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Abstract: Genome editing tools have the potential to change the genomic architecture of a genome at
precise locations, with desired accuracy. These tools have been efficiently used for trait discovery
and for the generation of plants with high crop yields and resistance to biotic and abiotic stresses.
Due to complex genomic architecture, it is challenging to edit all of the genes/genomes using
a particular genome editing tool. Therefore, to overcome this challenging task, several genome
editing tools have been developed to facilitate efficient genome editing. Some of the major genome
editing tools used to edit plant genomes are: Homologous recombination (HR), zinc finger nucleases
(ZFNs), transcription activator-like effector nucleases (TALENs), pentatricopeptide repeat proteins
(PPRs), the CRISPR/Cas9 system, RNA interference (RNAi), cisgenesis, and intragenesis. In addition,
site-directed sequence editing and oligonucleotide-directed mutagenesis have the potential to edit the
genome at the single-nucleotide level. Recently, adenine base editors (ABEs) have been developed to
mutate A-T base pairs to G-C base pairs. ABEs use deoxyadeninedeaminase (TadA) with catalytically
impaired Cas9 nickase to mutate A-T base pairs to G-C base pairs.

Keywords: genome editing; homologous recombination; Zinc finger nuclease; TALEN;
pentatricopeptide repeat protein; CRISPR/Cas9; adenine base editors; RNAi; site-directed
sequence editing; oligonucleotide-directed mutagenesis; cisgenesis and intragenesis; plastid genome;
synthetic genomics

1. Introduction

From the beginning of plant domestication approximately 10,000 years ago, conventional plant
breeding methods were the most successful approach for developing new crop varieties. Conventional
plant breeding has contributed enormously towards feeding the world and has played crucial roles in
the development of modern society. Pre-genomic breeding programs have led to the development
of stress-tolerant and high-yielding crop varieties. Breeding programs of the past century have
relied on natural and mutant-induced genetic variations to select for favorable genetic combinations.
The traditional breeding program that is conducted by mutagenesis using chemical compounds or
irradiation, followed by screening for desired mutations, has several drawbacks. Methods using
mutagenesis, intergeneric crosses, and translocation breeding are non-specific; and sometimes large
parts of the genome are transferred instead of a single gene, or sometimes thousands of nucleotides
are mutated instead of a single nucleotide. Therefore, transgenic breeding programs surfaced towards
the end of the 20th century (1990) to overcome such problems. The 21st century is regarded as
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the post-genomic era and, the availability of genome sequence data for multiple crop plants has
revolutionized plant breeding programs. Whole-genome sequencing, transcriptome sequencing,
identification of small nucleotide polymorphisms (SNPs) and other molecular markers such as
Random Amplified Polymorphic DNA (RAPD), Restriction Fragment Length Polymorphism (RFLP),
Amplified fragment length polymorphism (AFLP), and Single Sequence Repeats (SSR) have made
it possible to create comprehensive genetic and lineage maps to determine potential quantitative
trait loci (QTLs) of agronomic importance [1]. Genomics is rapidly gaining importance in molecular
breeding programs. Combinations of genomic tools with conventional breeding techniques have
opened new doors in genome-based breeding programs. In addition, transcriptomic studies using
next-generation sequencing, microarrays and other methods in combination with QTL analyses have
led to the development of expression QTLs (eQTLs), which enable the discovery of multiple QTLs
simultaneously [1]. Further, a systems biology approach in combination with molecular markers,
QTLs, eQTLs, lineage maps and sequence data has been very useful for the identification of agronomic
traits [1]. However, novel and desired agronomic traits need to be integrated into the appropriate crop
plants in order to maximize benefits. The implementation of comprehensive synthetic biology tools,
which are popularly known as “genome editing tools” [2], is required to carry out the task of integrating
desired traits into crop genomes. Synthetic biology uses the rational design of biological molecules
to achieve a desired goal. Synthetic biological tools act with precision, accuracy, and predictability,
and do away with the messiness of inaccuracy. The use of synthetic biology requires a complete
understanding of the biological processes that need to be integrated into the genome. Several DNA,
RNA, and protein-based tools have been developed to edit and incorporate suitable agronomic traits
into the desired crops. Here, we have tried to provide an overview of all the existing genome editing
tools and their potential applications.

Random integration of genes into the existing genomes of target organisms to obtain a transgene
construct is one of the most common mechanisms for gene targeting (GT) [3]. The gene targeting
approach, which was used for the first time in mouse embryonic stem cells, failed to deliver similar
results in plants [4] because embryonic stem cells are more efficient at homologous recombination
than other cells [5]. Hence, plant biologists used transposons or retro-transposons to incorporate
a transfer DNA (T-DNA) insertion mutant, resulting in random insertions [6]. Sometimes, the random
insertion fails to completely knockout the open reading frame (ORF) of a gene, leading to the increased
possibility of obtaining mutant plants with partial functions, dominant-negative effects, or aberrant
protein products. The introduction of single nucleotides into the genes (or amino acids into the proteins)
cannot be completed using such methods. Hence, chemical mutagenesis methods and target-induced
local lesions in genomes (TILLING) have been developed to overcome such problems [7–9]. However,
these techniques have led to off-target mutations in addition to the mutations of interest. Therefore,
novel technologies are needed to overcome such problems in plant-genome editing. In this manuscript,
we provide detail about major genome editing tools that can be used for novel trait discovery in plants.
In addition, we describe details about the available genome editing tools, and how these tools can be
improved for better application.

