ) ,A B

A B
2
| | where A and B are two binary sets. We

compared the strength selectivity for good- and poor-outcome patients
across all frequency bands, and we repeated the analysis for z thresh-
olds ranging from 0 to 2. Furthermore, to assess what types of con-
nections were contributing to the observed differences in strength se-
lectivity in good- vs. poor-outcome patients, we delineated the
following three edge types: (i) connections between nodes within the
resection zone (RZ-RZ), (ii) connections between one node within the
resection zone and one node outside the resection zone (RZ-OUT), and
(iii) connections between nodes outside the resection zone (OUT-OUT).
For each subject, we computed the mean z-scored edge weights within
each of these categories. We compared the mean edge weights among
these three categories within both good- and poor-outcome patients.
Furthermore, we computed differences in these categories between the
two patient groups.

Given that neighboring electrodes are more likely to be highly
correlated due to spatial proximity or due to common source mea-
surements, we generated a spatially-constrained null model. For each
patient with N resected electrodes, we sampled clusters of N spatially
contiguous electrodes, using Euclidean distance to determine the closest
electrodes. We repeated the edge-weight analysis after normalizing the
RZ-RZ, RZ-OUT, and OUT-OUT edge weights by the null distribution of
edge weights for each category. Normalization was carried out by
subtracting the mean and dividing by the standard deviation of the null
values. The non-parametric Mann-Whitney U test was used for all
pairwise comparisons as it does not require normally distributed data.

Our code is available at https://github.com/shahpreya/Epimapper.
All patient electrophysiology and imaging data are available at ieeg.
org.

3. Results

We constructed spatial maps of nodal strength, along with the
overlaid resection zone, for each individual patient (Fig. 2). At the
group level, we observed significantly higher broadband and beta
strength selectivity in good-outcome patients vs. poor-outcome pa-
tients, using a z threshold of 1 (p< .05, Mann-Whitney U test)
(Fig. 3A). Sweeping across a range of z thresholds from 0 to 2 revealed a
trend of higher strength selectivity in good- vs. poor-outcome patients
in all frequency bands, with significant differences for broadband
(z= 1), beta band (z= 0.5 to z= 1.25) and low-gamma band
(z= 1.75 to z= 2) (Fig. 3B).

Next, we sought to understand whether observed strength se-
lectivity findings were due to connectivity within the resection zone, or
connectivity between the resection zone and extra-resection regions.
Since strength-selectivity findings were most prominent in the beta
band, we focused our edge-level analysis on the beta band networks; to

Fig. 1. Schematic of subject-level iEEG network analysis pi-
peline. (a) Using structural imaging, the location of each
electrode is identified on the brain surface and within the
parenchyma. (b) Interictal iEEG signals are processed and
divided into 1 s windows. (c) For each 1 s window, a broad-
band functional connectivity network is generated by calcu-
lating the correlation between iEEG signals across electrode
pairs. Frequency-specific networks are similarly constructed
by calculating coherence between iEEG signals measured by
electrode pairs. (d) Node-level and edge-level network ana-
lyses are computed on these resulting networks, in relation to
the resection zone.
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assess sensitivity and specificity, we also repeated the analysis across all
frequency bands. We found that connections within the resection zone
(RZ-RZ) were significantly stronger than RZ-OUT and OUT-OUT con-
nections. We also observed that RZ-RZ connections were stronger in
good-outcome patients than in poor-outcome patients (p< .05) (Fig. 4).
Notably, these findings persisted across all frequency bands (p< .05).
After normalization by a spatially-constrained null model, RZ-RZ con-
nections were still significantly stronger in good outcome patients than
in poor outcome patients (p< .05). While this trend was present in all
frequency bands, it was statistically significant for beta, low-gamma,
and high-gamma bands. Additionally, in both good- and poor-outcome
patients, normalized RZ-RZ connections were stronger than RZ-OUT
connections, and RZ-OUT connections were stronger than OUT-OUT
connections, with the additional finding of RZ-RZ > RZ-OUT in good-
outcome patients (p< .05). Notably, these findings also persisted
across all frequency bands.

