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People can quickly and accurately compute not only the
mean size of a set of items but also the size variability of
the items. However, it remains unknown how these
statistics are estimated. Here we show that neither
parallel access to all items nor random subsampling of
just a few items is sufficient to explain participants’
estimations of size variability. In three experiments, we
had participants compare two arrays of circles with
different variability in their sizes. In the first two
experiments, we manipulated the congruency of the
range and variance of the arrays. The arrays with
congruent range and variability information were judged
more accurately, indicating the use of range as a proxy
for variability. Experiments 2B and 3 showed that people
also are not invariant to low- or mid-level visual
information in the arrays, as comparing arrays with
different low-level characteristics (filled vs. outlined
circles) led to systematic biases. Together, these
experiments indicate that range and low- or mid-level
properties are both utilized as proxies for variability
discrimination, and people are flexible in adopting these
strategies. These strategies are at odds with the claim of
parallel extraction of ensemble statistics per se and
random subsampling strategies previously proposed in
the literature.

Introduction

Suppose you work in a strawberry farm and your
task is to screen strawberries before they are packaged
for sale. Small berries should be removed from the
conveyor belt as they pass through, because customers
generally do not enjoy them. Batches of strawberries
also come in different average sizes. Some batches have
larger berries in general, other have smaller ones. To
perform your screening task well, you need some
mental representations of the overall size of the batch

of berries. Yet, since berries vary in size, having only a
representation of the overall size and a simple cutoff
score are not sufficient. You also need a representation
of how variable they are. The variability measure gives
you a sense of how small a berry is abnormal, and
hence should be taken away. Anomaly detection such
as this berry screening task, and many other real-world
judgment tasks, require quick access to statistical
summary representations such as the average and
variability of a set of items (Ma, Navalpakkam, Beck,
Van Den Berg, & Pouget, 2011).

Since Ariely (2001), ample evidence has shown that
statistical summary representations in an array can be
efficiently extracted. Studies have shown that mean size
(e.g., Ariely, 2001), orientation (e.g., Morgan, Chubb,
& Solomon, 2008), spatial position (e.g., Alvarez &
Oliva, 2008), and even emotion and gender (e.g.,
Haberman & Whitney, 2007, 2009) of an array can be
extracted with little effort. The ability is believed to be
relevant to scene perception since when a large number
of objects are present in a scene, they may not each be
perceived individually but instead, represented as a set
or ensemble (Brady, Shafer-Skelton, & Alvarez, 2017;
Haberman & Whitney, 2012; Greene, 2013).

In recent years, there has been a significant interest in
understanding how this efficient statistical summary
representation process is implemented cognitively. Is
there a special mechanism designed to compute
summary statistics efficiently? Or is this ability just the
result of smart sampling strategies where we attend to
and remember a few items in working memory, and use
them to derive summary statistics? Ariely (2001) and
Chong and Treisman (2003, 2005) argued that mean
size extraction involves a parallel process, in part
because calculating the average size of an array seems
quick and effortless. In addition, they showed that
participants do not necessarily have access to the
identities of individual items even when they have
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access to the mean size (Ariely, 2001), and that
performance at judging mean size is relatively unaf-
fected by variations in the number of items shown, the
variability of those items, and the duration they are
shown (Chong & Treisman, 2003). However, there are
alternative strategies that could allow participants to
estimate the average size of items without the need to
invoke a fully parallel process focused on calculating
mean size. For example, Myczek and Simons (2008)
proposed several alternative strategic accounts to the
global, parallel process for mean size extraction. They
showed that size discrimination could be performed
through subsampling the arrays. For example, simu-
lated accuracy patterns when two or three items were
sampled and averaged from an array could produce
accuracy patterns close to, or exceeding that of human
participants. The authors were cautious that partici-
pants might not actually carry out this exact subsam-
pling heuristic, but noted that similar sampling
strategies provided a means to perform the discrimi-
nation task. Since Myczek and Simons (2008) proposed
this account, a great deal of work has focused on
parsing out the actual cognitive mechanisms of
extracting ensemble information about the mean of a
set (e.g., Chong, Joo, Emmanouil, & Treisman, 2008;
Simons & Myczek, 2008). For example, Allik, Toom,
Raidvec, Averin, & Kreegipuu (2013) suggested that
most of the variance in a mean discrimination task
could be explained by a simple model taking internal
noise and sampling into account. Others have found
evidence more consistent with some ‘‘smart’’ subsam-
pling strategies (e.g., Marchant, Simons, & de Fockert,
2013; Maule & Franklin, 2016). On the other hand,
some findings have provided support for more parallel
mechanisms—for example, outliers tend to be dis-
counted in extracting the mean (Haberman & Whitney,
2010), inconsistent with a straightforward random
subsampling account; and in pairs of arrays where only
a single item changes between arrays, participants can
recognize the change in the mean without knowing
which item changed (Haberman & Whitney, 2011; see
also Ward, Bear, & Scholl, 2016).

However, nearly all of these previous studies have
focused on extracting the mean. Higher-level statistical
summary representations, such as variability and
kurtosis, have remained understudied. Given the
importance of variability in real-world applications like
outlier detection and visual search, and given the
computational difficulty of extracting a set’s variability
from a subsampling strategy, this paper focuses on
understanding the mechanisms of size variability
extraction. In particular, we examine whether size
variability discrimination can be carried out efficiently,
and, if so, how this calculation is cognitively imple-
mented. As has been done in the case of mean size, we
contrast an account where (a) the size of all of the items

is preattentively available and utilized to compute the
variability in parallel; with (b) a subsampling strategy
where four to five items are randomly sampled; and (c)
a set of alternative, more parallel strategic accounts,
where people make use of cognitive strategies to infer
variability without directly carrying out the computa-
tion. In particular, we focus on the possibility that
participants make use of a visual search for the largest
and smallest items (a range-based account), and an
account where the variability is computed using low- or
mid-level properties of the array like spatial frequency
or texture. Together, our experiments suggest that size
variability of a set of items is accessed through proxies,
and this view may be extended to other types of
statistical summary representations.

The variability discrimination task and possible
mechanisms

Imagine we show participants two arrays of circles
simultaneously, one on each side of fixation, and ask
them to judge the relative variability of these arrays (as
in Solomon, Morgan, & Chubb, 2011). The two arrays
have roughly equal mean sizes, but one of the arrays
has more variability (see Figure 1 for an example). The
participants’ task is to say in which of the two arrays
there is more variability in the size of the items. How do
people perform this variability discrimination task?
Here, we propose four possible mechanisms based on
those proposed for mean size discrimination.

(1) A cognitively demanding serial processing of all items

Imagine you were asked to perform this variability
task, but rather than a visual task with the size of
circles, you were given numeric values from two
different lists and asked to compute which had the
higher variability. To do this, you would need to

Figure 1. Sample array used in Experiment 1. The participants’

task was to decide which of the two sides had a larger

variability in size. A static mask was shown upon removal of the

circle arrays from the screen.

Journal of Vision (2018) 18(9):3, 1–18 Lau & Brady 2



mathematically calculate variance for each list and
compare them. To use this strategy in the visual array,
a numerical value of the size of each individual item (X)
in the array is first extracted. The values within an array
are then summed and divided by the number of items in
the array (N). A mean of each array (l) is then
calculated by the formula:

l ¼
P

X

N
ð1Þ

This is the general formula for calculating the
arithmetic mean of a population (l). The squared
deviations between each item in the array and the mean
are then summed. The sum of squared deviations is
then divided by N to form a variance (r2).

r2 ¼
P

X� lð Þ2

N
ð2Þ

The variance of the two arrays can then be compared.
This process guarantees that all individual items in the
arrays are utilized.