2. Homologous Recombination

Chromosomal recombination (homologous recombination: HR) is the natural and most efficient
genome engineering system that is present within the cell [10]. Therefore, a similar mechanism with
a minor or no error rate can be useful in genome editing technologies. This method can be used for
genome editing by the initiation of double-stranded breaks (DSB) in the chromosome (Figure 1) [11,12].
DSBs lead to meiotic recombination during cell division. DSBs are highly conserved in eukaryotes and
can be initiated at specific sites, thus providing a great platform for gene targeting. The HR initiated
in a specific region is known as a recombination hotspot. Recombination hotspots are targeted by
the Spo11 complex to form a DSB (Figure 1) [13]. The Spo11 protein (DNA topoisomerase) acts in
combination with Mre11 (double-strand break repair protein), Rad50 (DNA repair protein), and NBS1
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(meiotic recombination protein) [13]. The DSB that is induced by endonuclease leads to the generation
of single-stranded 3′ overhangs. The double-stranded ends generated by the DSB are protected from
degradation by binding with the Ku heterodimer [14–16]. If the DSB generates 3′ overhangs, it is
trimmed down; single-stranded regions are replete with repair synthesis. In synthesis-dependent
strand annealing (SDSA), a single-stranded 3′ end penetrates into a homologous double strand and
forms a D-loop-like structure. Post-elongation, the strand is displaced from the D-loop-like structure
and anneals with the 3′-homologous strand. DNA helicases AtFANCM and AtRECQ4A and nuclease
AtMUS81 play important roles in SDSA [17,18]. If the DSB occurs within the ORF of a gene, it might
result in a frameshift, which might lead to the knockdown of the gene function. The DSB triggers
homologous recombination between the two chromosomes (Figure 1). The broken chromosome ends
yield single-stranded DNA (ssDNA) tails that target the homologous chromosome to pass the genetic
information to the donor chromosome [13]. After the exchange of genetic material with the donor
chromosome, the double-stranded break is ligated by the double-stranded break repair enzyme [13].
If the DSB occurs between two closely repeated DNA sequences, then the annealing can be performed
by a single-strand annealing (SSA) process [13]. SSA is much more important for those genomic
portions that contain tandem repeats. The RAD1/RAD10 endonuclease is involved in cleavage of
the complementary strand before ligation by SSA [19]. Non-homologous end joining (NHEJ) is
the principal mechanism of DSB repair in plant cells [14]. NHEJ is mediated by two mechanisms,
namely, classical NHEJ (cNHEJ) and alternative NHEJ (aNHEJ) [20]. In addition to cNHEJ and aNHEJ,
there may be other alternative end-joining mechanisms [21]. However, due to the repetitive nature
of plant genomes, the gene-targeting rates that are using homologous recombination are very low in
higher plants and range from 103 to 10−6 [22,23]. Homology-directed repair (HDR) can also facilitate
the generation of targeted mutations at specific genomic locations using the sequences of donor
DNA [24]. In such cases, to obtain the desired sequence modification, donor HDR DNA contain
an approximately 750–1000 kb long homologous sequence that flanks the genomic cleavage site [24].
However, the frequencies of HDR in somatic cells are very low, and, hence, the number of genomic
modifications that is obtained using HDR techniques is very low.
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3. Zinc Finger Nucleases

Zinc finger nucleases (ZFNs) are custom-designed, targetable DNA cleavage proteins that are
designed to cut DNA sequences at specific sites [25]. ZFNs facilitate targeted gene editing through
the creation of DSBs in DNA to replace the gene by homologous recombination (Figure 2). Each ZFN
contains a DNA-binding domain with a chain of two-finger modules, which recognizes a unique 6-bp
hexamer in the DNA sequence, and a DNA-cleaving domain consisting of a FokI nuclease domain
(Figure 2) [26,27]. These domains are joined together to form a zinc finger protein (ZFP). When the
DNA-binding and DNA-cleaving domains are fused together, they form a highly specific genomic
scissor [26,27]. ZNF-mediated gene targeting introduces site-specific double-stranded breaks into the
DNA sequence and permanently edits the genome via the ligation of DSBs [26,27]. The most important
factor for the application of ZFN-based genome editing is the dependence of this technique on the
generation of ZFPs that can precisely target a specific DNA sequence in the genome. The Cys2His2
ZFP provides the best possible structure for developing suitable ZFNs with the required sequence
specificities [28]. This ZFP consists of approximately 30 amino acids and has a ββα structure that is
stabilized by the chelation of zinc ions to conserved Cys2His2 amino acids [29,30]. The ZF motif binds
to the DNA sequence in the genome by incorporating its α-helix into the major groove of the DNA
double helix [30]. The amino acids at positions −1, +1, +2, +3, +4, +5, and +6 of the α-helix of the
zinc finger are responsible for sequence-specific interactions of ZFN with the DNA sequence [30–32].
Each of the fingers binds a triplet sequence of the DNA. Binding to a longer DNA strand is made
possible by linking multiple zinc finger motifs to form ZFPs [33–35]. The methylase domain (M),
FokI-cleavage domain (N), transcription activator domain (A), and transcription repressor domain (R)
are fused with ZFP to form a ZFN [36–39].

Genes 2017, 8, 399  4 of 24 

 

3. Zinc Finger Nucleases 

Zinc finger nucleases (ZFNs) are custom-designed, targetable DNA cleavage proteins that are 
designed to cut DNA sequences at specific sites [25]. ZFNs facilitate targeted gene editing through 
the creation of DSBs in DNA to replace the gene by homologous recombination (Figure 2). Each ZFN 
contains a DNA-binding domain with a chain of two-finger modules, which recognizes a unique 6-
bp hexamer in the DNA sequence, and a DNA-cleaving domain consisting of a FokI nuclease domain 
(Figure 2) [26,27]. These domains are joined together to form a zinc finger protein (ZFP). When the 
DNA-binding and DNA-cleaving domains are fused together, they form a highly specific genomic 
scissor [26,27]. ZNF-mediated gene targeting introduces site-specific double-stranded breaks into the 
DNA sequence and permanently edits the genome via the ligation of DSBs [26,27]. The most 
important factor for the application of ZFN-based genome editing is the dependence of this technique 
on the generation of ZFPs that can precisely target a specific DNA sequence in the genome. The 
Cys2His2 ZFP provides the best possible structure for developing suitable ZFNs with the required 
sequence specificities [28]. This ZFP consists of approximately 30 amino acids and has a ββα structure 
that is stabilized by the chelation of zinc ions to conserved Cys2His2 amino acids [29,30]. The ZF 
motif binds to the DNA sequence in the genome by incorporating its α-helix into the major groove of 
the DNA double helix [30]. The amino acids at positions −1, +1, +2, +3, +4, +5, and +6 of the α-helix of 
the zinc finger are responsible for sequence-specific interactions of ZFN with the DNA sequence [30–
32]. Each of the fingers binds a triplet sequence of the DNA. Binding to a longer DNA strand is made 
possible by linking multiple zinc finger motifs to form ZFPs [33–35]. The methylase domain (M), 
FokI-cleavage domain (N), transcription activator domain (A), and transcription repressor domain 
(R) are fused with ZFP to form a ZFN [36–39]. 

 
Figure 2. Schematic representation of Zinc finger nucleases (ZFNs). ZFNs constitute FOK1 nuclease 
domain at the carboxyl end and a Zinc finger protein at the amino terminus. FOK1 nuclease creates 
double stranded breaks (DSB), which repaired by nonhomologous end joining (NHEJ) or homologous 
recombination (HR) to bring desired mutation/recombination of gene. 

