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on the population of aquatic animals. In the proposed system, we recall that

greenhouse gases raise the temperature of water, and because of this reason, the
dissolved oxygen level goes down, and also the rate of circulation of disintegrated
oxygen by the aquatic animals rises, which causes a decrement in the density of
aquatic species. We use a generalized form of the Caputo fractional derivative to
describe the dynamics of the proposed problem. We also investigate equilibrium
points of the given fractional-order model and discuss the asymptotic stability of the
equilibria of the proposed autonomous model. We recall some important results to
prove the existence of a unique solution of the model. For finding the numerical
solution of the established fractional-order system, we apply a generalized
predictor-corrector technique in the sense of proposed derivative and also justify the
stability of the method. To express the novelty of the simulated results, we perform a
number of graphs at various fractional-order cases. The given study is fully novel and
useful for understanding the proposed real-world phenomena.
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1 Introduction

In the study of greenhouse effects, we know that in the day the sun warms up the atmo-
sphere of earth. But when the Earth supercools at the night, then the presented heat is
radiated again into the environment. In the duration of this process, the heat is exploited
by the greenhouse gases in the environment of earth. This process makes the layer of the
earth thermal, which causes the possibility of living being’s survival on earth. However,
because of the increment in the level of greenhouse gases, the earth’s temperature has
raised simultaneously. This has caused a number of drastic impacts. In the list of reasons
of greenhouse effect, deforestation, burning of fossil fuels, farming, industrial waste, and
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landfills play a major role. The major effects of increased greenhouse gases are depletion of
ozone layer, global warming, air and smog pollution, water bodies acidification, etc. Since
the starting of the industrial revolution, the concentration of carbon dioxide, chlorofluo-
rocarbon (CFC), nitrous oxide, and methane have enhanced in the environment, and there
is firm witness that the venomous impacts of greenhouse gases on our ecological systems
have been taken account as a outcome of human bustles.

Aquatic life simply means to stay in surface water, and water in this paragon is specified
as a marine habitat. Living beings that live in the water either permanently or momentarily
are called aquatic animals and plants, and these compose the beings in water aquatic life.
It is well known that the increment in the temperature of water causes the reduction in the
concentration of mixed oxygen of the aquatic environment and also rises the requirement
of mixed oxygen for the aquatic animals. Invertebrates, fish, and other aquatic species rely
upon the amount of oxygen decomposed in the water, and in the absence of it, they may
not live. A small changes in concentration of mixed oxygen can effect the conformation of
aquatic society [1]. So the rate of survival of the aquatic density (Fig. 1) goes down under
hypoxia, and the oxygen necessary for their living raises with growth in temperature [2, 3].
Hence, because of the combined influences of reduced concentration of mixed oxygen and
enhanced demand of oxygen by the animals, the warming of species bodies rises the death
rate of species population [3, 4]. To define these dynamics, a number of models have been
proposed, but only few models [5, 6] have been given to simulate the effects of dissolved
oxygen and temperature on the population of aquatic species.

In the matter of the above discussion, in this study, we prepare a fractional-order mathe-
matical system to simulate the joint influences of low mixed oxygen density, exalted water
temperature, and raised oxygen demand on the extinction or survival of aquatic popula-
tion. Fractional derivatives are one of the most effective tools for simulations and have
been proposed in many different ways (for instance, see [7-9]). Fractional-order models
have been widely used to define a number of real-world problems because their memory
effects make these models more visible in the literature. Recently, a number of fractional-
order models have been prepared by researchers. In this regard, in [10-18] the authors
have proposed a number of fractional-order mathematical models to describe the dynam-
ics of Covid-19 epidemic. In [19, 20] the authors have simulated the fractional-order dy-
namics of well-known lassa hemorrhagic fever. The applications of fractional derivatives in
ecology can be seen in [21]. Regarding some more specific areas, nonclassical derivatives
have been successfully used to derive the structure of tuberculosis [22], malaria [23], mo-
saic disease [24], Nipah epidemic [25], canine distemper virus [26], and huanglongbing
transmission [27]. In [28] the authors used a fractional-order time-delay mathematical
model to describe the process of oncolytic virotherapy. A study on analytic solution for
oxygen diffusion from capillary to tissues via fractional derivatives is proposed in [29].
Also, an application of a new generalized Caputo derivative to define the famous love
story of Layla and Majnun is given in [30]. So the literature of fractional-order calculus
is increasing exponentially day by day. Also, a number of true and false results come on
the various fractional derivatives. Recently, in [31] the authors have proved that in the
case of evolution equations in terms of the Caputo—Fabrizio and Atangana—Baleanu frac-
tional derivatives, intrinsic discontinuities occur. The geometry of fractional-order deriva-
tives is still not well-defined, but their applications in different scientific fields make them
more visible to the literature. Some important studies related to the properties of frac-
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Figure 1 Some aquatic animals