Three corollaries logically follow if participants used
a serial, cognitively demanding strategy like they would
be forced to use with symbolic numbers as inputs: First,
if the processes for the mean and variance computation
are noise-free, the participants should always obtain the
correct answer. Thus, to explain human performance,
noise must be added either in the representations of
item sizes, the decision stage, or both (see Allik et al,
2013; Solomon et al., 2011). Second, since individual
items sizes are accessed and represented, participants
may have memories of many or all of the items (e.g.,
when asked to recall whether a particular item is in the
array after a delay, it is likely that participants would
perform well or, at minimum, above chance). Third,
each item is processed serially. As the number of items
in the array increases, response time should also
increase. In many ways, this ‘‘cognitive’’ account serves
as a null hypothesis for how participants might perform
the task. If participants simply compute variance by
making noisy estimates of each item’s size, this provides
a possible account of the visual version of the task,
though it predicts both (a) an intensely cognitively
demanding task, and (b) a serial and slow task, as
would be the case if given symbolic numbers rather
than visual circles.

(2) Parallel extraction of some statistical summary
properties

(2A) Method (1) above posits that each individual
item is accessed and used for variability computation. In
the ensemble statistics literature, a number of researchers
have argued against such a strong position. Using a
recognition test, Ariely (2001) concluded that his
participants did not have representations of individual

items during mean discrimination. Chong and Treisman
(2003) supported that idea. They found that increasing
the set size of the arrays did not affect size discrimina-
tion performance. This was taken to argue for a
preattentive, parallel processing for size discrimination.
Thus, one possibility is that participants have preatten-
tive access to the size of each item without performing
any cognitively demanding task to ascertain size. They
can directly feed this preattentive estimate of the size of
each circle not only into an ‘‘ensemble average’’
mechanism but also into an ‘‘ensemble variability’’
mechanism. This account predicts that participants
make use of almost all information from the display but
do not do so in a cognitively demanding way that
requires processing of each item.

(2B) Alternative parallel accounts of variability
estimation are also possible. For example, low-level
visual information, such as luminance, spatial fre-
quency, and texture can be used as a global, parallel
mechanism for estimating statistical properties (Im &
Halberda, 2012). More homogeneous arrays usually
denote a smooth texture and fewer spatial frequencies,
more heterogeneous arrays have rougher textures and
more spatial frequencies are represented. Detection of
different textures can be very efficient (e.g., Morgan et
al., 2008). Thus, one possible range of accounts of
variability discrimination is that participants make use
of low-level or mid-level proxies for variability without
directly accessing the size of items or relying on
preattentive size representations.

(3) Random subsampling

Myczek and Simons (2008) proposed a computa-
tionally viable alternative to the parallel processing
account (2A) for mean size discrimination. In their
formulation, a subset of items from each array is
randomly sampled into working memory and then an
estimator (the mean) is calculated based on the sample.
The estimator may be calculated using an analytic
method, such as Method (1) above. It may also be
extracted with some parallel process; such as Method
(2) above. Once an estimator for each array is
generated, an inference of variability can be made by
comparing the two estimators. This model has the
cognitive simplicity of assuming people use known
mechanisms for selecting and holding onto a subset of
items, and, in the case of estimating the mean, only a
few samples are needed for accurate performance,
meaning this proposal can explain average performance
quite well. However, Myczek and Simons (2008) also
suggested that observers might not be implementing a
truly random sampling algorithm in the case of mean
discrimination. As we explain below, this random
sampling method is even less unlike to apply to
variability discrimination, as the implementation of a
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random subsampling account for a variability dis-
crimination task requires very large numbers of
samples to be stored in the working memory, which
seem infeasible given limited working memory capacity.

(4) Smart subsampling

Another alternative mechanism for estimating the
variability of a display is a form of smart subsampling.
In particular, people may use efficient mechanisms to
select a set of items that is particularly informative
about variability, and rely only on that subset of items
in making their judgment. Smart subsampling for
variability discrimination differs from random sub-
sampling. To make use of the strategy, people must be
strategically selecting items in the array. In the case of
variability discrimination, smart subsampling can be
implemented by instead trying to estimate the range of
the array, the largest item, the smallest item or some
other proxies of variability available in the arrays
(Fouriezos, Rubenfeld & Capstick, 2008). Range often
works very well as a proxy for variability because a set
of objects with large variability tends to have a large
range as well. Using only the largest or the smallest
item as proxy might work well for the same reason.

To carry out the smart subsampling, such as a range
heuristic, participants have to first search for the largest
and smallest items in each of the two arrays. They then
compare two pairs of items and see which array has the
larger range. The one with a larger range is likely to
have a larger variability. Other, more local range-based
strategies are also possible. For example, participants
could examine only a subset of the items, like those
near fixation, and find the largest and smallest among
those items. This would result in a noisier estimate of
the range of the display but would also be consistent
with the use of the range as a proxy.

In general, any one of these strategies—or some
combination of them—could explain performance in
the described variability discrimination task. To try to
understand the relative role of these strategies, in the
current study we use a mix of both simulations and
experiments. We conclude that people rely on both
parallel mechanisms involving low-level or mid-level
features (2B) and on a spatially constrained range
heuristic (4) in computing variability, rather than either
a fully serial strategy (1), a fully parallel processing of
the items in the display (2A), or a straightforward
subsampling algorithm (3).

Existing evidence about variability
discrimination

Previous research has shown that computing the
variability of a set of items is both possible and done

relatively accurately (e.g., Morgan et al., 2008).
Broadly, this research has suggested that people make
use of a large fraction of the items when performing the
discrimination task.

In particular, Morgan et al. (2008) had participants
look at two Gabor arrays, arranged side-by-side. Each
array had the Gabor stimuli arranged in an 11 3 11
imaginary grid. The stimuli varied in orientation. One
of the arrays was the standard array, which had a
certain orientation variability among the Gabor
stimuli, and it was compared to the test array. The test
array has a larger variability compared to the standard
array. The arrays were shown for 200 ms. The
participants’ task was to determine which of the two
arrays had a larger variability (i.e., identify the test
array). Participants were quite good at this task.
However, the cognitive mechanism—how participants
performed this judgment—was relatively unexplored.
In a later study by the same group, Solomon et al.
(2011, experiment 3) examined whether the just
noticeable difference (JND) to detect variability dif-
ferences increased as the variability of the standard
array increased. This time, the authors focused on size
variability instead of orientation. They systematically
manipulated the variability differences between the
standard and test arrays displayed in succession. They
found that as the variability of the standard array
increased, a larger difference between the two arrays
was needed for participants to detect the difference.
This is consistent with Weber’s law and thus with most
other domains of quantity judgment, which provides
some evidence that participants may have been directly
estimating variance from the size of the items in the
arrays. However, the results of Solomon et al. (2011)
also suggested that a simple parallel processing account
cannot explain their data. They concluded that
participants utilized only a subset of items in each
array, and then use them to compute the summary
statistics. In particular, their efficiency analysis led to
an estimate that participants used five to eight items’
worth of information from each array (relative to all
eight items in each array) for the variability discrimi-
nation task. Interestingly, participants’ reports of
variability were also more accurate than one would
expect based on their reports of mean size in a previous
experiment. Solomon et al. (2011) suggested that this is
accounted for by some form of late decision noise in the
computation of mean size, but an alternative suggestion
is that participants simply use different cognitive
strategies in computing the two (e.g., Yang, Tokita, &
Ishiguchi, 2018).