The engineering of ZFNs that recognize and cleave specific target sequences largely depends on 
the reliable engineering of ZFPs that can recognize the target of interest. As ZFNs specifically bind to 

Figure 2. Schematic representation of Zinc finger nucleases (ZFNs). ZFNs constitute FOK1 nuclease
domain at the carboxyl end and a Zinc finger protein at the amino terminus. FOK1 nuclease creates
double stranded breaks (DSB), which repaired by nonhomologous end joining (NHEJ) or homologous
recombination (HR) to bring desired mutation/recombination of gene.

The engineering of ZFNs that recognize and cleave specific target sequences largely depends
on the reliable engineering of ZFPs that can recognize the target of interest. As ZFNs specifically
bind to triplet DNA, the presence of 64 triplet variants in the genome makes it challenging to design
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ZFNs that bind each and every triplet variant. However, ZFNs that bind 5′-GNN-3′, 5′-ANN-3′,
5′-CNN-3′, and 5′-TNN-3′ have been experimentally validated [40–44]. The presence of an Asp residue
at the 2nd position of the α-helix in the preceding ZF motif promotes cross-strand contact outside the
triplet codon, which results in an overlap of target sites [30,45]. Therefore, when the Asp residue is
present at the second position of the preceding α-helix of the ZFP, it binds to a four-base-pair DNA
target sequence instead of a triplet codon, thus complicating the design strategy. However, in many
instances, the ZF motifs of ZFPs make sequence-specific contacts with only two nucleotides of the
triplet DNA [30,46], and the presence of an Asp residue at the 2nd position increases the affinity and
the specificity of the ZF motif for triplet sub-sites. In the absence of an Asp residue at the 2nd position,
only two bases of the triplet DNA are recognized, resulting in the possibility of the recognition of
degenerate sites [47]. A set of three ZFPs recognizes an 18 bp target sequence; depending upon the
specificity of each ZF to its corresponding triplet, the actual recognition site may vary between 12 and
18 bp [47].

Once a particular ZFP recognizes a specific nucleotide site, the FokI restriction endonuclease
comes into play. FokI is a type II restriction enzyme that recognizes the non-palindromic
pentadeoxyribonucleotide sequence 5′-GGATG-3′:5′-CATCC-3′ in double-stranded DNA and cleaves
the DNA 9/13 nucleotides downstream of the recognition site. Upon binding of the DNA-binding
domain of FokI to the recognition site, a signal is transmitted to the endonuclease domain, and cleavage
occurs. ZFNs dimerize the nuclease domain to carry out double-stranded cleavage of DNA [48].
Three ZFNs require six base pair recognition sites to dimerize the nuclease domain, leading to the
generation of a DSB. Effectively, ZFNs have 18-base-pair recognition sites, which are sufficient for
the recognition of a unique DNA sequence [47]. Two ZFNs with contrasting sequence specificity and
recognition sites can work as a heterodimer to produce the DSB.

After the generation of a DSB (Figure 2), it is necessary to target a suitable gene in the genome.
A gene with the consensus sequence 5′-GNNGNNGNN-3′ can be targeted by a simple assembly
approach [49]. It is also possible to target sequences with mixtures of ANN, GNN, and CNN
triplets [40,42,43]. The gene fragment can be either transferred to a homologous segment of the
genome or targeted randomly. In cases of random integration, the DSB is ligated by non-homologous
end joining, or can be ligated through homologous recombination otherwise (Figure 2). Using ZFNs,
we can rapidly and randomly disrupt or integrate any genomic loci in the genome. Mutations that
are made through ZFNs are permanent and can be heritable. The selection of a ZNF strategy can be
conducted by a bacterial two-hybrid system that uses ZFN-DNA interactions to activate the HS3 gene.
A bacterial one-hybrid system can also be used to select ZFPs and to analyze sequence specificities
in vivo [50].

4. Transcription Activator-Like Effector Nuclease

Transcription activator-like effectors nucleases (TALENs) have emerged as an alternative to ZFNs
as tools for effective genome editing in plants (Figure 3) [51]. In principle, TALENs uses DSBs in
a manner similar to ZFNs (Figure 3). TALENs are similar to ZFNs that contain non-specific FokI
endonucleases. However, the FokI domains of ZFNs fuse with specific DNA-binding domains of highly
conserved repeats derived from transcription activator-like effectors (TALEs) [51]. TALE proteins are
found in Xanthomonas bacteria, which secrete TALEs to alter gene transcription in host plants [52,53].
The DNA-binding domains of TALEs contain up to 30 copies of 33–34 amino acid sequences that
are highly conserved, except for 12th and 13th positions. The 12th and 13th positions are called the
repeat-variable diresidue (RVD), and exhibit substantial correlation with specific nucleotide recognition.
Each repeat can recognize a single base, and hence, new binding sites can be assembled for any DNA
sequence. The FokI domain functions as a dimer, where the non-specific DNA cleavage domain of
the FokI endonuclease can be used to design a hybrid nuclease [48,54,55]. The number of amino acid
residues between the DNA-binding domain and the FokI cleavage domain and the number of bases
between two separate TALEN-binding sites are important parameters that are affecting the activities
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of TALENs. The recognition of amino acids and DNA-binding TALE domains requires effective
engineering of proteins. Upon the construction of TALENs, they are transferred to the plasmid vector
and are then transformed into the target cells. Later, the gene product is expressed and enters the
nucleus, where it carries out the necessary editing of the genome. Alternatively, the TALEN construct
can be transformed into cells as mRNA, which eliminates the possibility of genomic integration of the
TALEN. The mRNA-based approach increases the possibilities of homology-based repair (HDR) and
leads to successful gene editing. The TALEN technology has been successfully used in Oryza sativa [56].
The promoter region of the bacterial blight susceptible gene Os11N3 was targeted using TALEN
technology, which led to the generation of disease-resistant rice [56]. A comparative study between
ZFNs and TALENs to target particular genes showed the highest cleavage rates for the TALENs.
This result was due to the ease of design and high cleavage activities of TALENs and the limitless
range of targets that can be acted upon by TALENs [51]. TALEN technology has been efficiently used
to generate knockout mutants of Arabidopsis thaliana [57]. Although TALEN technology is very efficient
and is superior to ZFNs, the construction of engineered TALE repeats is challenging because it requires
multiple identical repeat sequences [51].
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5. Pentatricopeptide Repeat Proteins