tional derivatives, special functions, and different types of inequalities can be learned
from [32-35]. Nonstandard Chebyshev collocation and finite difference schemes for solv-
ing fractional diffusion equations are proposed in [36]. Some novel analysis on the frac-
tional differential equations for the generalized Mittag-Leffler function are discussed in
[37]. A study on the analytical solutions of the fractional-order equations with uncer-
tainty is proposed in [38]. Alderremy et al. [39] have discussed some novel models of
the multispace-fractional Gardner equation. A study on spectral collocation method for
solving smoking model is proposed in [25]. In [40] the authors have proposed a study
on Darcy-Brinkman—Forchheimer model for nanobioconvection stratified MHD flow
through an elastic surface. In [41] a reduced differential transform scheme for simulat-
ing nonlinear biomathematics models is given. In [42] a study on dynamical features and
signal flow graph of nonlinear noninteger order smoking mathematical model is explored.
In [43], some numerical methods for a model of relativistic electrons arising in the laser
thermonuclear fusion are investigated. The manuscript is designed as follows: In Sect. 2,
firstly, we remind some important definitions and results. In Sect. 3, we give a complete
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description of the proposed fractional-order nonlinear model, where we define the sig-
nificance and importance of every small part of the model. Then in Sect. 4, we give a
complete mathematical analysis related to the solution existence, derivation, and stabil-
ity. To show the correctness of our results, in Sect. 5, we present the necessary graphs at
various fractional-order values and parameter weights. At the end, a conclusion gives a
comfortable end to the paper.

2 Preliminaries

Firstly, we remind some important definitions and results.

Definition 1 ([44]) The new definition of the Caputo-type fractional derivative DZ;" of
order o > 0 (called a new generalized Caputo) for the function ¥ € C!([d, T]) is given by

o—-n+l

& d\"
0,3t _ w-1l(gx _ n—o-1f 15 %
(DY \If)(é)—ir(n_o)/d sHET - 5) (S ds) U(s)ds, &>d, 1)
where p>0,d>0,andn-1<o0 <n.

Lemma 1 ([45]) For 0 < b < 1 and a nonnegative integer o, there exist positive constants

Cp,1 and Cy5, dependent only on b, such that
(0+1) —0® <Cyi(0+ 1)}

and
(0 +2"" =2(0 + 1) + 0" < Cpalo + 1™,

Lemma 2 ([45]) Letd, = (s—q)b’lforq =1,2,...,s—landd,s =0forq >s,let M,b,h, T >
0, and rh < T, where r is a positive integer. Let Zgj dyslegl =0 forr>s> 1. If

s=1

b§ :
|es|§Mh dq,s|eq|+|,30|: s=1,2,...,r,

q=1

then
le,] <ClBol, r=12,...,
where C is a positive constant not dependent on r and h.

3 Model dynamics

Now we propose a fractional-order mathematical model to study the proposed dynamics.
In [1] the authors have already given an idea on the proposed topic by using an integer-
order model. We propose a fractional-order model because it is well known that the
memory effects, which cannot be studied in the classical case, can be easily observed by

fractional-order derivatives. It is very important that when we propose a fractional-order
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model, it should have the same time dimension on both sides of the system. Taking care

of all these aspects, we define the novel fractional-order model as follows:

CDIN(E) = GU, TIN - B2,
DIFT(t) =w" C - (T - Tho) + v (Zo - 2),

CDY*C(t) = Ag - 85 C, (2)
CDY*Z(t)= 0% - AJZ - A° ZC,

CDI*U(E) = y1 BT-TON(Dy(T) = U) = JUN — % (T = Topt),

where D}’ is the new generalized Caputo-type fractional-order operator of order . In

this model,

T — Topt u-uy(T
cuns(onl o))

UO(T) = ,3(170 + ﬁifl(T - Topt):

and

D

S0

PO T,
In this model, we have five different classes, in which class N shows the logistically cres-
cent aquatic species density whose rate of growth is taken as a function of temperature and
mixed oxygen, U justifies the dissolved oxygen concentrations, T defines the water tem-
perature average of the species, C expresses the greenhouse gases accumulative concen-
trations, and Z justifies the concentration of ozone. Also, the term G(U, T) expresses the
specific rate of growth of the species, which is in fact an exponentially decreasing function
of T for T > T, and increasing function of U. The function Uy(T) denotes the quantity of
dissolved oxygen demanded by species population, which rises with temperature increase.