More direct evidence about the extent to which
participants engage in direct computation of size
variability is provided by Tokita, Ueda, and Ishiguchi
(2016, experiment 3). They had participants perform a
variability discrimination task and attempted to clarify
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whether all or a random subset of items were used
during variability discrimination. Two levels of vari-
ability differences between the standard and test arrays,
as well as four levels of set sizes were used. Employing a
statistical efficiency analysis, the authors rejected the
possibility of a random subsampling model, as partic-
ipants were too efficient at variability discrimination at
higher set sizes to be relying on a purely random subset
of items. Using a perceptual adaptation method,
Norman, Heywood, and Kentridge (2015) asked if a
mental representation of variability exists. They
showed that participants were less sensitive in vari-
ability discrimination after being adapted to high
variability stimuli. However, these studies did not
directly address other cognitive strategies that might
play a role without involving sampling all items (e.g.,
range-based accounts; low- or mid-level proxy-based
accounts).

Taken together, the existing work provides strong
evidence that participants can successfully perform size
variability tasks and provides initial evidence that a
random subsampling account is insufficient to explain
performance in these tasks. However, the particular
strategies used by participants have remained relatively
unexplored.

Random subsampling is not a feasible strategy
for variability discrimination

The idea of subsampling has been explored mostly in
the context of mean size. Interestingly, however, both
simulations and best-case estimation (below) show that
mean size is much more easily approximated using a
subsampling strategy of three to four items (i.e., the
typical working memory limits) than is variability
estimation. To perform a mean size task using a
subsampling strategy, participants have to only sample
a few items in the arrays, and generate a single
representation of the mean. Sampling just a few items
provides a relatively accurate estimate of the mean (as
pointed out by Myczek & Simons, 2008). This is
compatible with idea that only three to four items can
be held in working memory.

In addition, it is the case that variability is more
difficult to estimate than mean size, even with the same
number of samples per array. In particular, the
variance of an estimate of the mean of a set of items is
r2/n, where r2 is the variance across items and n is the
number of items sampled. By contrast, the variance in
an estimate of the variance of a set of items is 2r4/n.
This means you have much more uncertainty about the
variance of a set of items from a given number of
samples, n, than about the mean from that same
number of samples.

To see the exact effect this has on a variability
judgment task, we simulated performance of variability
discrimination as a function of the number of random
subsamples taken. In our simulation, we assumed that
a participant (in this case, the computer) was given a
task similar to that of Figure 1. In each trial, two arrays
were shown, each with N items. In our simulation, we
used an arbitrary N, and set it to N ¼ 50, though the
results are invariant to N as long as N is greater than
the number of sampled items. The average sizes of the
two arrays were always the same, with 10 units. One of
the arrays was a standard array, which had a standard
deviation of 1.0 unit. The other was a test array, which
had a standard deviation of 1.0, 1.2, 1.4, 1.6, or 1.8
units. These translated into a 0% to 80% difference in
standard deviation between the standard and test
arrays. The observer’s task was to identify the array
with larger variability in size (i.e., the test array).

In each trial, k items were randomly sampled from
each of the two arrays, so a total of 2k items were
stored in working memory. The standard deviations of
the two samples were then separately calculated and
compared. The one with the larger sample standard
deviation was chosen as the response. The same
procedure was repeated 20,000 times at each level of 2k
and each standard deviation difference. The responses
were aggregated at each level.

Figure 2a shows the simulation results. When there
were no differences between the standard and test
arrays, increasing the number of items stored in
working memory (2k) would not increase the rate of
selecting the array with larger variability (i.e., the test
array). When there was a real difference between the
two arrays, accuracy (the rate of selecting the test
array) grows approximately logarithmically with the
number of items stored in working memory (2k).

Thus, the nature of variability discrimination tasks
makes it such that very large numbers of samples are
needed to perform well. In particular, our simulations
show that size variability discrimination can be
theoretically achieved by subsampling only with
unreasonably large samples. For example, according to
Figure 2a, for a moderate difference in standard
deviation between the standard and test arrays
(difference ¼ 0.4), around eight items have to be
sampled from each array to achieve an accuracy of
80%. That is, to achieve an 80% accuracy, participants
have to maintain 16 independent representations in
working memory. This working memory capacity
requirement is well above estimated capacities for
individual items (e.g., Luck & Vogel, 2013). For this
reason, a pure random subsampling heuristic with
analytical variability extraction is not feasible for a
variability discrimination task.
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The current experiments

Using simulations, we have shown that neither
directly processing and remembering the size of each
item nor a random subsample of items is likely to be the
method implemented by human observers when per-
forming variability discrimination tasks. The limiting
factor is working memory capacity. To obtain reason-
able performance with such a strategy on variability
discrimination tasks, a large number of items have to
be stored in working memory, which is beyond the
capacity limit of working memory. To perform the
task, observers are likely to implement other strategies.

Thus, in a series of experiments, we explore possible
strategies that they might use. In Experiments 1 and 2,
we test whether they might use a heuristic based on the
range of the arrays. In Experiments 2B and 3, we test
whether participants’ performance is invariant to
differences in low- and mid-level visual information.
We found evidence for a range heuristic and for the
usage of low- or mid-level visual features, suggesting
multiple heuristics are at play in estimating variability

of a group of items. These strategies provide partial
explanation to the relatively efficient performance when
variability discrimination is needed in daily life.

Experiment 1

Given that it is unlikely that people perform
straightforward random sampling strategies, how do
participants perform variability discrimination tasks?
Experiment 1 aimed at testing if participants were using
a particular form of smart sampling strategy: the range
heuristic, relying primarily on the size of the smallest
and largest items on each trial; or whether they instead
had some direct access to the variability of the array
(akin to claims of direct access to mean size). The range
heuristic is a feasible strategy because, on average,
range is correlated with variance.

Simulation of range heuristic

To support the idea that range heuristic is a viable
alternative of the random subsampling strategy, we
illustrate the efficiency of the range heuristic with a
simulation. The simulation was similar to what we did
for the random sampling strategy reported in the
Introduction. The stimuli used were identical to the
previous simulation. Two arrays of items, each with N
items, were shown in each trial. The task was to identify
the array with a larger variability.

Instead of storing k items from each array, we
simulated a case where k items were searched in each
array, and the ranges of the arrays were estimated
based on the size of the largest and smallest items in the
set of k items that was searched. The array with a larger
estimated range was deemed to be the test array.
Because, in this case, the k items do not need to be held
in mind, but only searched, this strategy is far less
cognitively demanding than the random subsampling
account proposed above. Is such a strategy effective?