Organellar genomes possess relatively low numbers of promoters, and the half-life periods of
organellar RNA are relatively higher than those of nuclear RNA. Therefore, transcriptional regulation
(RNA editing, RNA cleavage, RNA splicing, and translation) is insufficient for controlling gene
expression in organellar genomes, and, hence, organelles have developed a great array of RNA-binding
proteins to regulate gene expression at the post-transcriptional level [58,59]. The pentatricopeptide
repeat protein (PPR), which is found in the organellar genome, is a mediator protein that regulates
post-transcriptional regulation. PPRs are traditionally characterized by the presence of 35-amino-acid
tandemly repeated motifs [59]. Depending upon the number of amino acids, PPRs are classified
as P-class (35 amino acids), L-class (35–36 amino acids), S-class (short, approximately 31 amino
acids), and E-class (extended domain) [60–62]. The PLS-type PPRs contain a highly conserved
DYW (Aspartate-Tyrosine-Tryptophan) tripeptide motif at the C-terminal end that most likely acts
as an editing domain [63]. The DYW domain possesses zinc-binding affinity, which is essential for
catalysis and hence for editing [64]. The L-class PPRs contain amino acid residues that are possibly
involved in RNA binding corresponding to the targeted nucleotide. The extended E-domain PPR
is not catalytic, but it helps in protein-protein interactions with the editing enzyme [61,62]. PPRs
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contain up to 30 tandem repeats and consist of approximately 35 amino acids [59]. The α-helices form
an α-solenoid anti-parallel helix-turn-helix structure that provides the basis for sequence-specific RNA
binding. Barkan et al. (2012) reported that positions 6 and 1 (position 4 and 34 in the Pfam model) of
the PPR motif is responsible for nucleotide recognition and RNA binding (Figure 4) [65]. At positions
6 and 1, PPR motifs recognize their cognate target transcripts in a modular fashion. The amino acid
residues at positions 6 and 1 determine the nucleotide to which the PPR will bind, and each PPR motif
only binds one nucleotide [66]. PPRs bind to the 5′ ends of RNA in a parallel fashion. The interactions
between PPR motifs and nucleotides occurs via van der Waals interactions, and a threonine at position
6 in combination with asparagine at position 1 recognizes adenine nucleotides, whereas asparagine
and aspartic acid at positions 6 and 1, respectively, recognize uracil nucleotides (Figure 4) [65,67,68].
PPRs can directly bind to specific RNA sequences as monomers by employing the amino acid residues
at positions 6 and 1 position. The amino acid at position 3 helps in the interaction of PPRs with
tRNA, and this position is usually occupied by a hydrophobic amino acid [69]. Due to higher
diversity in the amino acid composition of PPR motifs, these motifs provide greater versatility for
engineering. The LAGLIDADG motif involved in splicing events is also found in PPRs [70,71].
The Small MutS-related (SMR) group of proteins with C-terminal SMR domains resemble PPRs
(P-class) that is involved in DNA recombination and repair in bacteria [72,73]. The PPR motifs in
combination with SMR domains provide RNA-binding ability and endonucleolytic activity to SMR,
leading to RNA cleavage [74].
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a cytidine deaminase domain trigger RNA modifications as shown.

The wide diversity of natural motifs in PPRs provides an excellent basis for gene editing. PPRs
bind tRNA in a parallel orientation through a modular recognition mechanism. The maize PPR10
protein that contains a 17 PPR motif, where motifs 6 (N6D1′) and 7 (N6N1′) bind to C and U nucleotides,
respectively, in the natural target (Figure 4) [65]. Amino acid substitutions were carried out at specific
amino acid residues to modify the predicted RNA-binding specificities to GG (N6D1′), AA (T6N1′),
CC (T6S1′), or UU (N6N1′) [65,68]. In vitro analysis revealed changes in the binding specificities
of these variants. Excellent specificities were observed for the GG and AA variants, whereas the
CC and UU variants had poorer specificities [65]. However, the prediction of natural binding sites
and off-target binding sites of engineered PPRs remains challenging because the amino acids at
positions 6 and 1′ can lead to degenerate codes, and less than two-third of the naturally occurring
combinations can be translated simultaneously. Additionally, understanding the energetic parameters
requires the establishment of meaningful RNA-PPR interactions, and the energy costs of mismatches
at different positions in an RNA-PPR duplex imply that accurate predictions are needed in order
to predict potential binding sites [65]. The prediction of binding sites is further complicated by the
presence of gaps in a PPR-RNA duplex. The PPR HCF-152 and CRP1 contain a gap in their predicted
PPR-RNA duplex with the non-contiguous segment of either protein (HCF152) or RNA (PPR10) [65].
The alignment of cognate PPR-RNA binding contains contiguous duplexes of nine motifs and eight
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nucleotides. However, there is no alignment gap between L-class PPRs and RNA [65]. The amino acids
at position 6 differ between the P- and S-versus L-type PPR motifs. Thus, it can be easily speculated
that the L-motif does not bind to any nucleotide bases and allows a mini-gap in every third nucleotide.

6. CRISPR/Cas9

Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas is a family of DNA
sequences that is commonly found in bacteria. It contains fragments of DNA from viruses that have
attacked the bacterium. These DNA fragments are used by the bacterium to recognize and destroy DNA
from further attacks, and thereby protect themselves. CRISPR/Cas acts as a typical bacterial immune
system that provides the bacteria with resistance to foreign genetic material. The CRISPR system
comprises CRISPR RNA (crRNA), trans-activating CRISPR RNA (tracrRNA), the Cas9 nuclease, and the
protospacer adjacent motif (PAM) (Figure 5). Naturally occurring CRISPR systems integrate the foreign
DNA sequence into the CRISPR cluster [75]. Then, the CRISPR cluster that is harboring the foreign
DNA produces crRNA (approximately 40 nt long) containing the PAM region, which is complementary
to the foreign DNA site. The crRNA hybridizes with the tracrRNA to form a guide RNA (gRNA)
(Figure 5). The gRNA activates the Cas9 system and binds to Cas9. Twenty nucleotides at the 5′ end of
the gRNA direct the Cas9 nuclease to the complementary base pair with the targeted DNA, leading to
RNA-DNA complementary base-pairing [75]. The prerequisite for cleavage is the presence of a PAM
motif downstream of the target DNA; the PAM motif usually contains 5′-NGG-3′ or 5′-NAG-3′ [76,77].
Specificity is provided by the “seed sequence”, which is present approximately 12 nucleotides upstream
of the PAM motif and which should match between the RNA and target DNA [78]. Using this
procedure, Cas9 nuclease activity can be directed to any DNA sequence [75]. The Cas9 system induces
DSBs, which are subsequently ligated by NHEJ or HDR [75] (Figure 5). Some Cas9 variants cleave only
at one site (nickase) of either the complementary or the non-complementary strands of the target DNA.
The Cas9 nickase induces HDR with reduced levels of NHEJ indels [79,80]. By using one Cas9 nuclease
and multiple gRNA, more than one site can be targeted and altered simultaneously [81]. This process
is very useful when one gRNA is inefficient at disrupting a targeted gene or when altering more than
one gene at the same time.
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Figure 5. Genome editing mechanism. A double stranded break is generated by a nuclease, such as
Cas9 in the genome and DSB produced can be repaired in two ways. (A) Non-homologous end joining
can also repair the DSBs by making small insertions and deletions. (B) HR driven repair mechanism
can correct the DSBs from the template donor plasmid which has modifications to be introduced in
the genome.
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One of the major criticisms regarding the usefulness and specificity of the CRISPR/Cas9
technology is the relatively high frequencies of off-target mutations [77,78]. However, the off-target
mutations are rare in plants. Only 1.6% off-target effects were predicted in rice [82]. The mismatch was
confined to position 11, which is present upstream of the PAM motif. However, no off-target mutations
were observed in A. thaliana, Nicotiana benthamiana, Triticum aestivum, and O. sativa [83–89].