The term Dy(T) is defined for the consideration that if the water temperature level is
high, close to the optimum temperature, then the natural loaded dissolved oxygen con-
centration reduces. The significance of all other parameters is completely given in Table 1.
The more deep texture of the given model in classical sense can be learned from [1].

The equilibria of the given fractional-order mathematical model can be obtained by solv-

ing the following system:

cu,mN- 8N g (3)
Yo

w2 C = 5(T - Tio) +v°(Zo - Z) =0, (4)

Ag—87C =0, 5)

O -A{Z-A°ZC=0, (6)

71BN (DAT) ~ U) = BUN = £°(T = Top) = 0. @)
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Table 1 Description of model parameters

Jdo Intrinsic growth rate

Bro Dissolved oxygen's minimum natural concentration needed by the aquatic species

B Increment rate in the mass of mixed oxygen demanded for the species per unit rise in the level of
temperature above the suitable temperature

Topt Optimal water temperature for the aquatic species maximum rate of growth

Y0 Carrying capacity of the environment

Dq, Dissolved oxygen’s natural saturated concentration at 7 = Topt

Ao Ejection rate of greenhouse gases cause of anthropogenic bustles

w Increment rate in the temperature of water cause of greenhouse gases

s Coefficient of heat transfer of surface

Oc¢ Physic manufacture of concentration of ozone per unit time in the environment

A, Natural deterioration rate of concentration of ozone

A Deterioration rate of concentration of ozone cause of greenhouse gases

Vi Coefficient of reaeration at the reference temperature

8 Deterioration rate of mixed oxygen because of breathing by the species

¢ Deterioration rate of mixed oxygen because of a rise in the temperature above the suitable
temperature

B A constant that succumbs upon the tincture state of the water body

y Variations rate in the water temperature because of changes in the ozone concentration level
associated with its threshold value

20 Threshold of concentration of ozone below which temperature will rise

Tio Temperature of the environment

&1 Depletion rate of greenhouse gases

To Context temperature (associated with the turbulence degree in the water, in which turn
succumbs on the depth and speed of the river)

b Constant that incarnates the toxic influence of divergence of T from Tope and divergence of T
from Trax

Trnax Maximum temperature of water at which growth can occur

N(O) Initial population of N

T(0) Initial population of T

C(0) Initial population of C

Z(0) Initial population of 7

U(0) Initial population of U

Equation (5) gives

A
c="2. ®
87
Equation (6) gives
o7
= 9)
AT +A°C
Equation (4) gives
°C+4T, (Zy-Z
W +81T10 +y° (Zo ). (10)
&
Here we have two different types of equilibrium points.
1. Boundary equilibrium point E = (1, Z,C, T, N):_
N =0 (no species population), I/ = ( Py ¢ (TfT"Pt)). Here C,Z, T are given by (8),

1+T-Topt ylﬂ(T—To)
(9), (10), respectively.

A boundary equilibrium point E exists if Dy, 11 ,B(T‘TO) —¢o(T - Tope)(1 + T- Topt) >0
and Zy > Z.

Page 6 of 19
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2. Interior equilibrium point E*(U*, Z*, C*, T*, N*), where N* = yo(exp(—b(%)) +

Tmax—Topt
(BT + BT (T*~Ty, . ) . .
il 102‘?&(* pt))) (species population exists) and N* > 0, provided that U* - (87, +

B (T* — Topy)) > 0. Here C*, Z*, T* are given by Equations (8), (9), (10), respectively, and
U™ is the positive root of the quadratic equation

Ul + by U* +¢; =0, (11)

where a; = 87T T (1 + T* = Tope) + 85 10 exp(—b(T:l:_T;ztpt))(l + T = Topt) + 85 70(1 +
* * T*—Tu

