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Abstract
Background and purpose: Information on Guillain–Barré syndrome (GBS) as an adverse 
event following immunization (AEFI) against SARS-CoV-2 remains scarce. We aimed to 
report GBS incidence as an AEFI among adult (≥18 years) recipients of 81,842,426 doses 
of seven anti-SARS-CoV-2 vaccines between December 24, 2020, and October 29, 2021, 
in Mexico.
Methods: Cases were retrospectively collected through passive epidemiological surveil-
lance. The overall observed incidence was calculated according to the total number of 
administered doses. Vaccines were analyzed individually and by vector as mRNA-based 
(mRNA-1273 and BNT162b2), adenovirus-vectored (ChAdOx1 nCov-19, rAd26-rAd5, 
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INTRODUC TION

The outbreak of Guillain–Barré syndrome (GBS) among recipients 
of seasonal influenza A vaccines in 1976 linked vaccines to its de-
velopment as an adverse event following immunization (AEFI) [1]. 
GBS is the most frequent cause of acute flaccid weakness, with an 
incidence of 1.1–1.8 cases per 100,000 person-years worldwide [2, 
3]. The epidemiology of adverse events that occur after immuniza-
tion against severe acute respiratory coronavirus 2 (SARS-CoV-2), 
including GBS, remains incompletely understood, particularly in un-
derdeveloped countries and underserved regions, and data on neu-
rological AEFIs originate from only a few countries and involve only 
a handful of vaccines [4–6].

According to the Mexican Health Ministry, in 2019 (i.e., pre-
COVID-19), the nationwide reported GBS incidence was 0.71 cases 
per 100,000 person-years [7, 8]. Between December 2020 and 
September 2021, the Mexican Ministry of Health granted emer-
gency approval for the use of seven different vaccines against SARS-
CoV-2, using three different platforms: mRNA (mRNA-1273 and 
BNT162b2), adenovirus (ChAdOx1 nCov-19, rAd26-rAd5, Ad5-nCoV, 
and Ad26.COV2-S), and inactivated whole-virion (CoronaVac) [9], 
thus, it was in a unique position to evaluate the differences among 
several of the currently available anti-SARS-CoV-2 vaccines and not 
only those commonly used in developed nations, for which ample 
safety information has already been reported. Epidemiological data 
from the United States and the United Kingdom indicate that two 
adenovirus-vectored vaccines (Ad26.COV2.S [1 case per 100,000 
doses administered] and ChAdOx1 nCov-19 [0.87 per 100,000 
first-doses administered]) have associations with GBS [10–12]. We 

previously reported a preliminary incidence of GBS ranging from 
0.18 to 0.43 cases per 100,000 doses administered among 3.9 mil-
lion first-dose recipients of BNT162b2—the only vaccine in use at 
that time—which fell within the expected (pre-COVID-19 and pre-
SARS-CoV-2 vaccine) incidence [13, 14].

At the time of writing, there are no epidemiological data on GBS 
among recipients of rAd26-rAd5, Ad5-nCoV or CoronaVac, vaccines 
that are used in low-income and middle-income countries [6, 15]. 
Moreover, information on vaccine-associated GBS among a Latinx/
Hispanic population, a heterogeneous group that is underrepre-
sented in clinical trials, is scarce. Here, we report GBS incidence 
occurring within 42 days after receiving any vaccine against SARS-
CoV-2 from a nationwide registry of AEFIs. In addition, we report 
the presence of concomitant GBS potential triggers (where these 
were reported or prospectively traceable at the local level), clinical 
presentation, and functional outcomes among recipients of seven 
different vaccines who sought hospital attention during a 10-month 
period in Mexico.

METHODS

Study design and population

We performed a retrospective study of a nationwide registry of GBS 
among recipients of 81,842,426 doses of seven anti-SARS-CoV-2 
vaccines in Mexico between December 24, 2020, and October 
29, 2021. We included hospitalized patients fulfilling the National 
Institute of Neurological and Communicative Disorders and Stroke 