To assess how effective this range heuristic would be,
20,000 samples were simulated at each level, and the
percentage of correctly selecting the test array reflects
the efficiency of the range-heuristic. As can be seen in
Figure 2b, when there were no differences between the
standard and test arrays, the rate of selecting the test
array did not increase with number of items sampled
(as expected). When there was a moderate difference
between the two arrays (difference¼ 0.4 SD), searching
a set of only five items in each array and estimating the
range of these items (total items searched¼ 2k¼ 10)
yielded an accuracy of 72.6%. When the difference
between the two arrays is large (difference ¼ 0.8 SD),
employing the range heuristic on 10 searched items

Figure 2. (a) Simulation of random subsampling strategy on a

variability discrimination task. The simulation assumed that two

arrays were shown on each trial, where the two arrays had the

same average size, but one (test array) had a larger variability

than the other (standard array). The participant’s task was to

identify the one with a larger variability (i.e., the test array).

Each of the lines indicates a particular difference in standard

deviation between the standard and test arrays. In general, the

test array was increasingly likely to be chosen as more items

(2k) were utilized and stored in working memory, provided that

there was a true difference between the arrays. (b) Efficiency

simulation of the range heuristic in a variability discrimination

task. In the simulation, k items from each array (hence, a total

of 2k) were sampled. The largest and smallest items among the

sample were extracted, and used to calculate the ranges of the

arrays. The array with a larger range was judged to be more

variable (and selected as the test array). At each level, 20,000

pairs of arrays were generated and the rate of picking the actual

test array was recorded. All simulations in this paper were done

in R.
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yielded an impressive 85.5% accuracy. The rates of
improvement are slower than utilizing 2k items in
working memory for random subsampling (see Figure
2a), but in this case, only a simple visual search is
needed. The entire set of display need not be held in
working memory. Instead, only the largest and smallest
items of each array have to be stored in working
memory. That is, regardless of number of items
searched, only a total of four items from both arrays
need to be stored in working memory. Hence, working
memory requirements for the range heuristic are very
low compared to the random subsampling method, and
are hence within the limits of working memory
capacity.

Thus, if participants could search 5–10 items per side
of the display for the largest and smallest items, they
could accurately perform variability discrimination
using what we could consider a smart subsampling
strategy rather than a purely parallel mechanism.

Behavioral evidence of range heuristic

This kind of visual search has the potential to be a
cognitively feasible strategy. Previously, studies have
shown that people are quite efficient at visual search for
the smallest or largest items in an array. Response times
in the search are hardly affected by an increase in the
number of distractors in the array when participants
need to search for the largest or smallest item, and thus
large numbers of items being searched is quite feasible.
This is especially true when the target size is made
known to the participants, the distractors are largely
homogeneous, and the target is linearly separable from
the distractors in the feature space (Hodsoll &
Humphreys, 2001; Hodsoll, Humphreys, &
Braithwaite, 2006). However, in cases when the
distractors are heterogeneous, or when the smallest and
largest target items are similar to the distractors in the
feature space, the predictions are less clear (Duncan &
Humphreys, 1989). In our task, participants could
make use of a relatively efficient relational strategy
(e.g., ‘‘find the largest’’; Becker, 2010), suggesting this is
likely to be a quite efficient search—and in any case,
searching a set of k items is significantly easier than
computing and remembering each of their sizes.

To test whether participants actually utilize the range
heuristic in estimating variability, on each trial, two 16-
circle arrays were shown, one on the left, the other on
the right. The log-transformed mean diameters of the
two arrays within a trial were always the same. One of
the two arrays was the standard array, in which the
circles had a 0.1-log-pixel standard deviation in log-
transformed diameter. The other array was the test
array, in which the circles were more variable in size.
Participants were instructed to select the array that was

more variable (i.e., the array in which the circles were
more different from each other).

We manipulated the range-variance congruency
across trials. Recall that the test array was always more
variable compared to the standard array. In the
congruent trials, the test array also had a larger range
compared to the standard array. In the incongruent
trials, the test array had a smaller range compared to
the standard array. The spatial positions (left/right) of
the test and standard array were randomized, so the
participant’s task was always a two-alternative forced
choice in both range congruent and range incongruent
conditions.

The first experiment aimed to show that (a)
participants can perform variability discrimination
more accurately than would be expected under the
random subsampling account, which predicts very poor
performance, and (b) participants make use of the
range heuristic, a form of smart subsampling, to
perform the discrimination task. A substantial drop in
accuracy is expected when there is a range-variance
incongruency.

Methods

Design

Experiment 1 was a complete within-subjects design.
Range-variance congruency was manipulated within
subjects, such that half of the trials were range-variance
congruent, the other half were incongruent. Trials also
varied in terms of the standard deviation difference
between the standard and test arrays. For a particular
trial, the difference in log-transformed standard devi-
ations between the two arrays could be any of the set
{0.01, 0.02, 0.04, 0.06, 0.08}. To prevent participants
from anchoring their judgments based on a fixed stable
mean context (Tong, Ji, Chen, & Fu, 2015), we also
varied the mean size of the circle arrays across trials.
Across trials, the mean size of the circles could be small
(around 40 pixels in diameter), or large (around 50
pixels in diameter).

Participants

Participants were recruited from University of
California, San Diego’s Psychology Subject Pool.
Thirty-four participants (22 women, 12 men) were
recruited, with a mean age of 20.9. Participants gave
informed consent before participating in the experi-
ment. All participants participated for partial course
credit.

For the major range-variance congruency effect that
we were testing, our pilot study indicated a large effect
size (estimated Cohen’s d around 0.9). A power analysis
indicated that we could achieve a power of 80% with a
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sample size n¼12. To ensure normal distribution of the
sampling distributions, we decided to include at least 30
participants in each of our experiments.

Apparatus and stimuli

The circle arrays were shown on a Dell E173FPc 17-
in. LCD monitor with 4:3 aspect ratio. At a viewing
distance of approximately 60 cm, the monitor’s visible
area was 31.28 wide and 25.48 tall in visual angle. The
resolution of the screen was set to 1,024 3 768.

Twenty pairs of circle arrays were generated to serve
as the stimuli (see Supplementary Appendix). The same
set of stimuli was shown to all participants. It included
combinations of two levels of range-variance congru-
ency and five levels of standard deviation difference
between the standard and test arrays.

Two circle arrays were presented simultaneously,
side-by-side (Figure 1). Each array contained 16 circles,
positioned on a 43 4 imaginary grid. Individual circles
had diameters between 29 to 67 pixels. At a viewing
distance of approximately 60 cm, the diameters of the
circles translated to 0.918 to 2.098 in visual angle.
Adjacent circles within the same array had a mean
center-to-center distance of 100 pixels (3.18). The exact
position of each circle was jittered such that the circles
did not appear to be on a static grid, with the constraint
that the circles did not overlap. The locations of the
circles within each array were randomized. Center-to-
center distance between the two arrays was maintained
at 512 pixels (15.98).

Procedure

Participants were shown the instructions of the
experiment, followed by a short quiz to make sure they
understood the instructions. Upon passing the quiz,
participants were instructed to sit at an arm’s length
from the computer monitor. The experiment started
with a practice block with 10 trials. Each trial began
with a fixation cross at the center of the screen for
approximately 500 ms. The exact duration was drawn
from a Gaussian distribution with a mean of 500 ms
and a standard deviation of 100 ms. Two circle arrays
then showed up for 1500 ms. Only arrays with the two
largest standard deviation difference levels (i.e., 0.06
and 0.08) were used during the practice block. The two
arrays were replaced by a static mask once the time had
elapsed. Participants then pressed one of the two
buttons on a standard keyboard to indicate which of
the two arrays had a larger variability. A sound was
emitted to indicate whether the decision was correct. A
new trial then began. Participants had to achieve at
least 70% accuracy in the practice block to proceed,
otherwise they were asked to repeat the practice block.