T* = Top), by = u BT T (14 T = Toge) — )y BT 100Dy, + 85 yo exp(-b( 7)) (1+ T* -

Topt) + 82101+ T* = Tope) (BTo + B1(T™ = Topt)) + §7(T* = Topt) (1 + T* = Topt), c1 = £ (T™ -
Topt)(1 + T* = Topr) — 11 BT ~T0D;. When the given conditions are taken account, the
quadratic equation (11) has at least one positive root if a; > 0,5, > 0, and ¢; < 0. Now we
derive the following nonautonomous system after solving the given model (2) for C:

O'N2

CDI*N(t) = G(U, T)N - (12)
Yo

“Dy*U(t) = BT (D(T) - U) = 85UN — (T — Top), (13)

since Z* < limy_, o, sup Z(t), C* < limy_, oo sup C(£), T* < lim;_, o sup T(2).
Hence the fractional-order nonautonomous model (12)—(13) can be specified in the fol-
lowing equivalent fractional-order autonomous model:

N (p(b( "= Ton )) L U (Blo+ BT - T0pt)))

Tmax - Topt 1+U
(TNZ
NS (14)
Yo
* D
C o, _ (T*-Tp) S0 o o sk
DY *U(t) = ——— U ) -85UN - T — Topt). 15
7 U(t) =B <1+T*—Topt ) 2 ¢ ( pt) (15)

The equilibrium points of the dynamic system (14)—(15) are calculated by the following
group of equations:

g (o6 2T )) UV T Ty 8N, g

Tmax - Topt 1+U Yo
npT T _ Do ) SJUN = % (T* = Topt) = 0. (17)
L+ T* - Topt P

1. Boundary equilibrium point E(L:I, K[):

N =0 (no species population),

i[ _ Dso _ ga(T* - Topt)
1+ T5 = Topr 1 T Tort

The existence of boundary equilibrium point E provides

Dy 1 BT Tor) — £ (14 T* = Tope) (T* = Tope) > 0.



Kumar et al. Advances in Continuous and Discrete Models (2022) 2022:31 Page 8 of 19

2. Interior equilibrium point E**(U**, N**):

N** = yo(exp(—b( T*~Topt ) + U™ (B +By1 (T*=Topt)

— Tt )) (aquatic population exists) and N** >

0, provided that

U — (B + BH(T* = Tope)) >0,
where U** is a positive root of the quadratic equation

AU + BU* +C, =0, (18)
where A; = p, BT -T0)(1 4+ T* - Topt) + 85 V0 exp(—b(%))(l + T* = Topt) + 83 v0(1 +
T* = Topy Br =1 BT 01+ T* = Top) = 71 BT 100D, + 85 yo exp(—b(—)) (1 + T+ -
Topt) - 85 vo(1+ T - Topt)(ﬁfo + ﬁfl(T* - Topt)) +00(T™ - Topt)(1 + T - Topt)r Cr=¢°(T" -
Topt)(l +T" - Topt) - VIIB(T*iTO)Dso-

If the given constraints are satisfied, then the quadratic equation specified by (18) has at

least one positive root if
A1>0, Bl>0, C1<O.

Lemma 3 For the fractional-order mathematical system (14)—(15), Lis locally asymptoti-

sk _ > 1T_(RO o T*—To . ,
L Topt )+ UBio P pt))) < 0 and is an unstable saddle point
Tiax—Topt 1+U

o _ T*~Topt a*(ﬂfo+f3f1(T**Topt))
if 85 (expl-blrgi)) + S Tont) g,

cally stable if g§ (exp(—b(

Proof After the linearization, taking the Laplace transform of both sides of system (14)-
(15), the Jacobian matrix for system (14)—(15) simulated at E is given by

all 0
Mll = )
az  ax

where

an =g (exp(_h< T" — Topt )) LU Bl BT - Tom))),
Tmax - Topt 1+U

ay = -8, U, ay = —ylﬁ(T*‘TO). The eigenvalues associated with the matrix Mp; are A; =

*_ T_(RO o *_ %
&5 (exp(—b(—orty) 4 L PRI o)y 5 oy, gUT*=T0),

max—Topt 1+U _
T**Topt )) u*(ﬁi’()"’ﬂi’](T**Topt)))
Tmax—Topt 1+

The eigenvalue 1, is negative if g§ (exp(—b( < 0 and posi-

tive if gf (exp(~b(—gitr)) + ~— APy o,

The other eigenvalue 1, is negative. Hence the required results are obtained. O

Lemma 4 The given equilibrium point E** of the fractional-order system (14)—(15) is al-
ways locally asymptotically stable.