Ad5-nCoV, and Ad26.COV2-S), and inactivated whole-virion-vectored (CoronaVac) 
vaccines.
Results: We identified 97 patients (52 males [53.6%]; median [interquartile range] age 44 
[33–60] years), for an overall observed incidence of 1.19/1,000,000 doses (95% confidence 
interval [CI] 0.97–1.45), with incidence higher among Ad26.COV2-S (3.86/1,000,000 
doses, 95% CI 1.50–9.93) and BNT162b2 recipients (1.92/1,00,000 doses, 95% CI 
1.36–2.71). The interval (interquartile range) from vaccination to GBS symptom onset 
was 10  (3–17) days. Preceding diarrhea was reported in 21 patients (21.6%) and mild 
COVID-19 in four more (4.1%). Only 18 patients were tested for Campylobacter jejuni 
(positive in 16 [88.9%]). Electrophysiological examinations were performed in 76 patients 
(78.4%; axonal in 46 [60.5%] and demyelinating in 25 [32.8%]); variants were similar 
across the platforms. On admission, 91.8% had a GBS disability score ≥3. Seventy-five 
patients (77.3%) received intravenous immunoglobulin, received seven plasma exchange 
(7.2%), and 15 (15.5%) were treated conservatively. Ten patients (10.3%) died, and 79.1% 
of survivors were unable to walk independently.
Conclusions: Guillain–Barré syndrome was an extremely infrequent AEFI against SARS-
CoV-2. The protection provided by these vaccines outweighs the risk of developing GBS.
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clinical features for GBS (Asbury criteria) who were officially re-
ported to the Mexican Ministry of Health through a passive epide-
miological surveillance system [16], and presented during the first 
42 days after receiving the most recent vaccine according to the 
time window reported by other authors for recipients of anti-SARS-
CoV-2 vaccines [11, 12, 17]. Patients with missing clinical data and 
those with alternative diagnoses explaining the neurological deficits 
were excluded.

We identified cases using the Mexican epidemiological surveil-
lance system, which collects and processes data on all reported 
AEFIs from ~23,300 public and private medical units distributed 
across the country [13]. By law, cases identified as potential AEFIs 
must be reported to the local or national authority as soon as they 
are identified. Event severity was initially classified at the local level 
by the attending medical teams according to the World Health 
Organization operational case definition as either serious (e.g., 
those that put life in danger, require hospitalization, cause disabil-
ity, or death) or non-serious (e.g., injection-site pain, swelling, rash, 
headache, fever, malaise, muscle and/or joint pain) [18]. Hence, all 
patients with suspected GBS were hospitalized and classified as hav-
ing potentially serious AEFIs nationwide.

Aiming to establish causality, an ad hoc committee appointed by 
the Mexican Ministry of Health, consisting of five experienced neu-
rologists and a neuroradiologist, performed a detailed case-by-case 
analysis of all potentially serious neurological adverse events occur-
ring after SARS-CoV-2 vaccination through single or multiple vir-
tual sessions with the individual attending physicians. Operational 
details of the Mexican epidemiological surveillance system, AEFI 
definitions, ad hoc committee case evaluation, and data collection 
protocols have been previously reported [19, 20].

Standard protocol approvals, registrations, and 
patient consent

The study was reviewed and approved by the Instituto Nacional de 
Ciencias Médicas y Nutrición Salvador Zubirán (ID: NER-3903-21-
23-1) Ethics and Research Committees who waived the need for 
signed informed consent due to its observational nature and usage 
of an anonymized database. This report was elaborated according 
to the Strengthening the Reporting of Observational Studies in 
Epidemiology (STROBE) checklist [21].

Assessment of potential triggers, clinical, and 
electrophysiological features of GBS

Clinical diagnosis was made according to the Asbury criteria [16]. 
Clinical variants were determined by the local medical teams and, 
if necessary, adjusted by the ad hoc committee. Disease sever-
ity upon admission and at hospital discharge were determined 
using the GBS disability scale [22]. Severe disease was defined as a 
GBS disability score ≥3 [2, 23]. Detection and testing for potential 

triggers such as respiratory tract infections, preceding diarrhea, 
detection of Campylobacter jejuni (by culture or stool real-time re-
verse transcription-polymerase chain reaction [RT-PCR]), or other 
well-known triggers relied on local medical teams. Due to limited 
countrywide access, testing for anti-ganglioside antibodies was not 
routinely performed.

The probability of walking independently at 6 months was esti-
mated using the modified Erasmus GBS outcome score (mEGOS) on 
the seventh day after admission [24]. The risk of developing respira-
tory failure during the first week of admission was evaluated using 
the Erasmus GBS respiratory insufficiency score (EGRIS) [25]. When 
available, electrophysiological subtypes were determined locally 
and confirmed retrospectively by an experienced neurophysiologist 
using the raw data from the first nerve conduction studies according 
to the Hadden criteria [26]. Diagnostic certainty was graded accord-
ing to Brighton Collaboration GBS Working Group criteria [23, 27].