Given similar findings across different frequency bands, we sought
to directly probe the similarity of the frequency-specific function

networks. Therefore, we calculated the correlation coefficient between
the edges of the mean functional networks for each pair of frequency
bands, across all subjects. We found a high degree of correlation across
these networks (r= 0.95–0.91), with the highest correlations between
neighboring frequency bands (e.g., alpha-theta vs. beta: r= 0.91), and
the lowest correlations being observed between bands with larger fre-
quency separation (e.g., alpha-theta vs. beta: r= 0.75) (Fig. 5).

4. Discussion

In this study, we evaluate the association of interictal network
synchrony within the resection zone with post-surgical outcomes in
drug-resistant focal epilepsy patients. We determine that high interictal
strength selectivity is associated with better outcomes. This effect ap-
pears to be driven largely by connectivity within the resection zone.
Our findings suggest that interictal recordings can provide valuable
information to identify putative seizure-generating networks.
Employing quantitative tools on early interictal recordings can

Fig. 2. Patient-level strength selectivity analysis. For an example good-outcome patient (a) and poor-outcome patient (b), we provide spatial maps of nodal strength
in the beta band, along with corresponding 2D heat maps of nodal strength in all frequency bands. Resection zones are highlighted in green.

Fig. 3. Group-level strength selectivity analysis. (a) Strength selectivity in all tested frequency bands with a z threshold of 1 reveals significantly higher broadband
and beta strength selectivity in good-outcome patients vs. poor-outcome patients. (b) A sweep across multiple z thresholds from 0 to 2 reveals significant outcome-
dependent differences in strength selectivity for broadband (z= 1), beta band (z= 0.5 to z= 1.25) and low-gamma band (z= 1.75 to z= 2) networks (mean +/−
standard error). Beta band strength selectivity distinguishes between good- and poor-outcome patients across the widest range of z thresholds (red box). *p< .05,
Mann-Whitney U test.
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maximize information gained from iEEG recordings while significantly
reducing recording times.

4.1. High interictal connectivity within the resection zone is associated with
good outcomes

We define the strength selectivity of the resection zone as a simple
measure of overlap between electrodes within the resected region and
highly synchronous electrodes. We find that strength selectivity is
higher in good-outcome patients compared to poor-outcome patients.
This finding holds across a range of z-score thresholds and after nor-
malization by a null model suggesting that our findings are not due to
chance or differences in electrode implantation strategies between pa-
tients. The notion that removing highly synchronous nodes would lead
to favorable outcomes is consistent with our understanding that epi-
lepsy is characterized by abnormal hypersynchronous neuronal firing
(Bromfield et al., 2006). We demonstrate the utility of our method
using the simple, non-parametric measure of node strength, and we
explore our findings across a range of physiologically relevant fre-
quency bands.

Although we observe a trend of increased strength selectivity in
good-outcome patients across a range of z thresholds using both

broadband and frequency-specific networks, the finding is most sig-
nificant in functional networks constructed in the beta frequency band.
While beta frequency oscillations are thought to be associated with
long-range communication between regions (Kopell et al., 2000), the
role of oscillatory activity across different frequency bands is still
complex, with known interactions between different frequencies
(Roopun et al., 2008; Uhlhaas et al., 2006; Whittington et al., 2000).
Moreover, our direct analysis of network similarity across frequency
bands indicates that the frequency-specific networks are highly corre-
lated with each other. This high similarity may be due to our data
processing pipeline, as we compute average networks across six-hour
periods, a choice which was motivated by our interest in extracting
information from stable functional networks. Kramer et al. have shown
that while functional iEEG networks are highly variable when estimated
from time windows spanning a few seconds, stable network topology
emerges when using time windows of 100 s or more and persists across
frequency bands (Chu et al., 2012). Our group has previously shown
that long-term interictal functional network connectivity across all
frequency bands can accurately predict structural connectivity derived
from white-matter tractography. Therefore, it is possible that long-term
interictal functional networks are highly similar across different fre-
quency bands because these functional networks echo the underlying
structural connectome that gives rise to wideband functional dynamics
(Betzel et al., 2017).