Proof The Jacobian matrix of system (14)—(15) with respect to E** is
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_ggN**

o o (T*=T, -
L —, b12 _ ggN**(l+/310+f511( Pt)),b21 _ _Sgu**’bzz _ —)/1,3(T To) _

(1+U*)?

where by, =
SgN**.
The behavior of the eigenvalues is estimated by using Hurwitz’s criteria in the quadratic

equation

A2+ A(_gé;/N** + yl,B(T*’TO) - 6;’N**)
0

1+ Bf + B (T* =T oIN** - o SIN*
+ (8(27 u**goaN**< :310 /311(** 5 0pt)> n o J/I,B(T -To) + &o 92 )
1+ U) Yo %

=0. (19)

Using Hurwitz’s criteria, we observe that the eigenvalues A1, A, of the matrix My, are neg-
ative if 7% > Top. Thus we get that £** is locally asymptotically stable under the restriction
T* > Topt. a

Now for the deformation of fractional-order system (2), we convert it to an equivalent

compact form in the case of singular kernels as follows:

CD{”N(t) = Q1(t,N),
CD*T(t) = Qu(t, T),
CDI*C(t) = Qs(t,C), (20)
D7 Z(t) = Qult, 2),
CDT*U() = Os(t, U).

Here Q;,Q;, 93, Q4,5 are the proposed kernels with respect to the given classes
N,T,C,Z,U, respectively.

4 Fractional-order analysis on the proposed model

4.1 Analysis of the existence and uniqueness of the solution

Proving the existence of the solution for fractional-order systems is always a sensitive part
because not all fractional differential equations have their proof of the existence of a solu-
tion. In this area a number of works have been done, and lots of researchers work. Here,
before deriving the solution of the proposed model, we first prove that the given fractional-
order model has a unique solution. We give the results only for the class N(¢), and the

results are as for the other model classes. So we recall the model equation for N,

“DI”N(¢) = Qi(¢,N), (21a)
N(0) = Ny, (21b)

and the relative Volterra integral equation

V4

_ ' ¢ =1 (o |01
N(©) =N+ 2 /0 £ (07 - £7) 7 Q1 (e, N) . (22)
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Theorem 1 ([46] (Existence)) Let 0 < 0 < 1,Ny € R, K >0, and T* > 0. Define Q :=
{(¢,N):¢ €[0, T*],IN—Ny| < K}, and let the mapping Q, : Q — R be continuous. Further,
define M := sup, nyeo |Q1(¢,N)| and

T ifM =0,

T = (23)

1
o

min{T*, (W) }  otherwise.
Then the IVP (21a)—(21b) has a solution N € C[0, T].

Lemma 5 ([46]) By considering the result of Theorem 1 a function N € C[0, T] solves the
IVP (21a)—(21b) if and only if it solves the Volterra integral equation (22).

Theorem 2 ([46] (Uniqueness)) Let N(0) € R,K >0, and T* > 0. Further,let 0 <o <1
and m = [o]. For the set Q given in Theorem 1, let Q1 : @ — R be a continuous function
that satisfies the Lipschitz condition with respect to the second variable, that is,

|Q1(¢,N1) — Q1(£,N)| < VINL - Ny

with a constant V > 0 independent of ¢, N1, and Ny. Then the IVP (21a)—(21b) has a unique
solution N € C[0,T7].

4.2 Numerical solution of the proposed model with application of the
generalized predictor-corrector technique

In the last few years, a number of fractional-order numerical schemes have been proposed
by the scientists to solve various types of dynamical models. Very recently, the authors of
[47] have proposed a new numerical method in the generalized Caputo derivative sense.
Here we solve the proposed model with the help of generalized P-C scheme for the so-
lution of the IVP (21a)—(21b) by following the methodology proposed in [44]. Also, we
will analyze the stability of the given scheme. In that way, we first recall the above given
Volterra integral equation (22), which gives

l1-o 4
N(E)=NO)+ s fo £ (07— )7 Q1 (8, N) . (24)

Now with supposing that a unique solution exists for the function Q; on the interval [0, T,
we divide the adopted interval [0, 7] into N unequal subparts {[¢k, $x:1],k=0,1,...,N -1}
using the mesh points