Data collection

De-identified data were collected in a secure online database using 
a standardized case report form that was filled and reviewed by 
at least four members of the ad hoc committee during virtual ses-
sions; by consensus, two researchers adjudicated any differences 
between the primary reviewers (M.G.-G and S.I.V.-F). Data collec-
tion included: demographics (age and sex); potential triggers, in-
cluding preceding infections; history of or concurrent confirmed 
SARS-CoV-2 infection by either RT-PCR or antigen testing; type 
of administered vaccine and, in the case of two-dose schemes, the 
number of doses received; the interval in days between last vaccine 
administration and GBS symptom onset; GBS clinical severity on 
admission, as well as nerve conduction studies and cerebrospinal 
fluid (CSF) analysis results; immunomodulatory treatments (plasma 
exchange or intravenous immunoglobulin); requirement for invasive 
mechanical ventilation; length of hospital stay; and functional out-
come at discharge. The total number of doses administered and re-
ported AEFIs nationwide were obtained from the Mexican Ministry 
of Health.

Statistical analysis

For the purpose of analyzing the differences among platforms, we 
evaluated vaccines individually and according to the used vector 
as either mRNA-based (mRNA-1273 and BNT162b2), adenovirus-
vectored (ChAdOx1 nCov-19, rAd26-rAd5, Ad5-nCoV, and Ad26.
COV2-S), or inactivated whole-virion-vectored (CoronaVac). Age 
was stratified according to the mEGOS cut-off values. A statistical 
power calculation was not required because this was a registry-
based analysis. Categorical variables are presented as frequen-
cies with proportions, while continuous variables, after testing for 
normality with the Shapiro–Wilk test, are reported as median with 
interquartile range (IQR) or as mean with standard deviation (SD), 
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as appropriate. Some percentages may not add up to 100% due to 
rounding. We calculated the unadjusted overall observed incidence 
per 1,000,000 administered doses according to the total number of 
administered doses, as well as incidences for each vaccine subtype 
and platform; 95% confidence intervals (CIs) for these incidences 
were obtained using the Wilson interval method [28]. To evaluate 
differences in incidence among vaccine subtypes and platforms, we 
calculated incidence ratios with 95% CIs using the lowest observed 
incidence for each vaccine and platform as the reference value [29, 
30]. Analyses were performed using IBM SPSS Statistics version 26 
(IBM Corp.) and figures were created using GraphPad Prism, version 
9 (GraphPad Software).

RESULTS

During the study period, the Mexican Epidemiological Surveillance 
System processed 31,095 AEFI reports, of which 30,279 (98%) were 
categorized as non-serious and 816 (2%) as serious. Among the lat-
ter, we identified 111 patients with potential GBS; after evaluation 
by the ad hoc committee, an alternative diagnosis was detected in 11 
patients (five with functional neurological disorders, three with com-
pressive radiculopathy, two with acute transverse myelitis, and one 
with an acute ischemic stroke), and were excluded from this report. 
Due to missing data to establish a clinical diagnosis of GBS, three 
more were excluded from the analysis altogether (Figure 1).

Ninety-seven patients with confirmed GBS were included, rep-
resenting 11.9% of all serious AEFIs. Fifty-two (53.6%) were male, 
and the median (IQR) age was 44 (33–60) years (Table 1). Most cases 

occurred among patients aged 18–40 years, with similar proportions 
across the platforms; however, inactivated virus vaccine recipients 
were older than those immunized via other platforms (median [IQR] 
age 59 [30–63] years). GBS symptoms developed after the first dose 
in 73 patients (75.3%) and during the first 14 days after the most re-
cent dose in 64 (66%). Figure 2 shows the time from the last admin-
istered dose to GBS symptom onset according to vaccine platform.