Each experimental block contained 40 trials, with
each of the 20 stimulus pairs being presented twice. The
order of these arrays was randomized. Feedback was
given throughout the experiment.

Participants began by doing an experimental block
as another form of practice, the results of which were
not analyzed. Then, to provide incentives for good
performance, participants were told that the length of
the experiment depended on how well they performed.
Specifically, if participants achieved an accuracy below
65% in a particular block, an extra block of trials would
be appended to the end of the experiment. All
participants went through at least 10 experimental
blocks of trials, with a cap of 15 blocks within each
experimental session.

After the variability discrimination task, participants
were given a size estimation task similar to that of
Brady and Alvarez (2011). In each trial, participants
were shown 32 circles of various sizes for 500 ms. They
were instructed to estimate the mean size of the circles.
Upon disappearance of the circle array, a sliding scale
showed up. Participants adjusted the sliding scale to
create a circle on the screen that matched the mean size
of the circle array that was shown previously. Across
trials, circles on each display had a log-transformed
standard deviation of 0.11, 0.12, 0.14, 0.16, or 0.18
pixels.

Upon completion of both the variability discrimi-
nation and size estimation task, participants were given
an exit survey. The survey asked them if they used any
strategies for the two tasks. Participants were then
debriefed about the purpose of the study.

Results

Data from the practice block and the first experi-
mental block were excluded from analysis. Partici-
pants’ performance at the predefined within-subject
levels was aggregated. The results are shown in Figure
3. To look at the effect of range-variance congruency
as well as standard deviation difference, the data were
submitted to a 2 3 5 ANOVA, with range-variance
congruency and differences between arrays as the
factors. Importantly, accuracies on the range-variance
congruent trials were significantly higher (M ¼ 73%,
6.4%) compared to those of incongruent trials (M ¼
66%, SD¼5.3%), F(1, 33)¼28.5, p , 0.001, Cohen’s d
¼ 0.92. The results showed that participants relied on
the range of circle sizes for variability discrimination.
In addition, accuracy improved as standard deviation
differences increased, F(4, 132)¼118.1, p , 0.001. The
interaction between the two factors is also significant,
F(4, 132) ¼ 4.7, p ¼ 0.001, indicating differential
reliance on the range heuristic across levels of
standard deviation difference, likely due to the failure
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to discriminate when the two arrays had very similar
variabilities.

Thirty participants completed the mean size estima-
tion task (Figure 4). Performance was high. The mean
absolute deviations in their estimates ranged from 7.83
to 8.99 pixels. A one-way repeated-measures ANOVA
did not reveal any differences between the standard
deviation conditions, F(4, 116)¼ 1.558, p ¼ 0.19. The
result is consistent with previous research (e.g., Allik et
al., 2013; Chong & Treisman, 2003).

Discussion

Experiment 1 showed that participants had access
to size variability in an array, as performance on the
variability discrimination task was well above chance
level (50%). The experiment also showed that arrays
with a larger range were more likely to be judged as
more variable especially when variability and range
conveyed congruent information. This clearly indi-
cated that the range of circle sizes was used as a
proxy for variability, providing evidence in favor of a
heuristic account of how participants extract size
variability. Furthermore, because feedback was given
throughout the experiment and yet participants
continued to use the range as a proxy even when it
was misleading, this reliance on range appeared to be
obligatory or at least difficult to overcome. Never-
theless, even in range-incongruent arrays, partici-
pants maintained some ability to discriminate
variability, suggesting that participants did not
entirely rely on the range of the items in estimating
variability.

Experiment 2

Experiment 1 led us to believe that some heuristics
were used to indirectly perform variability discrimina-
tion. However, it is also possible that participants were
affected by the range of the array despite using
information from all circles (e.g., they could rely on the
largest and smallest items by weighting them higher,
rather than using such a visual search strategy).

If our proposed multistep approach to variability
discrimination is implemented, the first step would
resemble a classic visual search paradigm. From the
visual search literature, we know that searching for the
largest and smallest circles among heterogeneous
distractors is efficient but not parallel (Becker, 2010;
Duncan & Humphreys, 1989; Hodsoll & Humphreys,
2001; Hodsoll et al., 2006).

Thus, to provide additional evidence for this account
of why range mattered to participants, in Experiment
2A, we manipulated the spatial arrangements of the
circles in an attempt to influence this visual search
process. In half of the trials, circles with the greatest
range information (e.g., the greatest distinction in size)
were placed close to the fixation. With this spatial
arrangement, the range of the full circle array was
readily accessible, as the biggest and smallest circles
could be found without eye movements (and partici-
pants tend to focus most on items near the center of
array when performing search; Tseng, Carmi, Camer-
on, Munoz, & Itti, 2009). In the other half of the trials,
circles with the least range information were placed
close to the fixation. The range of the sizes in the array
was therefore less accessible. With a fixed presentation
time for both types of arrays, we made two hypotheses
for Experiment 2A. First, as in Experiment 1, when the
arrays showed a range-variance incongruency, vari-
ability discrimination performance would drop. Sec-
ond, regardless of the spatial arrangements of
individual circles, participants would tend to utilize

Figure 3. When range conveyed the same information as the

variance, participants were more accurate on variability

discrimination. The points are jittered slightly along the x-axis to

provide clarity. All error bars in this paper denote within-subject

standard errors of the means.

Figure 4. Performance was high in the mean size estimation

task. An increase in size variation of the circle array did not

hamper mean size estimation.

Journal of Vision (2018) 18(9):3, 1–18 Lau & Brady 9



only the ones close to the fixation in computing the
range of the display (as these would be most easily
found in a visual search).

In Experiment 2B, we also examined the influence of
manipulating low- and mid-level factors on size
variability judgment in preparation for Experiment 3.
The designs of Experiments 2A and 2B are identical,
except that Experiment 2A utilized filled circles (Figure
5a), and Experiment 2B utilized outlined circles (Figure
5b).

Methods

Design

As in Experiment 1, circle arrays were used in the
variability discrimination task. The design of Experi-
ments 2A and 2B was identical to that of Experiment 1,
with an additional factor. We manipulated the avail-
ability of different sized circles near the fixation. In the
close-range condition, the three largest and three
smallest circles within an array were placed closest to
the fixation (marked with red circles in Figure 5a).
Other circles were randomly placed in the rest of the
imaginary grid. In the far-range condition, the largest
and smallest circles were placed far from fixation, with
the remaining items placed closest to the fixation.
Hence, most range information was located far away
from the fixation, and in the incongruent far-range
trials, the items near fixation were not incongruent
(e.g., the range of the items near fixation was congruent
with the variability, since the incongruent items were
far from fixation). Close- and far-range trials were
interleaved within each block.

Simulations and predictions

Because the predicted results of this task are not
entirely straightforward, we ran a simulation where we

know that the computer is (a) using a range heuristic, and
(b) likely to primarily sample items near fixation, in order
to demonstrate the predicted pattern from this strategy.
The computer was shown two arrays at a time, similar to
the task given to the human participants. It was to
sample one, two, or three pairs of circles that were closest
to the fixation. The largest and smallest circles of the
sample from each array were extracted, and the range
was calculated. The array with the larger sampled range
was judged to be the one with a larger variability.