=0 (25)
G = (€F+ WY, k=0,1,...,N-1,
where /1 = %. Now let us try to analyze the approximations S,k = 0,1,...,N, to get a
numerical solution of the given IVP. Suppose that we have already derived the approxi-
mations N; &~ N(g;) (j = 1,2,...,k) and want to derive approximations N1 ~ N({k.1) by
means of the integral equation

N(fr1) =N(0) +

%1—6 Ck+1 e ool
F(U)/O § (§k+1 -& ) Q1(&,N)ds. (26)
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By substitution z = £ we get

T
Sk

oo
that is,
> o~ [ o-1 v v
NG =NO) + 2 Y [ (685 -2 Qe N 7)) (8)
j=0 757

Now, to simulate the right-side of Eq. (28), applying the trapezoidal quadrature rule with
respect to the weight function ({7, —2)° ' and shifting the function Gi(z'/*, N(z"/*)) by
its piecewise linear interpolant with nodes ¢ (j=0,1,...,k + 1), we get

el
[ e-a7 Qi N ) de
K/%
ho Ao +1 . s o
~ [((k=j)7* =(k=j-o)k-j+1)7)

oo +1)

(29)

x G1(5N @) + ((k=j+1)7"" = (k= j+ 0 + 1)(k = j)*) Q1 (541, N(g1)) ]-

So, fitting the above-proposed approximations in Eq. (28), we establish the corrector term
for N(¢k41),k=0,1,...,N-1:

k

—O'ho' —O'h()'
N(Zk1) #N(0) + —— Fo+2) Zﬂ/k+1Q1 5, N(g)) + le(CkmN((ku)), (30)
where
o+l _ _ (o ifi=
Gt = k (k—o)k+1) ifj=0, 31)

(k=j+ 27" 4 (k=j)"" =20k —j+ D™ if1<j<k.

The final task for our solution is changing the quantity N(x;1) on the right-hand side
of formula (30) with the predictor value N¥(zx,;), which can be calculated by applying
the one-step Adams—Bashforth technique to the integral equation (27). In this case, by
changing the mapping Q;(z'/**, N(z'/*)) by the quantity Q;(;, N(¢;)) at each integral in
Eq. (28) we get

—(T

N (@) ¥ N(O) + / (670 -2) " Q1 (5, N()) dz

s

k
J=0

—U hO’

(32)
k

Z [(k+1-5)7 = (k-)7]Q1(¢,N(&)).
1:0

=N(0) +

So our P-C method for deriving the approximations Ny, & N({k;1) is totally evaluated by
the formula

— k _
P o 1,0

h %
N #N(0) + Z——— ) a1 Q¢ N)) +
Jj=0

h p
T(o +2) m@1(§k+1,Nk+l), (33)

Page 11 of 19
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where N; ~ N((;),j =0,1,...,k, and the predicted value N,f+1 ~ NP(¢x41) can be simulated
as mentioned in Eq. (32) with the terms 4.1 estimated according to (31).
Therefore the derivation for the approximate solution of the proposed system (2) is de-

rived successfully and defined by the following equations:

Pl k —0 1,0

h
N1 ~N(0) + To+2) 4 Zﬂlkqu({p ) + ﬁ@l (k1 NG )

—0 1,0 k —0 [,0

%

h > h P
T 1~ T(0) + To+2) jzzoﬂ/,kqu(Cp T;) + sz(Chh T),

%*0— log *O'ho—
Crn = C(0) + Zﬂ/ k+1 Q?)(;]; C) t == T +2) Qs (§k+11 C]I:Jrl)y (34)
%—O' —0 1,0
Zk+l Z(O) + Za/k+lg4(§/) ) mg4(é‘k+hzf+1)j
%70'}10 k %*Uh(f
~ P
Uy ~ U(0) + Te+2) ;“j,kﬂ Qs(g, Uy) + mQS (ks> UL,y)s

where

*U

oo K
NP(&n) #N(O) + = —— Z(k+1 =) = (k=71 (5, N (),

—U g

k
T (@) ~ TO0) + Z(k+1 )7 = (k=)719a(g T()s
}=0

010 Kk

h NO O
CP(g1) ~ C(0) + h ;:Zo[(k +1-))° = (k=))"]Qs(5, C(&)), (35)
OO k
28~ ZO)+ o D _[k+1-))7 = (k=71 Qu(5,2(5),
j=0
“’h" k
U (g) ~ U(0) +

Z(k+1 =) = (k= )7 Qs (3, L (Z))).
}:0

4.2.1 Method stability

Theorem 3 Let Q1(¢,N), Q2(¢,T), Qs3(¢, C), Qa(¢, Z), Qs(¢, U) satisfy the Lipschitz con-
dition, and let N;, T;, C;, Z;, U; (j = 1,..., k + 1) be approximate solutions of the derived P-C
method (34) and (35), respectively. Then the proposed numerical algorithm (34)—(35) is
conditionally stable.