Guillain–Barré syndrome incidence

The overall observed GBS incidence was 1.19 (95% CI 0.97–1.45) 
cases per 1,000,000 administered doses (Table  2), with higher 
observed incidences among recipients of two vaccines: Ad26.
COV2-S (3.86/1,000,000 administered doses; 95% CI 1.50–9.93) 
and BNT162b2 (1.92/1,00,000 administered doses; 95% CI 1.36–
2.71). Regarding vaccine platforms, the observed incidence was 
higher among recipients of mRNA-based vaccines (1.85/1,000,000 
administered doses; 95% CI 1.33–2.57). We then calculated inci-
dence ratios using the CoronaVac (inactivated virus vaccine) as the 
reference value due to its lower observed incidence. In comparison 
to CoronaVac, Ad26.COV2-S (5.61/1,00,000; 95% CI 1.76–17.89), 
BNT162b2 (2.79/1,00,000; 95% CI 1.37–5.68), and the combined 
mRNA-based vaccines (2.68/1,00,000; 95% CI 1.33–5.42) also had 
significantly higher incidence ratios (Figure 3 and Table S1). Three 
cases (3.1%) occurred in pregnant women: two in the first trimes-
ter (one of them an anembryonic pregnancy) and one in the second 
trimester, all among first-dose recipients immunized–one each–with 
BNT162b2, ChAdOx1 nCov-19, or Ad5-nCoV.

F I G U R E  1  Patient selection flowchart. AEFI, adverse event following immunization; GBS, Guillain–Barré syndrome
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Potential triggers

Twenty-one patients (21.6%) had preceding (≤4 weeks) diarrhea 
(in one of these, norovirus was detected). All patients were tested 
for active SARS-CoV-2 infection, and only four tested positive for 

SARS-CoV-2; three tested positive at the time of GBS symptom 
onset, and one 4 days after. Seven more had a history of COVID-19 
(Table 1); in those patients, the time from COVID-19 to GBS symp-
toms could not be accurately determined. Only 18 patients were 
tested for Campylobacter jejuni infection by stool culture or RT-PCR, 

TA B L E  1  Baseline characteristics, potential triggers, and clinical presentation according to vaccine platform

All patients (n = 97) mRNA-based (n = 35) Adeno-vector (n = 52)
Inactivated 
virus (n = 10)

Sex, n (%)

Male 52 (53.6) 21 (60) 25 (48.1) 6 (60)

Female 45 (46.4) 14 (40) 27 (51.9) 4 (40)

Age, median (IQR), years 44 (33–60) 41 (31–63) 45 (37–57) 59 (30–63)

Age group, n (%)

18–40 years 41 (42.3) 15 (42.9) 22 (42.3) 4 (40)

41–60 years 32 (33) 10 (28.6) 21 (40.4) 1 (10)

>60 years 24 (24.7) 10 (28.6) 9 (17.3) 5 (50)

Potential triggers, (%)

Past SARS-CoV-2 infection 7 (7.2) 3 (8.6) 2 (3.8) 2 (20)

Active SARS-CoV-2 infection 4 (4.1) 0 (0) 2 (3.8) 2 (20)

Diarrhea, ≤4 weeks 21 (21.6) 6 (17.1) 11 (21.2) 4 (40)

Campylobacter jejuni RT-PCR testing 18 (18.6) 3 (8.6) 13 (25) 2 (20)

Positive RT-PCR resulta 16/18 (88.9) 3/3 (100) 11/13 (84.6) 2/2 (100)

Most recent vaccine dose, (%)

First 73 (75.3) 23 (65.7) 43 (82.7) 7 (70)

Second 24 (24.7) 12 (34.3) 9 (17.3) 3 (30)

Days from most recent immunization to 
GBS symptoms, median (IQR)

10 (3–17) 10 (3–21) 11 (4–19) 3 (1–15)

≤14 days, n (%) 64 (66) 24 (68.6) 32 (61.5) 8 (80)

Neurological symptoms, (%)

Facial nerve involvement 24 (24.7) 8 (22.9) 16 (30.8) 0 (0)

Bulbar cranial nerves involvement 30 (30.9) 11 (31.4) 18 (34.6) 1 (10)

Weakness in legs only 20 (20.6) 7 (20) 11 (21.2) 2 (20)

Weakness in arms and legs 74 (76.3) 28 (80) 38 (73.1) 8 (80)

Sensory deficits 46 (47.4) 15 (42.9) 29 (55.8) 2 (20)

Clinical variant, n (%)

Pure motor 48 (49.5) 20 (57.1) 22 (42.3) 6 (60)

Pure sensory 2 (2.1) 0 (0) 2 (3.8) 0 (0)

