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We show that the classic laws of the mean-velocity
profiles (MVPs) of wall-bounded turbulent flows—the
‘law of the wall,’ the ‘defect law’ and the ‘log law’—
can be predicated on a sufficient condition with no
manifest ties to the MVPs, namely that viscosity and
finite turbulent domains have a depressive effect on
the spectrum of turbulent energy. We also show that
this sufficient condition is consistent with empirical
data on the spectrum and may be deemed a general
property of the energetics of wall turbulence. Our
findings shed new light on the physical origin of the
classic laws and their immediate offshoot, Prandtl’s
theory of turbulent friction.

1. Introduction
The mean-velocity profile (MVP) of a wall-bounded
turbulent flow is the function u(y) that gives the mean
(time-averaged) velocity of the flow, u, at any given
distance to the wall, y [1–3]. MVPs are used to compute
fluxes and other quantities of engineering interest,
notably the turbulent friction (which sets the power
needed to operate a pipeline and the draining capacity
of a waterway, for example); on that account, the MVPs
of common wall-bounded turbulent flows, like pipe flow
and boundary-layer flow, have long been the subject
of research. The most influential research was carried
out by L. Prandtl, who in the early twentieth century
formulated the classic laws of the MVPs [1–3]. Known
as the law of the wall, the defect law and the log law, the
classic laws underly the customary division of MVPs into
layers (the inner layer, the outer layer, the overlap layer),
which in turn informs the very way in which MVPs
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are apprehended and conceptualized as macroscopic turbulent phenomena. Indeed, the classic
laws have become so well established that they are scarcely put to the empirical test any
longer; rather they are widely used to plot, collate and assess experimental, computational
and atmospheric data on wall-bounded turbulent flows [2,3]. What is more, Prandtl’s theory of
turbulent friction [1–3], a mainstay of hydraulic engineering, hydrology, meteorology and kindred
disciplines, is but a corollary of the classic laws.

In the original work of Prandtl, the classic laws are essentially postulated as a suitable set of
assumptions regarding the asymptotic behaviour of u(y) in the limits of vanishing viscosity and
infinite turbulent domain. Nevertheless, the classic laws have been shown to be consistent with
models of wall-bounded turbulent flows, notably the attached-eddy hypothesis [4,5]. Here we
seek to relate the classic laws to the turbulent eddies (or fluctuations) of a flow, the carriers of
the flow’s turbulent energy, without having recourse to any specific model of those eddies. To
that end, we shall rely on the ‘spectral analogues’ [6] (or, more properly, the ‘spectral analogues
of the classic laws,’ which are similar to the classic laws but apply to the spectrum of turbulent
energy instead of the MVPs) and the ‘spectral link’ [7] (which furnishes a connection between the
MVPs and the spectrum of turbulent energy). The spectrum of turbulent energy is a function of
the wavenumber k, E(k), the physical significance of which can be grasped from the expression
v2

s = ∫∞
1/s E(k) dk [2], where vs is the characteristic velocity, and v2

s the kinetic energy per unit mass,
associated with an eddy of size s. Thus E(k), which may be readily measured experimentally,
represents the way in which turbulent energy is allotted among eddies of different sizes in a flow.

As it turns out, a derivation of the classic laws can be completed, starting from the spectral
analogues and the spectral link, if E(k) satisfies a sufficient condition that spells out the general
scope of viscous and finite-domain effects in the energetics of wall turbulence. Our task will be to
identify, and put to the empirical test, that sufficient condition.