Proof Let No,Nj(j=0,...,k+1),and N7, (k =0,..., A - 1) be perturbations of Ny, N}, and

N} |, respectively. Then the given below perturbation equations are estimated with the
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help of Egs. (34) and (35).

- B Pl k B
NP, =N+ To+D ;bj,kﬂ(gl(gj»]\[j +N;) - Q1(§1,N/)), (36)

where bjj,1 = [(k+1-))° = (k=))°],

N - Pl - —aha
Nj1 =No + ——— (i1, Ny + Niyp) = W NGy)) + =——
ke1 =No + ro+2) (Q1(¢ks1, Ny + NL1) = Qi (L1, Ny ) + ro+2)
k (37)
X Zﬂ/,ku(Ql(Cj,Nj +N)) - Q1(2,N))).
j=0
Using the Lipschitz condition, we obtain
~ “h° mi
|Nk+1|s¢o+r(a— N; +1|+Za,k+1|N| (38)
where ¢ = maXOSng{lf\70| + %:"21)““ |Nol}. Also, from Eq. (3.18) in [45] we derive
~ %—O'ho'm k
N <o+ —"23 " bialIN], 39
’ k+1|_n0+ F(O’+1) le i,k 1l /| ( )
where 19 = maxo<x<n{|No| + %|No|} Substituting |N,f+1| from Eq. (39) into
Eq. (38) results in
Nil < oo+ 2 0m (2 7h ”’“Zb 1] Z 151 ), (40)
oo + +) a
k+1l = 00 ( +2 0+1 jk+1 jk+1
T H ) “h°m
1 1 ~
< . +1 1IN, 41
=0p+ T'(o+2) FZI(F(U+1) jk+1 + Ajk 1>| 1| (41)
T hmyCp
1%0,2 o—1
< k+1- N 42
<00t 12 }Zl( + 1) NN, (42)

> T h Mg, 1 kel
C(o+2)

Lemma 1), and % is assumed to be small enough. Using Lemma 2, we have INgs1| < Coo.

where oy = max{¢y + no}, Co2 is a positive constant depending on o (by

which concludes the proof. O

5 Experimental simulations

After finishing all necessary theoretical analysis, we start to perform some experi-
mental calculations to show the correctness of our results. We use Mathematica soft-
ware for performing the number of graphs. For the case of interior equilibrium point
EX(U*,Z*,C*, T*,N*), we use the following set of parameter values: gy = 0.9, 810 =
0.03, B11 = 0.001, Tope = 24,9 = 150,Dyy = 4,40 = 0.2,w = 2.10,¢; = 35,0, = 1.10, A1 =
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Figure 2 Separate plots of all model classes at various fractional-order values o for the case of interior
equilibrium point £4(U*,Z*, C*, T*,N*)

0.66,A = 04,y = 2,8, = 0.2,¢ = 0.0019,8 = 1.024,y = 4,29 = 10.10, T}y = 14.50,6; =
0.1, Ty = 20,b = 1.30, Tmax = 35,N(0) = 10, T(0) = 28,C(0) = 1,Z(0) = 1.2, U(0) = 0.25.
Here we observe that for the case of fractional order o = 1 (when the model behaves
like an integer-order system), the authors of [1] have calculated the value of the interior
equilibrium point £%(0.1023,0.7534, 2.0000, 26.3818, 122.7088) and then, in this case, have
specified the constraints for the solution boundedness, equilibrium point E* stability, and
positivity of the solution. Our target is to explore the dynamics of all model classes with
respect to the interior equilibrium points at different fractional-order values o.