The two arrays shown on each trial had either
congruent or incongruent range information, and the
circles with the greatest amount of range information
was either placed near or far away from the fixation.
Each condition was run 2,000 times. The rate of
correctly picking the array with a larger variability was
recorded. Figure 6 shows the aggregated results for
each condition.

In the far-range condition, the largest and smallest
items were far from fixation. The range heuristic was
applied to a subset of circles that were near fixation,
and thus the sampled range was different from the
actual range of the full array. Thus, accuracy was high
regardless of the number of items being sampled (left
panel of Figure 6), and even when range and variance
contained contradicting information in the full array,
since the misleading range information was unlikely to
be sampled by the simulation and thus played a minor
role in performance. This shows, in general, that this
more locally restricted range heuristic is a useful
strategy in the incongruent condition when the range
information of the full array is place far away from the
fixation.

In the close-range condition, the largest and smallest
items are near fixation and thus likely to be sampled.
Accuracy was high in the case only when range and
variance of the full array convey congruent informa-
tion. When the range provided misleading information,
however, accuracy dropped as more circles were

Figure 5. (a) A sample close-range trial used in Experiment 2A. The three largest and three smallest circles in each array were placed

close to the fixation. The items with largest size contrast were denoted by the blue circles. The blue circles are for illustration only—

they did not appear in the actual experiment. (b) Stimuli used in Experiment 2B were exactly the same as in Experiment 2A, except

that the circles were outlined instead of filled. The blue circles indicate the six locations closest to the fixation, they were not shown in

the actual experiment.
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sampled (the bars on the far right, Figure 6). This is
perhaps not surprising, as the ranges of the sampled
circles were a misleading metric of the overall
variability of the full arrays.

Behavioral experiment—Participants

Participants were recruited from the same subject
pool described in Experiment 1. Forty-three under-
graduate students (33 women, 10 men) volunteered in
Experiment 2A, and 32 undergraduate students vol-
unteered in Experiment 2B (25 women, 7 men) in
exchange for partial course credit. The mean age of the
participants was 20.5.

Procedure, apparatus, and stimuli

Apparatus and stimuli used in Experiment 2 were
identical to those in Experiment 1. The 40 arrays used
in Experiment 1 were rearranged into two possible
spatial arrangements, close-range or far-range (see
Supplementary Appendix). Hence, 40 pairs of circle
arrays were generated. Each pair of array appeared
once in the 40-trial block. As in Experiment 1,
participants performed 10 to 15 blocks of trials.

In Experiment 2A, the circles in the arrays were
filled. In Experiment 2B, outlined circled were used.
The outline was 3-pixels thick.

Results

We performed a 2 3 2 3 5 repeated-measures
analysis of variance (ANOVA) with the accuracy data,

with range-variance congruency, spatial arrangement,
and standard deviation difference as factors.

Experiment 2A

As in Experiment 1, there are a main effect of range-
variance congruency, F(1, 42)¼ 6.76, p , 0.05, Cohen’s
d¼ 0.40, a main effect of standard deviation difference
level, F(4, 168) ¼ 129.8, p , 0.001, and an interaction
between the two factors, F(4, 168),¼ 3.23, p , 0.05.
Importantly, there is also a significant interaction
between range-variance congruency and spatial ar-
rangement, F(1, 42) ¼ 8.02, p , 0.01. When range-
relevant items were far from fixation (far-range
conditions), variability discrimination did not differ
regardless of whether range and variability information
were congruent (Congruent: 73%, Incongruent: 73%), F
¼ 0.03. When range-relevant circles were close to the
fixation (close-range conditions), participants were able
to utilize the range of the full array as proxy for
variability. As a result, worse performance was seen in
the range-variance incongruent trials (M ¼ 69%, SD ¼
17%), compared to the congruent trials (M¼ 76%, SD
¼ 15%), F(1, 42)¼ 19.1, p , 0.001, Cohen’s d ¼ 0.41.
The behavioral results are consistent with our simula-
tion above. They suggest that participants were
primarily (a) using the range, but (b) sampling mostly
circles close to fixation. Results are summarized in
Figure 7.

Experiment 2B

The pattern of results is similar to that of Experi-
ment 2A. Consistent with Experiments 1 and 2A, there
are a main effect of range-variance congruency, F(1, 31)
¼ 11.4, p ¼ 0.002, Cohen’s d¼ 0.60, a main effect of
standard deviation difference level, F(4, 124)¼ 113, p ,

Figure 6. Simulated data examining the effects of spatial

arrangement of circles and range-variability congruency on

variability discrimination. The task was to select the circle array

with a larger variability. In the simulation, the difference in

standard deviation was 0.08 log pixel. Performance dropped

only in the case when range and variance of the array convey

incongruent information. In that situation, performance was

negatively correlated with the number of circles sampled.

Figure 7. Accuracy between range-variance congruent and

incongruent arrays did not differ when circles were homoge-

neous at the fixation. Range-variance congruency affected

accuracy only when the largest and smallest circles were placed

close to the fixation.
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0.001. Unlike in Experiment 2A, the interaction
between the two factors is not significant, F , 1. It
shows that the improvements in accuracy from
increasing standard deviation difference are similar
regardless of whether the range and variance were
congruent.

Importantly, as in Experiment 2A, there is a
significant interaction between range-variance congru-
ency and spatial arrangement, F(1, 31) ¼ 33.0, p ,
0.001. In the far-range condition, variability discrimi-
nation did not differ regardless of whether range and
variance were congruent (Congruent: 72%, Incongru-
ent: 73%), F ¼ 0.01. In the close-range condition, the
range of the full array was readily available to the
participants. They seemed to utilize the range infor-
mation as a proxy for variability. Participants per-
formed worse in the range-variance incongruent trials
(M ¼ 65%, SD¼ 16%), compared to the congruent
trials (M¼ 78%, SD¼ 15%), F(1, 31)¼ 35.0, p , 0.001,
Cohen’s d¼ 0.75]. Results are summarized in Figure 8.

Comparing Experiments 2A and 2B

Experiments 2A and 2B had exactly the same design,
and they only differed in whether the circles were filled.
A between-subjects t test was conducted on the
accuracy data, suggesting that the difficulty in vari-
ability discrimination for filled circles (M¼ 72.8%, SD
¼ 5.8%, Experiment 2A) was comparable to that for
outlined circles (M ¼ 72.0%, SD¼ 5.5%, Experiment
2B), t(73) ¼ 0.61, p¼ 0.54, Cohen’s d ¼ 0.14.

Discussion

Experiments 2A and 2B provided further evidence
that range serves as a proxy for variability discrimina-

tion via a search process, but showed that participants
do not exhaustively search for the largest and smallest
item on each side but primarily focus on the items near
fixation. When circles with the most distinction in size
were close to the fixation (close-range), participants
found these items and used them to judge the
variability. When the items with the most distinction in
size were far from fixation (far-range), participants may
not have found these items and instead relied on the
range of items close to fixation, leading to correct
answers even in the incongruent case. To account for
all of this data together, given that participants did not
know what kind of trial they were about to see, requires
that participants computed variability using a multi-
stage process. First, the largest and the smaller circles
that are selected, then ranges of the respective arrays
are generated; participants are likely to search only
items near fixation for the largest and smallest items in
those spatial locations. Finally, the two ranges are
compared, and the array with the larger range is chosen
as the one with more variability. This process accounts
for the difference between range-variance congruent
and incongruent trials when circles with the most
diverse sizes were placed closest to the fixation or far
from fixation.