Our findings contribute to a growing body of recent work aiming to
identify epileptogenic networks and predict outcomes based on node-
level measures (Lopes et al., 2018; Sinha et al., 2017; Goodfellow et al.,
2016; Burns et al., 2014; Li et al., 2018; Yang et al., 2018; Murin et al.,
2018). While most of this prior work uses ictal or preictal recordings,
we focus on deriving information from the earliest available interictal
data. Moreover, unlike the majority of previous studies, we apply
quantitative imaging methods and semi-automated segmentation
techniques to delineate the resection cavity, rather than utilizing sub-
jective clinical identification of electrodes that are resected or part of
the seizure onset zone. Marking the seizure onset zone is an inexact
process; moreover, seizure onset zone areas may be omitted from the
resection zone due to practical concerns (e.g. proximity to blood vessels
or eloquent cortex). Therefore, it may be advantageous, and more di-
rect, to determine outcomes based on what was actually removed rather
than what was identified to be part of the seizure onset zone.

Our edge-level analysis reveals that the majority of network synchrony
is attributable to intra-resection connections. This finding is similar to
previous analyses illustrating that connectivity within the seizure onset

Fig. 4. Edge-level analysis in relation to resection zone, shown for the beta frequency band. (A) Connections within the resection zone (RZ-RZ) are significantly
stronger than RZ-OUT and OUT-OUT connections, and RZ-RZ connections are stronger in good-outcome patients than in poor-outcome patients. (B) After nor-
malization by a spatially-constrained null model, RZ-RZ connections remain significantly stronger in good-outcome patients than poor-outcome patients.
Additionally, in both good- and poor-outcome patients, normalized RZ-RZ connections are stronger than RZ-OUT connections and RZ-OUT connections are stronger
than OUT-OUT connections. Finally, we also observe that RZ-RZ connections are stronger than RZ-OUT connections in good-outcome patients in comparison to poor-
outcome patients. *p< .05, Mann-Whitney U test.

Fig. 5. Matrix of similarity values between functional networks generated using
different frequency bands. Similarity values were obtained by measuring the
Pearson correlation coefficient between edges in each pair of networks for each
subject, and then by averaging these correlation coefficients across subjects. We
observe strong correlations across all pairs of networks (r= 0.75–0.91), with
the highest correlation coefficients being observed between neighboring fre-
quency bands and the lowest correlation coefficients being observed between
bands with larger frequency separation.
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zone is higher than both connectivity outside of the seizure onset zone and
connectivity bridging seizure onset and non-seizure onset regions (Warren
et al., 2010; Dauwels et al., 2009; Khambhati et al., 2015). We find higher
intra-resection zone connectivity in good- vs. poor-outcome patients. These
analyses suggest that seizure-generating regions are functionally distinct or
isolated in some way from surrounding brain regions in focal epilepsy
patients, and that removal of these functionally isolated regions improves
the likelihood of successful outcomes.

Our finding that good-outcome patients had higher intra-resection zone
connectivity than poor-outcome patients persists following normalization
by a spatially-constrained null model. Some similar studies of interictal
functional connectivity (Lagarde et al., 2018) do not use a null model to
account for differences in network architecture between patients. Others
have generated null distributions by sampling N random electrodes from
the network, where N is the number of electrodes in the region of interest
(e.g. the resection zone) (Sinha et al., 2017; Goodfellow et al., 2016).
However, these models do not consider two key facts: (i) that neighboring
electrodes are more likely to have higher functional connectivity due to
structural connections or common source signals, and (ii) that surgical
practice necessitates removal of spatially contiguous brain regions rather
than distant, randomly distributed electrodes. Our spatially-constrained
null model therefore provides a more realistic set of random resections with
which to normalize our connectivity findings. Since this spatially-con-
strained null is more stringent than a random resection-based null, it is
likely that our intra-resection connectivity findings are biologically sig-
nificant and not simply due to spatial proximity.