Previously, it was considered that the 20 nt gRNA sequence determines the specificity; however,
it later found that only 8–12 nt at the 3′ end (the seed sequence) is required for recognition of target
sites [79,90,91], and multiple mismatches towards the PAM motif can be tolerated, depending upon
the arrangement of the PAM motif [77,92,93]. DNA sequences that contain a missing base (gRNA
bulge) or an extra base (DNA bulge) at various positions in the corresponding gRNA sequences induce
off-target cleavage [94]. The specificity of CRISPR/Cas9 at non-seed positions in the crRNA spacer
possess the intrinsic property that reduces the possibilities of point mutations [95]. Appropriate gRNA
design can greatly facilitate the reduction of off-target editing of the genome. Due to the Watson-Crick
base-pairing of CRISPR/Cas9 with its target sequence, off-target sites can be easily predicted by
using sequence analysis [96]. The CRISPR/Cas9 system can be reprogrammed to test off-target effects
rapidly and in a cost-effective manner. In regard to off-target cleavage, the mismatches are preferably
tolerated at the 5′ end of the gRNA when compared to the 3′ end [75]. However, some mismatches
at the 5′ end can have a significant effect, whereas 3′ ends do not affect Cas9 activity [93]. In 6 × 109

random DNA bases, the 20-nt protospacer could have hundreds to thousands of potential off-target
sites [75]. Higher GC content of the gRNA: DNA hybrid stabilizes the binding of gRNA to the
DNA, and hence, the possibility of off-target mutations is very low. GC content below 30% leads
to high rates of off-target mutagenesis [92,93]. Reducing the concentration of gRNA and Cas9 can
reduce off-target mutations [75]; however, in a few cases, reduced mutation of the target site was also
observed [75,93]. Modified gRNA with truncated 3′ ends (within tracr-derived sequences) or with two
guanine nucleotides appended to the 5′ end (before the complementary region) lead to better on-target
to off-target mutation ratios [75] with reduced genome editing efficiencies [75]. Using a paired nickase
strategy, off-target nicks can be generated at the target site using gRNA and Cas9 nickase. Paired Cas9
nickase targets sites separated by 4 to 100 bpon the opposite strand of the DNA and is capable of
inducing indel mutations and HDR with single-strand DNA oligonucleotide donors [75]. The addition
of a second gRNA and the replacement of Cas9 nuclease with Cas9 nickase leads to lower levels of
off-target mutations [75]. A single monomeric Cas9 nickase can induce indel mutations in genomic
loci [80,97–99]. However, the type of gRNA used is one of the most crucial factors for achieving
high efficiencies in genome editing. Longer single gRNA, harboring variable lengths of tracrRNA
sequences towards the 3′ end, result in higher editing frequencies than shorter gRNA [77]. Fu et al.
(2014) reported that off-target effects can be substantially reduced by the use of short gRNA sequences
that are truncated at the 5′ ends [98]. The truncated gRNA shares 17–18 complementary nucleotides,
and shows lower mutagenic effects off-target sites with high sensitivity to mismatches at the gRNA:
DNA interface [98]. However, longer single gRNA with more tracrRNA towards the 3′ ends yield
higher editing frequencies when compared to shorter gRNA sequences [77]. The most frequently used
single gRNA design possesses approximately 100 nucleotides [75]. The role of the promoter used to
express the gRNA is of particular interest as it can limit the options of target sites. The UBI, U3, U6,
and UBQ promoters show high mutation frequencies when compared to other promoters [75,100,101].

To further advance the CRISPR/Cas9 genome editing system, given a particular gene and species,
computational models can precisely design suitable gRNA for genome editing and can predict off-target
sites. An unbiased method for the detection of genome-wide off-target sites is used for the in-silico
prediction of off-target sites [102]. The spCas9 PAM-variant D1135E contains a single point mutation
that increases the specificity for the 5′-NGG PAM [103]. This variant significantly decreased editing at
the 5′-NAG and 5′-NGA PAMs, and improved genome-wide specificity [103]. Similarly, spCas9-HF,
with four mutations, weakens the binding of Cas9 to target DNA and enhances the stringency of
gRNA:DNA complementation for Cas9 activation. Off-target editing was almost completely avoided
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using this variation [104]. Engineered eSpCas9, with three mutations within the nucleotide-groove,
the off-target sites of Cas9 increases the stringency of gRNA for nuclease activation [105].

In addition to genome editing, the CRISPR/Cas9 system can be used for the ectopic regulation of
gene expression. Through the regulation of gene expression, we can understand the function of a gene,
and can also engineer novel genetic regulatory circuits for synthetic biology [78]. The regulation of
gene expression is mediated by inducible or repressible promoters, and disabled nucleases can be used
to regulate gene expression [78]. The catalytically inactive/dead Cas9 (dCas9) is unable to cut DNA but
can bind to target sites through gRNA. Expression of dead Cas9 as a fusion protein with the activation
or repression domains of transcription factors can lead to reversible transcriptional control of target
genes [106,107]. The fusion of dCas9 with the C-terminal EDLL domain of PDS, which contains the
TAL activation domain, leads to the generation of transcriptional activators. Similarly, fusion of dCas9
with the SRDX domain of the ERF transcription factor generates a repressor [78]. The transcriptional
activities are influenced by the position of gRNA with respect to the transcription start site [78].
The naked dCas9, without the effector domain, represses synthetic and endogenous genes by inhibition
of transcription initiation and elongation. The dCas9 system can be applied to species that lack
a controllable expression system. Multiple gRNA can be targeted to the same or different promoter in
order to have transcriptional control of gene expression [108–110]. Orthogonal Cas9 proteins mediate
simultaneous and independent targeted gene editing and regulation in the same cell [111]. dCas9
can be used to deliver specific cargo to the targeted genomic region [78]. dCas9 that is fused with
fluorescent proteins can be used to visualize specific genomic loci of living cells, from which we can
learn about chromosome structure and dynamics [112]. A similar approach can be utilized to target
histone modifications and DNA methylation, and for the editing of epigenomes [113].