2. The classic laws
We begin by going over the standard derivation of the classic laws [2,3], which starts with a
dimensional analysis. The dimensional variables are 6: y, u′ ≡ du/dy (note that u is not Galilean
invariant, thus the choice of u′), ρ, ν, τw and δ. Here, ρ is the density of the fluid, ν is the kinematic
viscosity of the fluid, τw is the shear stress at the wall (i.e. the shear force that the flow exerts on
the wall, per unit area of wall), and δ is the size of the turbulent domain (in pipe flow, for example,
δ is customarily taken to be the radius of the pipe; more generally, δ is chosen so that the mean
velocity peaks at y = δ). From Buckingham’s Π -theorem [8] and the dimensional equations [u′] =
[y]−1[τw]1/2[ρ]−1/2, [δ] = [y][τw]0[ρ]0 and [ν] = [y]1[τw]1/2[ρ]−1/2, we conclude that the functional
relation among the six dimensional variables can be expressed as an equivalent functional relation
among three dimensionless variables: yu′/uτ , y/δ and yuτ /ν, where uτ is the frictional velocity,
uτ ≡ (τw/ρ)1/2. It follows that yu′/uτ = F(y/δ, yuτ /ν), which can also be written as

ỹũ′ = F(ŷ, ỹ), (2.1)

where F is an unknown function, ũ ≡ u/uτ , ũ′ ≡ ∂ũ/∂ ỹ,

ŷ ≡ y
δ

and ỹ ≡ yuτ

ν
. (2.2)

If we assume that F becomes independent of ŷ for ŷ → 0 (the limit of infinite domain), we obtain
the law of the wall:

lim
ŷ→0

ỹũ′ = Fw(ỹ), (2.3)

where Fw(ỹ) ≡ limŷ→0 F(ŷ, ỹ). If we assume that F becomes independent of ỹ for ỹ → ∞ (the limit
of vanishing viscosity), we obtain the defect law:

lim
ỹ→∞

ỹũ′ = Fd(ŷ), (2.4)
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where Fd(ŷ) ≡ limỹ→∞ F(ŷ, ỹ). If we assume that F becomes independent of both ŷ and ỹ for ŷ → 0
and ỹ → ∞ (the limit of infinite domain and vanishing viscosity), we obtain the log law:

lim
ŷ→0 ỹ→∞

ỹũ′ = κ−1, (2.5)

where κ−1 ≡ limŷ→0 ỹ→∞ F(ŷ, ỹ) is a dimensionless constant (the inverse of the Kármán
constant, κ).

3. The spectral analogues
To derive the spectral analogues, we follow the same steps as in the standard derivation of the
classic laws. The dimensional variables are E, k, y, δ, τw, ρ and ν. From Buckingham’s Π -theorem
and the dimensional equations [E] = [y]1[τw]1[ρ]−1, [k] = [y]−1[τw]0[ρ]0, [δ] = [y]1[τw]0[ρ]0 and
[ν] = [y]1[τw]1/2[ρ]−1/2, we conclude that the functional relation among the seven dimensional
variables can be expressed as an equivalent functional relation among four dimensionless
variables (E/yu2

τ , ky, y/δ and yuτ /ν), in the form

E
yu2

τ

= f (ky, ŷ, ỹ). (3.1)

If we assume that f becomes independent of ŷ in the limit of infinite domain, we obtain the spectral
analogue of the law of the wall:

lim
ŷ→0

E
yu2

τ

= fw(ky, ỹ) ≡ lim
ŷ→0

f (ky, ŷ, ỹ). (3.2)

If we assume that f becomes independent of ỹ in the limit of vanishing viscosity, we obtain the
spectral analogue of the defect law:

lim
ỹ→∞

E
yu2

τ

= fd(ky, ŷ) ≡ lim
ỹ→∞

f (ky, ŷ, ỹ). (3.3)

If we assume that f becomes independent of both ŷ and ỹ in the limit of infinite domain and
vanishing viscosity, we obtain the spectral analogue of the log law:

lim
ŷ→0 ỹ→∞

E
yu2

τ

= fl(ky) ≡ lim
ŷ→0 ỹ→∞

f (ky, ŷ, ỹ). (3.4)

For future reference, it bears emphasis that the spectral analogues entail mere pointwise
convergence [9] in (3.2)–(3.4), just as the classic laws entail mere pointwise convergence in (2.3)–
(2.5). Thus, for example, the spectral analogue of the law of the wall can be stated as ‘f (ky, ŷ, ỹ)
converges pointwise to fw(ky, ỹ) for ŷ → 0.’