4.2. Methodological considerations and limitations

One concern inherent to all iEEG data analysis is that the entire
brain is not sampled, as electrode locations are based on clinical ne-
cessity. While spatial coverage is sparse to minimize patient morbidity,
electrodes are placed with the intent of capturing regions hypothesized
to be part of the seizure network. For this reason, we include all im-
planted electrodes in our analysis. Therefore, the seizure network
should be appropriately captured by our models, particularly in pa-
tients with good outcomes. However, it is possible that the seizure
network is not adequately covered, particularly in poor-outcome pa-
tients. Moreover, the spatial distribution and number of nodes in the
network may impact the topological properties derived from the net-
work. Recent efforts to map whole-brain iEEG may help circumvent this
issue (Betzel et al., 2017; Owen and Manning, 2017; Frauscher et al.,
2018). Furthermore, source modeling from high-density scalp EEG or
MEG recordings, as well as data from functional and structural neu-
roimaging such as MRI and PET, could complement our intracranial
analysis and allow spatial sampling of the whole brain. This work re-
mains in progress and will require rigorous quantitative validation.

Another limitation of this study is that the resection cavity may
include more tissue than was necessary to resect. For example, patients
with temporal lobe epilepsy often have a standard anterior temporal
lobectomy that removes both temporal neocortex and mesial temporal
structures, even if only one of those areas is involved in the epileptic
network (Falconer et al., 1955). This fact does not invalidate our re-
sults; rather it provides an opportunity to refine them. Recent increases
in focal laser ablation and neurostimulation approaches in the United
States will allow us to test the method on these more targeted inter-
ventions and compare to prior standard approaches involving larger
volume tissue resections. These studies are currently underway.

We demonstrate a framework for mapping interictal functional
networks using simple measures of network synchrony on a moderately
sized dataset. In order to bring this framework to clinical practice, the
next step is to generate a suite of multimodal network-based features
and assess the capacity of these features to predict candidate targets for
surgical removal, using large multi-institutional datasets. By sharing
our data, code, and analysis approach, we hope to facilitate translation
of quantitative seizure-mapping tools to clinical practice.

4.3. Future directions

It is important to consider what will be required to translate studies
such as ours from retrospective computational experiments to clinical
utility. As noted above, the first step is validation on a much larger
group of patients, ideally representative of the cross-section of patients
who undergo epilepsy surgery and including those treated more focally
and those with larger resections. In particular, the predictions of ideal
resection zones using our method should be compared with actual re-
sections in unseen patients to predict their clinical outcome. We did not
perform this analysis as our center, like many others, has transitioned to
using stereoelectroencephalography (SEEG) in the majority of cases. As
SEEG widely samples brain networks and can find aberrant functional
connectivity in epilepsy (Lagarde et al., 2018), our findings will likely
remain valid. However, significant differences in the number and geo-
metry of electrodes implanted warrant a separate study to calibrate and
test our model in SEEG alone. This work is in progress.

The recent significant advances in our understanding of both ictal
and interictal network dynamics and their relationship to epilepsy
surgical clinical outcomes at a group level suggests that these in-
vestigations will lead to patient specific outcome prediction. Machine
learning approaches carried out on a large, multimodal dataset, in-
cluding structural and functional neuroimaging and iEEG recordings,
holds promise for identifying the features predictive of individual pa-
tient outcomes and for translating our work to be tested in a prospective
clinical trial. The ultimate goal, of course, is that this body of work
results in either: (i) network-assisted procedures, in which standard
procedures might be augmented with ablation or resection of additional
electrodes not originally intended to be removed in more standard
procedures, or (ii) complete guidance of resection or ablation by net-
work models. While not all centers may have the expertise to create
custom network methods, sharing of data and code could allow for
larger studies and the development of standardized, packaged software.
If effective, the hope is that epilepsy surgical interventions might
eventually be done, based upon successful trials of interictal network
modeling guidance for surgery, in a single session, both recording and
ablation or resection, rather than requiring two weeks of hospitalization
and multiple surgical procedures.

5. Conclusion

We demonstrate that high interictal connectivity within the resec-
tion zone is associated with favorable post-surgical outcomes in drug-
resistant focal epilepsy patients. This study is one of a series of in-
vestigations that we hope will lead to translation of our methods into
clinical practice, ultimately allowing for automated and optimized
seizure localization and treatment with reduced need for prolonged
invasive implants.
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