Sensorimotor 43 (44.3) 14 (40) 27 (51.9) 2 (20)

Miller Fisher syndrome 4 (4.1) 1 (2.9) 1 (1.9) 2 (20)

GBS disability score at admission, n (%)

0, 1, or 2 8 (8.3) 3 (8.6) 5 (9.6) 0 (0)

3 18 (18.6) 5 (14.3) 11 (21.2) 2 (20)

4 55 (56.7) 19 (54.3) 28 (53.8) 8 (80)

5 16 (16.5) 8 (22.9) 8 (15.4) 0 (0)

Erasmus GBS respiratory insufficiency score, 
median (IQR), points

4 (3–5) 4 (3–6) 4 (3–5) 4 (3–5)

Abbreviations: CI, confidence interval; GBS, Guillain-Barré syndrome; IQR, interquartile range; RT-PCR, real-time reverse transcription-polymerase 
chain reaction; SARS-CoV-2, severe acute respiratory coronavirus 2.
aProportions for patients tested for Campylobacter jejuni by stool RT-PCR.
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of whom 16 (88.9%) tested positive. Two patients immunized with 
the first dose of BNT162b2 had sub-acute (<30 days) hepatitis A in-
fection. One patient had received influenza immunization 40 days 
before GBS onset, developing the symptoms 3 days after receiving 
the first dose of BNT162b2. None had reports of recent respiratory 
tract infections. There were no differences in the aforementioned 
proportions among platforms.

Clinical and electrophysiological features

The most frequent presenting signs/symptoms were limb weak-
ness in 74 patients (76.3%), sensory deficits in 46 (47.4%), cranial 
(excluding facial) nerve involvement in 30 (30.9%), and facial palsy 
in 24 (24.7%). On admission, 89 patients (91.8%) had severe GBS. 
The most common clinical variants observed were pure motor 
(49.5%) and sensorimotor (44.3%; Table 1). In four patients (4.1%), 
Miller Fisher syndrome was diagnosed: two cases after inactivated 
virus vaccines and one case each after mRNA-based or adenovirus-
vectored vaccines.

Electrophysiological studies were performed on 76 patients 
(78.4%; Table 3). Among these, 46 (60.5%) had an axonal pattern: 32 
(42.1%) had acute motor axonal neuropathy, and 14 (18.4%) had acute 
motor and sensory axonal neuropathy. Twenty-five patients (32.8%) 
were classified as having acute inflammatory demyelinating polyra-
diculoneuropathy and five (6.6%) as equivocal; none was classified as 
inexcitable. CSF analysis was performed in 65 patients (67%); albu-
minocytological dissociation was detected in 57 (87.7%). Clinical and 
electrophysiological features were similar among vaccine platforms. 
Fifty patients (51.5%) fulfilled the Brighton level of certainty 1, 34 
(35.1%) level 2, and 13 (13.4%) level 3. Electrophysiological variants 
and diagnostic certainty were similar among the groups.

Treatment and outcomes

Treatment and outcomes among vaccine platforms were similar. 
Eighty-two patients (84.5%) received immunomodulatory treat-
ment: 75 (77.3%) intravenous immunoglobulin and seven (7.2%) 
plasma exchange; 15 patients (15.5%) were treated conservatively 
(Table  3). None received concomitant steroids, including those 
four patients (4.1%) with concomitant mild SARS-CoV-2 infection. 
Thirty (30.9%) required invasive mechanical ventilation; the median 
(IQR) length of stay was 10 (7–16) days. At discharge, 79.1% of pa-
tients (61/87) were unable to walk independently (GBS disability 

F I G U R E  2  Time from the last administered dose to Guillain–
Barré symptom onset according to vaccine platform. The figure 
shows that when cases were analyzed according to the time from 
the last administered dose, Guillain–Barré symptoms occurred most 
commonly within the first week after vaccination. Inactivated virus 
includes CoronaVac; adeno-vector includes ChAdOx1 nCov-19, 
rAd26-rAd5, Ad5-nCoV, and Ad26.COV2-S; mRNA-based includes 
mRNA-1273 and BNT162b2. *Represents 5.9% of cases occurring 
during Days 15 to 21 after immunization. **Represents 6.3% of 
cases occurring during ≥22 days after immunization