4. The spectral link
We now turn to the spectral link. Crucial to the spectral link is a formula, the derivation of which
we relegate to the caption of figure 1, that expresses the turbulent shear stress at a distance y from
the wall, τt, in terms of the velocity of an eddy of size y, vy, in the form τt = cρu′yvy, where c is a
dimensionless constant. That formula for τt may be combined with the equation of momentum
balance, τt + ρνu′ = τw(1 − y/δ) [2,3] (where ρνu′ is the viscous shear stress and τw(1 − y/δ) is the
total shear stress), to obtain an expression for u′ that links the MVPs to the spectrum of turbulent
energy:

ỹũ′ = 1 − ŷ
ỹ−1 + cṽy

, (4.1)

where

ṽ2
y ≡

(
vy

uτ

)2
= u−2

τ

∫∞

1/y
E(k) dk. (4.2)
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Figure 1. Schematic for the derivation of the spectral-link formula for the turbulent shear stress τt (after [7]). A turbulent eddy
of size s and velocityvs straddles wetted surface Sy at a distance y from the wall. The eddy picks up high-momentum fluid from
above Sy and advects it downwards through Sy at a rate∝ vs. At the same time, the eddy picks up low-momentum fluid from
below Sy and advects it upwards through Sy at a rate∝ vs. The net flux of momentum through Sy equals the turbulent shear
stress that the eddy produces on Sy ; thus, τt ∝ ρu′svs (where we have substituted u′s for u(y + s) − u(y − s)). Since vs
is an increasing function of s (because v2

s = ∫∞
1/s E(k) dk and E(k)> 0 for all k), the production of τt on Sy is dominated by

eddies of size y and velocityvy—that is, by the largest eddies that straddle Sy—andτt = cρu′yvy , where c is a dimensionless
proportionality constant.

5. Analysis
In principle, (4.1)–(4.2) can be used to compute MVPs for any specific model of the spectrum.
For the phenomenological model of Kolmogorov [2,3,10,11], in which a power-law spectrum
that is independent of both δ and ν is multiplied by a conventional correction for the effect
of finite domain and by a conventional correction for the effect of viscosity, it has been shown
that (4.1)–(4.2) yield MVPs complete with all of the distinctive features known from empirical
data on wall-bounded turbulent flows, including buffer layers (which turn out to stem from the
multiplicative correction for the effect of viscosity) and wakes (which turn out to stem from
the multiplicative correction for the effect of finite domain) [7,12]. What is more, the MVPs
attendant on the phenomenological model satisfy the classic laws [7]. And yet, as a specific model
of the spectrum, the phenomenological model can hardly serve as the foundation of broadly
applicable laws. Thus, in what follows, rather than focusing on any specific model, we shall seek
to ascertain a minimally restrictive set of constraints on the spectrum under which (4.1)–(4.2) can
be guaranteed to yield MVPs that satisfy the classic laws.

We start by substituting (3.1) into (4.2) and changing the integration variable to ξ ≡ ky:

ṽ2
y =

∫∞

1
f (ξ , ŷ, ỹ) dξ . (5.1)

Consider, for example, the limit of infinite domain, ŷ → 0, and suppose that we can write

lim
ŷ→0

ṽ2
y = lim

ŷ→0

∫∞

1
f (ξ , ŷ, ỹ) dξ =

∫∞

1
lim
ŷ→0

f (ξ , ŷ, ỹ) dξ . (5.2)