7. Adenine Base Editor

Spontaneous conversion of cytosine and 5-methylcytosine to uracil and thymine, respectively,
occurs through hydrolytic deamination in cells and results in C-G to T-A mutations [114–116].
This conversion occurs 100–500 times per cell per day [117]. However, these editing processes are
confined to only conversion of C-G to T-A. Thus, the process that converts A-T base pairs to G-C
base pairs in target genomic loci is the basis for the generation of small nucleotide polymorphisms
(SNPs). Adenine base editors (ABEs) can potentially overcome this hurdle (Figure 6). ABEs convert
A-T to G-C in bacteria and humans (Figure 6), and are yet to be implemented in plants [117]. Seventh
generation ABEs have greatly advanced the conversion of A-T to G-C at targeted genomic loci with
very high degrees of accuracy and purity [117]. ABEs use tRNA adenosine deaminase fused to
catalytically impaired CRISPR-Cas9 to convert A-T to G-C (Figure 6) [117]. ABEs generate point
mutations more efficiently than Cas9 nuclease-based genome editing methods, with high product
purity (≥99.9%) and significantly low rates of indels (≤0.1%), and with less off-target mutations [117].
In this process, the deoxyadenosine deaminase TadA is fused with catalytically impaired Cas9 nickase
with a corresponding single guide RNA (sgRNA) to perform the task (Figure 6) [117]. Fused TadA
and Cas9 bind the target DNA sequence/nucleotide in a guide RNA-programmed manner, thus
exposing a small single-stranded DNA bubble. The TadA deoxyadenosine deaminase converts
adenine (A) to inosine (I) within the bubble. The I nucleotide pairs, with C, and, during DNA
replication, the polymerase reads it as a G nucleotide; hence, A nucleotides are replaced by G
nucleotides. Fusion of TadA to the C-terminal end of Cas9-nickase instead of the N-terminal end
abolishes the editing activity [117]. Doubling the length of the linker between TadA and Cas9 nickase by
using the 32-amino-acid-long (SGGS)2-STEN-(SGGS)2 linker leads to higher editing efficiencies [117].
TadA is natively found as a homodimer, where one monomer catalyzes the deamination process
and the other acts as a docking station for the tRNA substrate [117]. Inactivated N-terminal TadA
shows editing potential when compared to the inactivated internal TadA subunit, confirming that the
internal TadA subunit is responsible for ABE deamination activity [117]. ABE showed limited editing
efficiencies for a target sequence containing multiple adenine nucleotides. However, this problem was
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overcome when Tad-Cas9 was targeted to two separate sites, namely, TAT and TAA, in the kanamycin
resistance gene. The C nucleotide of the UAC triplet anti-codon loop of the tRNA substrate contributes
significantly to the enhancement of editing efficiencies. A sequence with alternating nucleotides,
namely,5′-A-N-A-N-A-N-A-N-A-N-A-N-A-N-3′, was targeted for editing with two sgRNA, such that
an A nucleotide would be located at either the 18th (odd) or the 19th (even) positions from positions 2
to 9 of protospacer. The editing result at all of the 19 sites suggested that different ABE variants have
different editing efficiencies with based on the PAM domain at positions 21 to 23 [117]. Therefore, the
precise editing specificities and the limits of the editing specificities can vary in a target-dependent
manner [117]. The base editing activities near adenines within the editing window are statistically
dependent, and the average normal linkage disequilibrium (LD) near target adenines increased
substantially upon the evolution of ABEs [117]. This finding reflects that early-stage ABEs edit nearby
adenines independently, whereas late-stage ABEs edit nearby adenines processively. During the
evolutionary process, TadA might have evolved changes in kinetic behavior, leading to the decreased
possibility substrate release. This new genome editing technique can be implemented successfully in
animal cell lines, and can be effectively used to obtain desirable traits in plants as well.
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8. RNA Interference

RNA interference (RNAi) is a post-transcriptional gene silencing mechanism that regulates
gene expression in different ways [116,118,119]. The RNAi can be due to siRNAs (small interfering
RNAs) [120,121], miRNAs (microRNAs) [122], or piRNAs (PIWI-interacting RNAs) [123–125]. siRNAs
are 20 to 30-nucleotide-long non-coding single-stranded RNA that are produced from double-stranded
RNA, and act as guides for DNA cleavage and translational repression. siRNA activity is based on
sequence complementarity and leads to the knockdown of gene function [126,127]. The discovery
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of RNAi by Andrew Fire and Craig Mello earned them a Nobel Prize in 2006, indicating the
importance of RNAi technology. Each small RNA forms a complex with an Argonaute-family
protein and base pairs with the target gene in a sequence-specific manner [128,129]. The siRNA
forms an RNA-induced silencing complex (RISC) that drives the silencing of target mRNA through
repression or degradation [130–133]. In addition, siRNAs can alter the chromatin configuration
and the methylation of the siRNA-binding site [134–136]. siRNAs can be endogenous or may
arise through exogenous sources or viral infections, whereas miRNAs are derived directly from
the genome. During functional studies, it has been observed that siRNA duplexes exhibit perfect
base-pairing, whereas miRNA duplexes exhibit mismatches due to the presence of an extended
terminal D-loop [137–139]. Although the origins of siRNAs and miRNAs are different, the processing
pathways of both require RISC.

Plant cells produce only a few siRNAs, and the majority of siRNAs are of viral origin. Therefore,
it is necessary to deliver the designed siRNA into the cell for the functional study of any gene.
However, the presence of cell walls in plant cells makes the delivery of siRNA into the cell difficult.
The delivery of siRNA into plant cells has been achieved by expressing hairpin RNA that fold back to
generate a double-stranded region. The double-stranded region acts as a substrate recognition site
for DCL/Dicer-like enzyme, which later complexes with Argonaute in order to regulate the silencing
process [140,141]. Modified viruses are usually used to induce the RNAi, and hence to knockdown
genes, in a process that commonly known as virus-induced gene silencing (VIGS) [142–144]. VIGS
negates the possibility of introducing transgenes into the target genome, and, hence, this process can
be useful in such plant species that are recalcitrant to genetic transformation. In contrast to siRNAs,
miRNAs are produced from the endogenous genome and have natural origins. Pre-miRNAs with
specific hairpin precursors are cleaved by the Dicer enzyme [141]. miRNAs are evolutionary conserved
small RNA, which can control the expression of several genes [145–147]. Artificial miRNAs can be
generated to cleave the targeted transcript [148–150]. A small 7-nucleotide complementarity of the
siRNA with the target gene can inhibit the expression of the gene. Therefore, the prediction of off-target
effects using siRNA is very difficult.