TA B L E  2  Observed incidence according to vaccine subtype and platform

Vaccine Total doses
Number 
of cases

Unadjusted 
incidence (95% CI)* Vector Total doses

Number 
of cases

Unadjusted incidence 
(95% CI)a

BNT162b2 16,646,623 32 1.92 (1.36–2.71) mRNA-based 18,964,680 35 1.85 (1.33–2.57)

mRNA-1273 2,318,057 3 1.29 (0.44–3.81)

ChAdOx1 nCov-19 38,516,372 37 0.96 (0.70–1.32) Adeno-vectored 48,344,792 52 1.08 (0.82–1.41)

Ad5-nCoV 2,979,697 5 1.68 (0.72–3.93)

rAd26-rAd5 5,812,864 6 1.03 (0.47–2.25)

Ad26.COV2-S 1,035,859 4 3.86 (1.50–9.93)

CoronaVac 14,532,954 10 0.69 (0.37–1.27) Inactivated virus 14,532,954 10 0.69 (0.37–1.27)

All vaccines 81,842,426 97 1.19 (0.97–1.45)

Abbreviations: CI, confidence interval.
aIncidence per 1,000,000 doses administered.
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score ≥3). There were 10 deaths (10.3%): the cause was septic shock 
in six patients and dysautonomia in three patients, and one patient 
(a pregnant woman) died from respiratory failure due to ventilator-
associated pneumonia. There were no reports of pulmonary 
embolism-related deaths.

DISCUSSION

This analysis of passive epidemiological surveillance monitoring of 
more than 81.8 million doses of seven anti-SARS-CoV-2 vaccines 
in Mexico suggests that GBS is an exceedingly rare AEFI, indepen-
dently of the vaccine used. Real-world, population-wide analysis is 
crucial to identify AEFIs that may not have been detected in ran-
domized clinical trials. While GBS incidence has been reported for 
some vaccines, the number of approved and used vaccines in Mexico 
allowed us to evaluate the safety of individual vaccines and vaccine 
platforms.

The 1976 swine influenza vaccination campaign in the United 
States prompted the first formal GBS diagnostic criteria [16, 31]. 
However, since then and until the worldwide vaccination against 
SARS-CoV-2, no clear risk associations had been observed between 
vaccines and GBS [1, 32–34]. GBS during pregnancy is considered 
a rare event, occurring at a rate of 2.8 (95% CI 0.5–9.3) cases per 
million person-years, and little is known about pregnancy-related 
immunological changes being a trigger [35]. Interestingly, 3.1% of 
our cases occurred during pregnancy. Hence, further surveillance is 
needed to assess the risk of such an infrequent AEFI.

The overall incidence that we observed of 1.19/1,000,000 doses 
(95% CI 0.97–1.45) was much lower than the incidence in 2019 (pre-
COVID-19) officially reported by the Mexican ministry of health of 
0.71 cases per 100,000 persons-years (7.1 cases 1,000,000 persons-
years) [7, 8]; however, as we did not have information on GBS occur-
ring among unvaccinated persons or during 2020, our results should 

be interpreted with caution. Regarding mRNA-based vaccines, pre-
vious reports suggest a lack of association between these vaccines 
and GBS [13, 14, 17, 36, 37]. The unadjusted GBS incidence that we 
observed for mRNA-based vaccines was similar to that of a previous 
report including recipients of 13,952,901 doses of either mRNA-
1273 or BNT162b2 [17]. In the United States, a lower but similar 
unadjusted incidence for these two vaccines was observed (0.68 and 
0.69 cases per 1,000,000 doses, respectively) [38]. Interestingly, we 
observed that BNT162b2 individually–and mRNA-based vaccines as 
a group–resulted in a slight increase in GBS risk compared to other 
vaccines and vectors.

Concerning adeno-vectored vaccines, our results support pre-
vious reports suggesting an increased risk among Ad26.COV2.S re-
cipients, when compared with other vaccines [11]. We also observed 
an increased risk of GBS among Ad26.COV2.S recipients (3.86 per 
1,000,000 doses administered); however, this frequency was much 
lower than that reported in the United States (7.8 per 1,000,000 
doses administered) [12]. Among ChAdOx1 nCoV-19 recipients, 
we observed an incidence of 0.96 cases per 1,000,000 doses ad-
ministered, which was lower than the incidence reported in the 
United Kingdom National Immunoglobulin Database (0.87 cases per 
100,000 first-doses administered or 8.7 per 1,000,000 first-doses 
administered) [10]. We hypothesize that these differences may re-
sult from differences in epidemiological surveillance systems or the 
number of administered doses of each vaccine subtype per country. 
At the time of writing this manuscript, little to no information exists 
on GBS among recipients of Ad5-nCoV, rAd26-rAd5, and CoronaVac. 
That may be explained in part because those vaccines are only being 
used in a few low-income and middle-income countries, where vac-
cine numbers are still small, and cases may be potentially under-
reported [6, 39].