In this case, we would be able to invoke the spectral analogue of the law of the wall (whereby
f (ξ , ŷ, ỹ) converges pointwise to fw(ξ , ỹ) for ŷ → 0) and conclude that ṽ2

y becomes independent of ŷ
in the limit of infinite domain and, consequently, that (4.1) reduces to (2.3), the law of the wall, in
that limit. Note, however, that it might not be possible to bring the limit inside the integral, as we
have done in (5.2), unless f (ξ , ŷ, ỹ) converges uniformly to fw(ξ , ỹ) for ŷ → 0 [9]. This brings us to
the nub of the argument:

Let us assume that the effect of finite domain and the effect of viscosity is to depress the dimensionless
spectrum, at least for ky ≥ 1 (the domain of integration in (5.1)):

0 ≤ f (ky, ŷ, ỹ) ≤ fw(ky, ỹ) ≤ fl(ky)

and 0 ≤ f (ky, ŷ, ỹ) ≤ fd(ky, ŷ) ≤ fl(ky),

}
(5.3)
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for ky ≥ 1. Then, convergence in (3.2)–(3.4) is uniform and, consequently, there exist functions
F2(ŷ, ỹ), F2

w(ỹ) and F2
d (ŷ) such that

F2(ŷ, ỹ) ≡
∫∞

1
f (ξ , ŷ, ỹ) dξ , (5.4)

lim
ŷ→0

F2(ŷ, ỹ) =F2
w(ỹ) ≡

∫∞

1
fw(ξ , ỹ) dξ , (5.5)

lim
ỹ→∞

F2(ŷ, ỹ) =F2
d(ŷ) ≡

∫∞

1
fd(ξ , ŷ) dξ (5.6)

and lim
ŷ→0 ỹ→∞

F2(ŷ, ỹ) = C2, (5.7)

where C2 ≡ ∫∞
1 fl(ξ ) dξ [9]. In this case, we can combine (5.4) with (5.1) to write ṽy =F (ŷ, ỹ), which

we substitute in (4.1), with the result:

ỹũ′ = 1 − ŷ
ỹ−1 + cF (ŷ, ỹ)

. (5.8)

This latter equation should be compared with (2.1), the equation from which the classic laws are
customarily derived, as we have seen, by making ad hoc assumptions on the asymptotes of F(ŷ, ỹ),
a function on which nothing is known apart from what might be inferred from (2.1). By contrast,
function F (ŷ, ỹ) can be computed as an integral of the spectrum, using (5.4), and carries a physical
meaning independent of (5.8). Indeed, F (ŷ, ỹ) equals ṽy, the dimensionless velocity of the eddies
that dominate the production of turbulent shear stress at a distance y from the wall (cf. the caption
of figure 1). What is more, provided that the spectrum satisfies condition (5.3), the asymptotes of
F (ŷ, ỹ) are guaranteed to be those of (5.5)–(5.7). Thus, if the spectrum satisfies condition (5.3), we
can invoke (5.5) and (5.8) to conclude that

lim
ŷ→0

ỹũ′ = 1
ỹ−1 + cFw(ỹ)

, (5.9)

which we recognize as the law of the wall (cf. equation (2.3)). If the spectrum satisfies condition
(5.3), we can invoke (5.6) and (5.8) to conclude that

lim
ỹ→∞

ỹũ′ = 1 − ŷ
cFd(ŷ)

, (5.10)

which we recognize as the defect law (cf. equation (2.4)). If the spectrum satisfies condition (5.3),
we can invoke (5.7) and (5.8) to conclude that

lim
ŷ→0 ỹ→∞

ỹũ′ = (cC)−1, (5.11)

which we recognize as the log law with κ = c C (cf. equation (2.5)).
To gain insight into the physical import of condition (5.3), it might be useful to turn to some