Importantly, the pattern of the data was captured by
the simulations that relied entirely on range and did so
primarily by sampling items near fixation. This is
because the circles in the array that were sampled in the
far-range conditions were not incongruent. A sampled
range obtained based on the subset of the array near
fixation is an accurate proxy for variability in far-range
incongruent displays.

However, unlike the simulated data, human partic-
ipants do not show perfect performance when range
information was utilized. This suggests that partici-
pants did not sample all three pairs of circles closest to
the fixation, and there may be perceptual and decision
noise that was not captured by the simulations. In
addition, the participants’ data reveal that the range
heuristic based solely on items close to fixation is not
necessarily the full story. Unlike the simulation, even in
the close-range incongruent condition, variability
discrimination was reliably above chance performance.
This shows that either some other heuristics are in
place, that participants do not always find the largest or
smallest item even when they are near fixation, or that
variability information is available to participants
through some other processes.

Experiment 3

In Experiments 2A and 2B, we show that for both
filled circles and outlined circles, participants made use

Figure 8. As in Experiment 2A, range-variance congruency did

not affect accuracy when low contrast circles were placed at

fixation (left panel). When high contrast circles were placed at

fixation, participants depended heavily on range heuristic for

variability discrimination.

Journal of Vision (2018) 18(9):3, 1–18 Lau & Brady 12



of a range heuristic, but even when this range heuristic
was not useful, or misleading (e.g., close-range incon-
gruent) participants could still estimate size variability
at above chance levels. Was this because they made use
of a parallel size computation mechanism that could be
used to compute variance? Or because other cognitive
strategies were available for participants to make use of
in addition to the range heuristic?

When comparing arrays of different variability, not
only item-based properties like the variance of
individual sizes is affected. In addition, low-level and
mid-level properties like the overall texture of the
array, including the density and spatial frequency of
the array, are also affected (e.g., Dakin, Tibber,
Greenwood, & Morgan, 2011). For example, the
standard array, having mostly similar-sized circles,
also had a smoother texture and fewer spatial
frequencies represented compared to the test array.
Thus, there may be alternative strategies for partici-
pants to estimate which array is more variable in size
without explicitly representing any of the items. These
strategies are in line with models that attempt to
explain performance on high-level tasks by appealing
to peripheral representations that summarize the array
in terms of its texture (Balas, Nakano, & Rosenholtz,
2009; Chang & Rosenholtz, 2016; Ehinger & Rose-
nholtz, 2016; Rosenholtz, Juang, Raj, Balas, & Ilie,
2012) or sensitivity to spatial ensemble patterns
(Brady et al., 2017; Alvarez & Oliva, 2009). Impor-
tantly, however, these techniques for representing an
array as a set of low- or mid-level features are not
truly estimating the size of the items. Thus, unlike
models that propose a parallel size estimation process
(e.g., Chong & Treisman, 2005), these techniques
should be sensitive to seemingly irrelevant low-level
properties of the array.

In other words, one possible cognitive strategy that
might allow participants to estimate which array has
higher variability without actually relying on esti-
mating the items’ sizes is using peripheral low- and
mid-level representation mechanisms (e.g., Balas et al.,
2009). The distinction between this low-level repre-
sentation and an actual parallel computation of size is
that the low-level mechanism predicts that differences
in these low- and mid-level features are not abstracted
over (as when items’ sizes are computed), but are
inherently part of the representation that is used to
estimate variability.

Thus, in Experiment 3, we ask whether participants
are impacted by being asked to compare the variability
across two arrays that differ in low-level properties (filled
vs. outlined). This task should be more difficult than the
previous ones if they are using a representation that
includes low-level or mid-level information but not if size
is first extracted from all of the items (independent of
their features) and then undergoes a variability estima-

tion procedure. Thus, unlike the previous experiments in
which all the circles were either filled (Experiments 1 and
2A) or outlined (Experiment 2B), each trial in Experi-
ment 3 contained one outlined circle array, and one filled
circle array. If participants utilized low-level or mid-level
representations in the arrays, comparing abstract repre-
sentations across these different low-level features should
be difficult, even though both array types on their own
allow for efficiency and equally good variability estima-
tion (Experiments 2A and 2B).

Methods

Design

The design of the experiment was identical to
Experiment 1, except for an additional factor. The
factor controls whether the circle array with larger
variance (i.e., the test array) was outlined or filled. All
factors were manipulated within-subjects. Unlike Ex-
periments 2A and 2B, we did not manipulate the spatial
arrangements of the circles. All 16 circles in each array
were equally likely to be placed close to or far away
from the fixation.

Participants

Thirty participants (24 women, 6 men) volunteered
in the experiment in exchange for partial course credits.
Participants were recruited from the same subject pool
described above. The mean age of the participants was
20.5.

Procedure, apparatus, and stimuli

The same procedure and apparatus from previous
experiments were used. In all the trials, an outlined circle
array was shown against a filled circle array, side by side
(Figure 9). In half of the trials, the filled circle array was

Figure 9. In Experiment 3, one of the two arrays contained

outlined circles, the other contained filled circles. As in previous

experiments, the participants’ task was to identify the array that

had a higher variability in circle sizes (i.e., the test array).
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the test array, with larger variability between the two. In
the other half of the trials, the outlined circle array was
the test array. Filled and outlined circle arrays were
equally likely to be on either side of the screen.

Results

A 23 23 5 repeated measures ANOVA was used on
the accuracy data, with range-variance congruency, fill
(filled vs. outlined test array), and standard deviation
difference as factors.

Figure 10 clearly shows that accuracy was higher
when the test array was filled (M ¼ 78%, SD ¼ 11%),
compared to when it was outlined (M ¼ 64%, SD ¼
11%, comparing left and right panels), suggesting that
participants could not completely abstract beyond the
low-level features in variability discrimination, F(1, 29)
¼ 14.8, p , 0.001, Cohen’s d¼ 0.70. Other comparisons
in the ANOVA were consistent with previous experi-
ments. There is a main effect of standard deviation
difference, F(4, 116) ¼ 98.8, p , 0.001, indicating an
increased performance as differences in variability
between the standard and test arrays increased. A
highly significant range-variance congruency, F(1, 29)¼
37.9, p , 0.001, Cohen’s d¼ 1.12, suggests that
participants were more accurate when range and
variance conveyed consistent information (M ¼ 75%,
SD¼6.3%), compared to the incongruent condition (M
¼ 67%, SD ¼ 5.5%).

An interaction between standard deviation differ-
ence level and range-variance congruency, F(4, 116)¼
3.0, p , 0.05, suggests that the range-variance
congruency advantage was different as the difference
between standard and test arrays increased. Lastly, a
marginally significant interaction between fill and

range-variance congruency, F(1, 29)¼ 3.4, p ¼ 0.08,
suggested that the range-variance congruency advan-
tage for outlined circles (10.2%) trended toward larger
than the one for filled circle arrays (6.9%).

Comparing Experiment 3 with previous experiments

Experiment 3 was most similar to Experiment 1, in
the sense that there were no manipulations in spatial
arrangements of the circles. Comparing overall per-
formance of the two experiments, we found no
systematic differences (Experiment 1: M¼ 69.8%, SD¼
4.3%; Experiment 3: M ¼ 71.3%, SD ¼ 4.6%), t(60) ¼
1.32, p¼ 0.19. This shows that the bias toward selecting
filled test arrays in Experiment 3 was compensated by
the same bias against outlined test arrays.