In line with previous studies and independently of vaccine type, 
in this cohort, GBS symptoms generally started within the first 
14 days after immunization and occurred mostly among first-dose 

F I G U R E  3  Incidence ratio of Guillain–Barré syndrome according to vaccine subtype and platform. This figure shows that when using 
CoronaVac (inactivated virus vaccine) as a reference value, incidences were higher for Ad26.COV2-S, BNT162b2, and mRNA-based vaccine 
recipients. (a) Incidence ratio according to vaccine subtype. (b) Incidence ratio according to vaccine platform. All calculations were made 
using CoronaVac, an inactivated virus single-dose regimen vaccine as the reference. *Reference vaccine and platform value
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recipients [10, 11, 17, 38]. Regarding disease severity, 91.8% of our 
patients had severe GBS compared to 58.5% reported in ChAdOx1 
nCoV-19 and mRNA-1273 recipients in the United Kingdom [10]. 
This may be attributable to differences in electrophysiological vari-
ants, as patients with axonal variants, known to develop a more 
severe disease course with worse functional outcomes [40, 41], 
accounted for 60.5% of our cases, whereas demyelinating variants 
accounted for 79.5% of theirs. This may be the result of genetic and 
environmental differences, as demyelinating variants are more fre-
quent in white populations, while axonal variants are more frequent 
in Latin American and Asian populations [41]. The proportion of axo-
nal variants and mortality rate we observed are consistent with pre-
COVID-19 rates, where axonal subtypes accounted for up to 60% of 
cases, with an overall mortality rate as high as 12% [42–44].

Interestingly, when comparing mRNA-based versus adeno-
vectored vaccines, we observed a significantly higher incidence ratio 
for the former. These variations in an unusually large sample sug-
gest that genetic and environmental factors may result in increased 

susceptibility to GBS among recipients of specific SARS-CoV-2 vac-
cines. However, our data, and that of others, indicate that all seven 
vaccines evaluated in this report are safe concerning GBS, and their 
benefits clearly outweigh the risk of GBS.

Mechanism of disease is beyond the scope of our manuscript. 
A causal association between SARS-CoV-2 and GBS is still debat-
able. Some authors have demonstrated a potential epidemiolog-
ical link between these entities [45]. It has been suggested that 
the hyperinflammatory state associated with COVID-19 that pro-
motes an excessive release of cytokines may trigger additional au-
toimmune mechanisms that could cross-react with neural proteins 
resulting in GBS [46]; however, large-scale epidemiological studies 
have failed to demonstrate a clear association between COVID-19 
and GBS [47].

Hypothetically, immunization-elicited antibodies against SARS-
CoV-2 may cross-react with self-antigens expressed in the peripheral 
nervous system, including Schwann cells and nodes of Ranvier [48, 
49]. In the case of mRNA-vectored vaccines, it is also possible that 

TA B L E  3  Diagnostic assessment, treatments, and outcomes according to vaccine platform

All patients 
(n = 97)

mRNA-based 
(n = 35)

Adeno-vector 
(n = 52)

Inactivated 
virus (n = 10)

Nerve conduction studies performed, (%) 76 (78.4) 29 (82.9) 41 (78.8) 6 (60)

Neurophysiological variant, n (%)a

Acute inflammatory demyelinating polyneuropathy 25 (32.9) 10 (34.5) 13 (31.7) 2 (33.3)

Acute motor axonal neuropathy 32 (42.1) 14 (48.3) 17 (41.5) 1 (16.7)

Acute motor sensory axonal neuropathy 14 (18.4) 3 (10.3) 8 (19.5) 3 (50)

Equivocal 5 (6.6) 2 (6.9) 3 (7.3) 0 (0)

Lumbar puncture performed, (%) 65 (67) 22 (62.9) 35 (67.3) 8 (80)

Cytoalbuminologic dissociation, n (%)b 59/65 (87.7) 19/22 (86.4) 32/35 (91.4) 8/8 (100)