Due to the limited sequence specificity of siRNAs, it is difficult to conduct large-scale screening of
the gene expression. A mutation in a gene always leads to irreversible changes, and the functional
effect of the mutation is easily predictable. However, RNAi inhibition shows a wide array of effects that
depend upon the target gene and the region of the gene. Two sibling plants that are carrying identical
RNAi can also exhibit different effects. Inefficacies might arise due to presence of short siRNAs or due
to the targeting of genes that are bound by proteins or are masked by secondary structures.

9. Site-Directed Sequence Editing

The pentatricopeptide proteins used in RNA editing harbour C-terminal glutamate (E) amino
acid and DYW (aspartate/tyrosine/tryptophan tripeptide) domain [151]. The DYW domain shares
homology with protein nucleotide deaminase [152]. If the function of this domain will be confirmed
in plants, this editing machinery will resemble the Apolipoprotein B mRNA editing enzyme,
(APOBEC1) of mammals that consists of a sequence recognition motif coupled with cytidine
deaminase (Figure 7) [153]. The APOBEC1 is a catalytic subunit of an enzyme complex that conducts
apolipoprotein (apo) B-mRNA editing [154]. APOBEC1 undergoes dimerization in vitro, and carries
out the editing process in presence of complementation factors [154]. The dimerization of APOBEC1
generates an active structure for the deamination of apoB mRNA. Deletion studies on the N- and
C-terminal domains showed that the amino-terminal end up to residue A117 does not interfere with the
dimerization process, whereas deletion at the carboxy-terminal resulted in reduced dimerization [154].
Amino acid clusters, R15R16R17 and R33K34, are essential for apoB-mediated mRNA editing [154];
mutation of the amino acids at these positions completely abolishes the editing activity in vitro.
In addition, the C-terminal region of APOBEC1 contains leucine-rich motifs, and the amino acids at
positions 181 to 210 are crucial for apoB-mediated gene editing [154]. Amino acid substitutions at
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these positions demonstrated that L182, I185, and L189 are important amino acids that are crucial for
mRNA editing [154]. ApoB mediates very distinctive RNA editing, wherein a C-to-U modification in
the first base of the CAA codon generates a UAA stop codon [154]. The editing of C to U is common in
organelles of angiosperms, and editing of U to C is common in ferns and hornworts [155]. However,
the enzyme responsible for such editing is not known. Editing of A to I is common in metazoans,
and is mediated by deaminase. The enzymatic domain of deaminase coupled with PPR can be very
useful for mRNA editing.
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10. Oligonucleotide-Directed Mutagenesis

Oligonucleotide-directed mutagenesis (ODM) offers a precise and non-transgenic genome editing
technique to manipulate genomic DNA using synthetic oligonucleotides (Figure 8). Using ODM,
one to a few nucleotides can be precisely exchanged/introduced into gene of live cells using a plasmid
as a template. The synthetic oligonucleotide in this process is a single-stranded sequence that is
complementary/homologous to one strand of the duplex DNA, with minor mismatches. The mismatch
pairing is corrected by the cellular repair system, which leads to specific mutations. The use of
higher concentrations of oligonucleotides in cells leads to site-specific insertions of oligonucleotides
into the genome through the action of the cellular DNA repair mechanism [156]. During the
site-directed mutagenesis, single-stranded oligonucleotide strands binds with the target DNA and
make it three-stranded, which results in the formation of a displacement loop (D-loop). The formation
of the D-loop is mediated by the unwinding of chromosomal DNA during replication and transcription.
This process leads to an increase in the accessibility of the target site, which initiates the annealing
process. Later, sequence transfer to the target DNA strand occurs through the action of the cellular
DNA repair mechanism [156]. Cells use DSBs, NHEJ, HR, and single-stranded annealing (SSA) during
the repair process [156]. The NHEJ re-ligates two DNA ends without requiring a homologous template,
by introducing short deletions at the break site. If there is involvement of the DSB repair mechanism,
homology-directed repair (HDR) mechanism occurs using the oligonucleotide acts as a template.
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The introduction of oligonucleotides into the cell during the gene editing process leads to DNA damage.
There is a possibility of cellular response to DNA transfection as well. The double-stranded DNA of
plasmids that are used during the process induce the expression of genes that are involved in the DNA
damage and repair system [156]. ODM has been used for editing several plant genes. The Acetolactate
synthase (ALS) gene, which is involved in the first step of the biosynthesis of the branched-chain
amino acids leucine, isoleucine, and valine, and in imidazolinone tolerance, was discovered in plants
by mutagenesis [157]. Although zinc finger nucleases and other editing tools show great promise in
genome editing, oligonucleotide-directed mutagenesis is very effective where simple genetic changes
such as insertions, deletions or substitutions are required. In addition, the production and delivery of
ODM are very simple and do not require expression of foreign proteins in the cell. This minimizes
off-target effects and does not disrupt non-target genes by non-specific integration of genetic material.
Although ODM technology is frequently used in plants, the correction rates are comparatively low
and the editing largely depends upon the introduced oligonucleotide.
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sequence are designed and later PCR based amplification resulting from the extension of the annealed
primer completes the synthesis of the new mutated plasmid that harbors a mutation introduced through
the primer. DpnI digestion removes the methylated parental non-mutated plasmid sequences, leaving
the newly synthesis plasmid for future transformation experiments.

11. Cisgenesis and Intragenesis

Genetic mutation and transgene generation are the main techniques used to edit a gene or
a genome. Somatic hybridization facilitates the fusion of genetic content from two species that
are separated by genetic barriers. The development of genome sequencing technologies has led
to the isolation of genes from crossable species; these genes are commonly known as cisgenes.
Cisgenesis/intragenesis refers to the transfer of genes or DNA between organisms of the same
species, or genetically cross-compatible species, without any accompanying linkage drag [158–160].
In cisgenesis, the gene remains unchanged, whereas in intragenesis, a part of the gene (promoter or
regulator) is transferred. Cisgenesis may result in a new organism that might not be distinguishable
by one obtained from conventional crossbreeding, whereas intragenesis results in an organism that
cannot be obtained by conventional crossbreeding [159]. Large-scale cisgenes have been isolated by
advanced sequencing approaches; these genes do not carry any marker genes with them. This leads
to the modification of the genome, while remaining within the gene pool. Cisgenic plants are more
publicly acceptable than transgenic plants. Cisgenesis has been successfully applied in cereal plants
where the phytase gene was introduced to confer bioavailability of phosphate [161]. The 1D × 5 and
1Dy10 glutein subunits with native endosperm promoter and terminator were transferred to durum
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wheat, using a transformation approach to enhance the bread-making property of the wheat [162].
In poplar, five cisgenes (PtGA20ox7, PtGA2ox2, Pt RGL1_1, PtRGL1_2, and PtGAI1) that are involved in
gibberellin signaling were transferred to Populustremula x alba [163]. Each cisgene has 1–2 kb of 5′- and
1 kb of 3′-flanking DNA [163]. The PtGA20ox7 cisgene increased the rate of shoot generation and
early growth [163]. The PtRGL1_2 cisgene resulted in longer xylem fibers, whereas the PtGAI1 cisgene
showed an increased rate of regeneration [163]. The parts of the cisgenes, including promoters and
terminators were transferred, into Populustremula x alba genome [163]. The cisgenesis and transgenesis
approaches use the same genetic modification techniques, except for the introduction of genes from
the same plant or from a crossable species whose genes can be transferred by breeding techniques as
well. Therefore, cisgenesis is not different from natural breeding programs, and, hence, cisgenesis is
safe to use, like traditionally bred plants.