Difference in performance between Experiments 2A,
2B, and 3 was also found to be minimal (within 1.5%).
In particular, while mean accuracy in Experiment 3 was
71.3% (SD¼ 4.6%), that of Experiment 2A was 72.8%
(SD¼ 5.8%), t(70)¼ 1.24, p¼ 0.22, and Experiment 2B
was 72.0% (SD ¼ 5.5%), t(59) ¼ 0.54, p¼ 0.59. This
shows that participants were flexible in adopting
different strategies, using range, low-level visual infor-
mation, or a combination of these strategies to attain a
reasonably high-level performance.

Discussion

Experiment 3 shows that participants chose the filled
circle arrays as being more variable more often,
compared to the outlined circle arrays, when the two
contained the same variability information. The failure
for participants to abstract over low-level features
when making their comparisons suggests that some
low- or mid-level features in the array were used when
making variability discriminations. This is consistent
with the idea of using peripheral texture representations
or spatial ensemble representations, among a number
of other possible uses of low- and mid-level informa-
tion, but not consistent with a parallel computation of
items’ sizes.

Consistent with previous experiments, participants
exploited the fact that arrays with larger variance
usually have larger ranges, and this information could
be used for variability discrimination.

General discussion

In three experiments, we showed that participants
could perform size variability discrimination at an
above-chance level under a variety of situations. In all
three experiments, we manipulated range-variance

Figure 10. Outlined circle arrays have less low-level perceptual

information. Participants depended more heavily on the range

heuristic in that case (left panel). Filled circle arrays have more

low-level perceptual information, such as luminance, spatial

frequencies, and texture, so range-variance congruency effect

was less prominent (right panel).
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congruency of the arrays. In half of the trials, the
array with larger range in size also had a larger
variability. In the other half, the array with larger
range had a smaller variability. Participants were less
accurate in the range-variance incongruent condition,
indicating the use of range information as a proxy for
variability discrimination. It is important to note that
while we refer the strategy as range heuristic,
participants might have employed other forms of
smart subsampling heuristics other than using the
range information.

With evidence of the range heuristic, Experiment
2A examined if the heuristic took into account all of
the circles (e.g., found the true largest and smallest
items), or whether spatial arrangement was important,
as you might expect if participants perform a visual
search task to find the largest and smallest items. In
addition to the range-variance congruency, we ma-
nipulated the arrangements of circles such that
sampling nearby items and applying range heuristic
would result in accurate or inaccurate performance on
different trials. Specifically, in half of the trials, we
placed the three largest and three smallest circles in
each array close to the fixation. This condition
allowed participants to find the smallest and largest
circles more easily, which facilitated the application of
the range heuristic. In the other condition, the most
similar six circles were placed close to the fixation,
with the largest and smallest circles far from fixation,
so that if participants relied primarily on the range of
items close to fixation, they would accurately respond
even when the overall range was ‘‘incongruent’’ with
the variability. The behavioral results were consistent
with our simulation, in that participants only utilized
the range of items close to fixation. In particular,
accuracy of the far-range condition was comparable to
the close-range condition when range-variance con-
gruent.

Experiments 2B and 3 looked at the contribution of
low-level factors to variability estimation. Outlined
circle arrays were used in Experiment 2B. The results
were qualitatively similar to those in Experiment 2A,
indicative of variability discrimination and comparable
performance with both outlined and filled circles.
Experiment 3 directly tested whether low-level infor-
mation affects variability discrimination. We found
that participants were unable to abstract over the visual
features when performing variability estimation, and
were biased to believe filled circle arrays were more
variable as a result.

In short, we showed that participants were fairly
flexible in applying heuristics to estimate the variability
of a set of arrays. Participants seemed to rely on the
range of items close to fixation across a variety of
conditions. Low-level visual information was also used
and affected variability judgments when low- and mid-

level information differed between sides of the display.
It is also likely that participants employed other
unknown heuristics to perform the task.

Random subsampling heuristic

In the Introduction, we showed that variability
discrimination cannot be performed by randomly
subsampling only a few items from the arrays, but only
if observers use many items from each array. We
argued that subsampling cannot work the same way it
does as in the case of mean size discrimination (Myczek
& Simon, 2008). In the case of mean size discrimina-
tion, a single representation of the sample array can be
generated. The representation can then be compared
with a test array with one item. In variability
discrimination, the array cannot be reduced to a single
representation. Multiple items in an array have to be
retained in working memory for the task. A random
subsampling heuristic that implements analytical
methods would simply overload working memory.
Therefore, a pure random subsampling heuristic is
unlikely.

Experiments 2A and 2B showed that participants
were not always utilizing all the information in the
array for their decisions, as they were seriously
affected by the spatial positions of the smallest and
largest items. The general accuracy pattern mirrors
that of our simulation. This indicates that only partial
information in the array was utilized, or that
information near the fixation was weighted differen-
tially. Together, these pieces of evidence support a
‘‘smart’’ subsampling view on variability discrimina-
tion, in which people are using a set of efficient but not
perfectly parallel heuristics to perform the task. These
smart subsampling heuristics provide information
about the variability of the set without directly
computing the variance.

Parallel or serial variability extraction

Instead of a pure parallel process, as Ariely (2001)
and Chong and Treisman (2003, 2005) advocated for
size discrimination, or a pure random subsampling
process (Myczek & Simon, 2008), our experiments
suggest that variability discrimination involves a
variety of different strategies. The use of low-level or
mid-level visual properties for variability discrimina-
tion can be carried out quickly, and hence be
considered a parallel process. However, the lack of
invariance to low-level properties suggests that low-
level or mid-level information is not directly used to
estimate variability. Instead, this low-level visual
information affects the representation of the displays in
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such a way that it biases variability perception. In
addition, the range heuristic requires participants to
search for the smallest and the largest circles in the
array. This process is not likely to be fully parallel and
depends on the number of items in the array, which
seems to result in participants primarily utilizing the
range of items near fixation. Thus, multiple strategies
seem to be at play in variability perception, and
participants’ choice of strategies depends on the
information that is available.

Thus, we suggest that in the case of variability
estimation, while people can perform the task fairly
accurately and efficiently and use variance estimates to
perform real-life tasks, the cognitive strategies they use
to estimate variability are indirect. While useful for
estimating variability in the world, they do not support
the view of a dedicated, parallel process for working
with the size of all of the items in the array. To put that
in the context of the strawberry-screening task we
described in the Introduction, our experiments suggest
multiple cognitively viable strategies are utilized. They
suggest that factory workers have some representations
of variability, but these representations are highly
unlikely to be resulted from any analytic, serial
computations or random subsampling strategies. In-
stead, the range of the largest and smallest berries, or
some low-level or mid-level representation of multiple
berries on the belt, give rise to variability judgments, as
used in anomaly detection. The results are at odds with
suggestions that some statistical properties, such as the
mean size, are always extracted efficiently. Future
research may examine whether proxies are used in other
types of ensemble representations, such as mean
estimation, and look into other strategies that human
observers employ to perform variability discrimination
tasks similar to the one we reported here.

Keywords: variability discrimination, statistical
summary representations, range heuristic
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