Brighton Collaboration level of certainty, (%)

1 50 (51.5) 17 (48.6) 29 (55.8) 4 (40)

2 34 (35.1) 14 (40) 14 (26.9) 6 (60)

3 13 (13.4) 4 (11.4) 9 (17.3) 0 (0)

Treatment, n (%)

Intravenous immunoglobulin 75 (77.3) 32 (91.4) 36 (69.2) 7 (70)

Plasma exchange 7 (7.2) 1 (2.9) 6 (11.5) 0 (0)

Conservative 15 (15.5) 2 (5.7) 10 (19.2) 3 (30)

Invasive mechanical ventilation, n (%) 30 (30.9) 10 (28.6) 18 (34.6) 2 (20)

mEGOS at Day 7, median (IQR), points 6 (4–10) 6 (4–10) 6 (4–10) 7 (5–8)

GBS disability score at discharge, n (%)

0, 1, or 2 26 (27) 10 (25.7) 13 (25) 4 (40)

3 23 (23.7) 7 (20) 12 (23.1) 4 (40)

4 23 (23.7) 8 (22.9) 14 (26.9) 1 (10)

5 15 (15.5) 7 (20) 8 (15.4) 0 (0)

6 10 (10.3) 4 (11.4) 5 (9.6) 1 (10)

Length of hospital stay, median (IQR), days 10 (7–16) 9 (6–12) 13 (7–21) 13 (8–22)

Abbreviations: GBS, Guillain–Barré syndrome; IQR, interquartile range; mEGOS, modified Erasmus GBS outcome score.
aProportions for patients in which nerve conduction studies were performed.
bProportions for patients in which a lumbar puncture was performed.
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the lipid nanoparticles required to prevent enzymatic degradation of 
mRNA particles may be a trigger for GBS in genetically or environ-
mentally susceptible individuals [50, 51]. Also, other neuroimmuno-
logical syndromes such as fulminant encephalomyelitis (overlapping 
with GBS), optic neuritis, and acute disseminated encephalomyelitis 
as AEFIs have been reported among recipients of SARS-CoV-2 vac-
cines [52–54]. Still, a causal relationship between anti-SARS-CoV-2 
vaccines and GBS is unknown.

While only 18.6% of our cases were evaluated for Campylobacter 
jejuni, more than 90% of those tested positive, and 20% of all pa-
tients had preceding diarrhea, suggesting that other well-known 
GBS triggers may be the cause and that these cases were coincident 
with, but unrelated to, SARS-CoV-2 vaccination. Although a trigger 
cannot be identified in up to one-third of patients with GBS [41, 55]. 
a comprehensive approach for known triggers must be performed to 
establish causality accurately, something that should improve on a 
nationwide scale in light of our findings.

This study has strengths and limitations. One of its strengths is 
that we relied on an unusually large population of vaccine recipients 
and included vaccines for which no safety data related to GBS have 
been reported, including Ad5-nCoV, rAd26-rAd5, and CoronaVac. 
The study has the following limitations. First, interpretation of the 
study is limited by its descriptive nature. Second, we were unable 
to estimate incidence rate ratios or adjust incidences by age and 
sex, or calculate an incidence during pregnancy because we could 
not obtain the number of administered doses per month, sex, or age 
group. Third, as AEFI reports rely on local healthcare providers, we 
could not establish causality or accurately determine other relevant 
clinical data, such as the development of dysautonomia, due to a 
lack of standardized diagnostic protocols. Fourth, due to the passive 
nature of the Mexican epidemiological surveillance system, which 
is less likely to detect cases than active surveillance systems, our 
data were susceptible to selection bias as some cases may have not 
been reported to the sanitary authorities. Finally, in line with the 
last statement, mildly symptomatic patients (GBS disability score <2) 
presenting with non-disabling symptoms or sequelae may be un-
derdiagnosed or underreported, as well as cases occurring in rural 
settings where there is limited access to medical services.

In conclusion, we show that GBS is extremely infrequent among 
recipients of all vaccines against SARS-CoV-2. We observed higher 
frequency among recipients of Ad26.COV2.S and BNT162b2 in-
dividually, and in mRNA-vectored vaccines as a group. However, 
the magnitude of the increased risk was minuscule in comparison 
to the magnitude of protection against severe and lethal forms of 
COVID-19.
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