12. Plastid Genome and Synthetic Genomics

Approximately 4500 nuclear genes of A. thaliana originated from cyanobacteria, and constitute
approximately 18% of the gene content of nuclear genome [164]. The transfer of genes from plastids to
nuclei is an ongoing process, and shrinkage of the plastid genome will continue to occur in the future.
Due to selective pressure, the promoters and intergenic spacer sequences (3′ and 5′ untranslated region)
are also becoming smaller. The plastid of seed plant Cytinus hypocystis contains the smallest genome
(19.4 kb, NC_031150) (Supplementary Figure S1), whereas Pelargonium transvaalense contain the largest
genome (242.575 kb, NC_031206) (Supplementary Figure S2). If we will consider the plastid genome
of green algae, Ostreococcus tauri OTTH0595 possesses the smallest genome (71.66 kb, NC_008289)
(Supplementary Figure S3), whereas Floydiella terrestris possesses the largest genome (521.168 kb,
NC_014346) (Supplementary Figure S4), with diverse numbers of genes. Although the genetic map
of the plastid genome is circular, it seems quite heterogenous in vivo, and up to 1000 copy numbers
of plastid genomes can be found. In addition to the circular genome, multimeric and linear plastid
genomes have been reported; these genomes presumably resulted from the homologous recombination
of genomic copies [165–167]. These diverse sizes of plastid genome can provide valuable importance
for genome editing in plants.

Plastids are primarily involved in photosynthesis. Therefore, it is easily speculated that
a majority of the genomic content in plastid genomes was utilized for photosynthesis [168,169].
In addition to photosynthetic genes, plastid genomes also contain genes coding for ribosomal
RNA (rRNA) and transfer RNA (tRNA), subunit of plastidial ribosomes, intron splicing factor,
Clp protease, bacterial-type plastid RNA polymerase (PEP), acetyl-CoA carboxylase, and malonyl-CoA.
Plastid genomes encode two different polymerases, i.e., bacterial-type RNA polymerase and
bacteriophage-type RNA polymerase, and these polymerases transcribe overlapping sets of genes.
The biosynthesis of proteins in plastids occurs with the help of bacterial-type 70S ribosomes [170].
The gene expression event in plastids is highly regulated and occurs in response to developmental and
environmental cues [171–173]. Considerable numbers of protein products encoded by plastid genomes
combine with other proteins to form multi-protein complexes. These complexes consist of nucleus-
and plastid-encoded subunits that are involved in the tight coordination of gene expression in plastids
and nuclei through anterograde and retrograde signaling pathways [174].

Plastid genomes provide a platform for synthetic biological research. Given the smaller
genome size, plastid genomes can be manipulated very easily. Synthetic biological research using
plastid genomes has been well established in the model organisms Chlamydomonas reinhardtii and
Nicotiana tabacum [175,176]. The presence of homologous recombination in plastids facilitates targeted
integration and precise excision, which allows the use of homologous recombination as a suitable tool
for genome editing. Although the plastid genome is very compact, one-third of its genomic region is
occupied by intergenic regions [168,170]. The intergenic region contains regulatory elements, such as
promoters and 5′ and 3′untranslated regions (UTRs), and the presence of truly non-coding regions
is negligible [170]. Homologous recombination in plastids leads to the simultaneous modification of
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two separate regions of the plastid genome by co-transformation, where two or more plasmid vectors
can be injected using a biollistic particle gun bombardment approach [170,177]. The co-transformation
event can be simultaneously used to transform nuclear genomes as well. The toolkit for plastid genome
engineering contains promoters, reporter genes, selectable markers, and 5′ and 3′ UTRs. The biollistic
method can allow the transformation of more than 50 kb sequences at a time, and the capacity to
incorporate enormous quantities of foreign genomic content makes it an attractive tool for genome
editing. These tools allow the use of the smallest-sized genome that contains the smallest possible
genomic content that life can accommodate.

13. Conclusions and Future Perspectives

ZFNs and DSBs can potentially be used for precise genome editing in plants, and can
have a huge impact in functional genomics studies. This can be very helpful for novel trait
discovery in plants, and will be very beneficial when used for improving crops for commercial
purposes. Targeted-mutation-related breeding methods can use precise genome editing at specific
sites, rather than random mutations, and these methods will reduce the possibility of undesired
side effects. Genome editing technology has great potential for revolutionizing crop production
worldwide. Although ZFNs and TALENs are routinely used in plant research that uses HDR-based
mutations, these tools still produce unwanted results and lead to HDR-altered alleles. Additionally,
these technologies can potentially be used to create fusion proteins containing domains other than
nucleases. TALE array repeats can be used in order to induce epigenetic modifications in specific
genomic regions to induce stable and heritable mutations. Lack of sufficient genetic data set to
address the sequence specificities for different genome editing tools is the biggest limitation for
target prediction, and a larger effort is necessary to address this problem. However, the presence of
DNA-binding domain is enough to predict the target to little extent. The CRISPR/Cas9 system can be
very useful for post-transcriptional control of gene expression. ABE-mediated genome editing will be
very useful for generating point mutations/deletions with high accuracy and less indels. Chromosome
engineering and the synthetic plant genome approach can be used as a potential tool for DSB-mediated
genome editing in future. These genetic devices can be integrated into the genetic circuit to switch
on and off to a particular trait or pathways. Introduction of a “genome editing” database that harbor
experimental references, as well as in-silico prediction data of model organisms could be of particular
interest. From the database, a researcher could be able to find suitable genome editing tools for
a complex gene.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/8/12/399/s1.
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