of its implications aside from the classic laws. One such implication of (5.3), namely 0 ≤F (ŷ, ỹ) ≤
Fw(ỹ) ≤ C and 0 ≤F (ŷ, ỹ) ≤Fd(ŷ) ≤ C, can be phrased as ‘the effect of finite domain and the effect
of viscosity is to slow down the eddies that dominate turbulent shear-stress production in the flow’
and does no violence to physical intuition. Another implication of (5.3), 0 ≤ ỹF (ŷ, ỹ) ≤ ỹFw(ỹ) ≤
ỹC and 0 ≤ ỹF (ŷ, ỹ) ≤ ỹFd(ŷ) ≤ ỹC, or ‘the effect of finite domain and the effect of viscosity is to
lessen the turbulent viscosity of the flow,’ may have a stronger purchase on intuition. (Note that
ỹF (ŷ, ỹ) equals the turbulent viscosity of the flow normalized by ν, the kinematic viscosity of the
fluid, as can be seen from (5.8).)

But quite apart from such considerations, condition (5.3) can be put to the empirical test. In this
regard, note that condition (5.3) presupposes the spectral analogues (3.2)–(3.4), which have been
validated empirically by inspecting suitable plots of experimental and computational data on the
spectrum [6]. Those very same plots, the essential features of which are reproduced in figure 2,
can be used to validate condition (5.3), as we explain in the caption of that figure.
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Figure 2. Typical plots of experimental and computational data on the dimensionless spectrum f (ky, ŷ, ỹ), drawn schematically
after the original plots in [6], are used here to put condition (5.3) to the empirical test. (a) Plots of f (ky, ŷ, ỹ) versus ky for a fixed
value of ỹ (the same for every plot) and four values of ŷ (one for each plot). The plots collapse onto a master curve at high ky,
in accord with the spectral analogue of the law of the wall (the master curve corresponds to fw(ky, ỹ)). As ky is lessened, the
plots peel off from themaster curve in order of decreasing value of ŷ (plot A followed by plot B, etc.); further, every plot remains
below the master curve after peel off (f (ky, ŷ, ỹ)≤ fw(ky, ỹ)), consistent with (5.3). (b) Plots of f (ky, ŷ, ỹ) versus ky for a fixed
value of ŷ (the same for every plot) and four values of ỹ (one for each plot). The plots collapse onto a master curve at low ky, in
accordwith the spectral analogue of the defect law (themaster curve corresponds to fd(ky, ŷ)). As ky is increased, the plots peel
off from themaster curve in order of increasing value of ỹ (plot A followed by plot B, etc.); further, every plot remains below the
master curve after peel off (f (ky, ŷ, ỹ)≤ fd(ky, ŷ)), consistent with (5.3).

6. Discussion
To summarize, the classic laws can be predicated on (5.3), a sufficient condition concerning the
manner in which f (ky, ŷ, ỹ) (the dimensionless spectrum of turbulent energy at a distance y from
the wall) is affected by δ (the size of the turbulent domain) and ν (the viscosity of the fluid) via the
dimensionless variables ŷ and ỹ, respectively, where ŷ ≡ y/δ and ỹ ≡ yuτ /ν. Broad in scope and
agreeable to intuition, condition (5.3) is consistent with empirical data on the spectrum and may
be deemed a general property of the energetics of wall turbulence.

We have shown that the classic laws of wall-bounded turbulent flows can be derived by
relating the MVPs (which are the subject of the classic laws) to the spectrum of turbulent energy
(which represents the distribution of turbulent energy among eddies of different sizes in a flow)
without invoking any specific model of the spectrum. Our derivation has allowed us to conclude
that the classic laws must be satisfied if a turbulent eddy cannot be energized by virtue of viscosity
or finite domain, a condition that may be readily verified by empirical data on the spectrum of
turbulent energy. Thus, we have been able to draw support for the classic laws from empirical
data unrelated to the MVPs. From a broader perspective, our derivation indicates that, contrary
to what might be inferred from the standard derivation of the classic laws, the MVPs as well
as the attendant phenomenon of turbulent friction are inextricably linked to, and can indeed be
interpreted as macroscopic manifestations of, the spectrum of turbulent energy [7,13–20].
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