In the set of Fig. 2, we observed the nature of all model classes separately at different
fractional-order values . In subfigure 2(a) the dynamics of density of aquatic population
N is plotted at o = 1,0.95,0.85,0.75. Here we observed that at ¢ = 1 the numerically cal-

culated equilibrium point is satisfied for class N and also at other values of order o, it
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Figure 3 Mixed plots of all model classes at fractional-order values o = 1,0.95,0.85 for the case of interior
equilibrium point £*(U*,Z*,C*, T*,N*)

changed simultaneously. Similarly, subfigure 2(b) shows the average water temperature of
the species (class T), subfigure 2(c) shows the concentration of greenhouse gases (class
C), subfigure 2(d) shows the ozone concentration (class Z), and subfigure 2(e) shows the
dynamics of dissolved oxygen concentration (class ). The simultaneous changes in the
given model classes at particular values of o can be seen from the set of Fig. 3. Overall,
we observed that when the fractional-order o changes, the dynamics of the model, along
with interior equilibrium point changes, justifies the importance of the fractional-order
model.

As investigated above, now we consider the case of boundary equilibrium point E =
(U,Z,C,T,N). In this case, we consider the following parameter values: gy = 0.9, B19 =
0.03, B11 = 0.50, Tope = 24,y = 150, Dy = 4,A9 = 0.7,w = 2.1710,¢; = 3.5,0, = 1.10, A1 =
0.66, A =0.4,y; =1,00p=0.6,¢ =0.11, 8 = 1.024, y =4,z = 10.10, Ty = 14.50,6, = 0.1, Ty =
20,5 = 1.30, Trax = 35,N(0) = 10, T(0) = 28,C(0) = 1,Z(0) = 1.2,L(0) = 0.25. For the
given parameter weights, the value of boundary equilibrium point E = (I, Z,C, T, N) at
fractional-order o = 1 (when the model behaves like an integer-order system given in [1])
is E(0.0474,0.3179,7.0, 30.0216,0). In that integer-order case, the boundary equilibrium
point is linearly asymptotically stable.

For the noninteger-order observations, in the set of Fig. 4, we analyzed the nature of
proposed model classes separately at various fractional-order values . In subfigure 4(a),
the dynamics of density of aquatic population N is plotted at ¢ = 1,0.95,0.85,0.75. Here
we can see that for o = 1, the numerically calculated equilibrium point is satisfied for
population N and that at other values of order o, it changes simultaneously. Following
the same way, subfigure 4(b) specifies the average water temperature of the species (class
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Figure 4 Separate plots of all model classes at various fractional-order values o for the case of boundary

T), subfigure 4(c) demonstrates the concentration of greenhouse gases (class C), subfigure
4(d) shows the ozone concentration (class Z), and subfigure 4(e) shows the dynamics of
dissolved oxygen concentration (class U).

The simultaneous changes in the given model classes at particular value of o can be an-
alyzed from the set of Fig. 5. Overall, we can see that when the fractional-order o changes,
the dynamics of the model changes along with boundary equilibrium point, which satisfies
the role of fractional-order operator.

From the above given experimental analysis we see that the fractional-order dynamics
with memory effects is much stronger than the integer-order dynamics. Here we have
more varieties to understand the structure of the proposed ecosystem dynamics at various

fractional-order values along with different values of equilibrium points. The modified
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Figure 5 Mixed plots of all model classes at fractional-order values o = 1,0.95,0.85 for the case of boundary

Caputo fractional derivative is fully suitable to simulate the novel results with the help of

given fractional-order model.

6 Conclusion

In our study, we have simulated a novel fractional-order mathematical system to study
the prelude of deteriorating quality of water because of greenhouse gases on the popu-
lation of aquatic animals. It has been shown in the given system that greenhouse gases
raise the temperature of water, and because of this reason, the dissolved oxygen level
goes down, and also the rate of circulation of disintegrated oxygen by the species rises,
which causes a decrement in the density of aquatic species. We have used a new general-
ized Caputo-type fractional-order derivative to simulate the given dynamics. Equilibrium
points for the given fractional model have been calculated, and important discussion on
the asymptotic stability of the equilibria of a new autonomous system has been evaluated.
We have reminded some important results to prove the existence of unique solution for
the fractional-order cases. For finding the numerical solution of the given system, we used
a generalized predictor—corrector algorithm in the sense of the new generalized Caputo
derivative and also justified the stability of the technique. To prove the importance and
correctness of the numerically simulated results, we have performed a number of graphs
at different fractional-order values. The given derivative and algorithm work very well to
understand the dynamics of the given model. From this study the effects of greenhouse
gases and hypoxia on the population of aquatic species can be clearly understood with

memory effects. For the future scope, the given ecosystem can be further solved by any
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other fractional-order derivatives. Also, some new mathematical models can be proposed
to simulate the structure of given real-world problems.
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