
ORIGINAL RESEARCH
published: 08 May 2020

doi: 10.3389/fdata.2020.00014

Frontiers in Big Data | www.frontiersin.org 1 May 2020 | Volume 3 | Article 14

Edited by:

Andreas Zuefle,

George Mason University,

United States

Reviewed by:

Ahmed Eldawy,

University of California, Riverside,

United States

Amr Magdy,

University of California, Riverside,

United States

Joon-Seok Kim,

George Mason University,

United States

*Correspondence:

Furqan Baig

furqan.baig@stonybrook.edu

Specialty section:

This article was submitted to

Data Mining and Management,

a section of the journal

Frontiers in Big Data

Received: 16 May 2019

Accepted: 26 March 2020

Published: 08 May 2020

Citation:

Baig F, Gao C, Teng D, Kong J and

Wang F (2020) Accelerating Spatial

Cross-Matching on CPU-GPU Hybrid

Platform With CUDA and OpenACC.

Front. Big Data 3:14.

doi: 10.3389/fdata.2020.00014

Accelerating Spatial Cross-Matching
on CPU-GPU Hybrid Platform With
CUDA and OpenACC
Furqan Baig 1*, Chao Gao 2, Dejun Teng 1, Jun Kong 3 and Fusheng Wang 1,4

1Computer Science Department, Stony Brook University, Stony Brook, NY, United States, 2Computer Science Department,

New York University, New York, NY, United States, 3Mathematics and Statistics Department, Gerogia State University,

Atlanta, Georgia, 4 Biomedical Informatics Department, Stony Brook University, Stony Brook, NY, United States

Spatial cross-matching operation over geospatial polygonal datasets is a highly

compute-intensive yet an essential task to a wide array of real-world applications.

At the same time, modern computing systems are typically equipped with multiple

processing units capable of task parallelization and optimization at various levels. This

mandates for the exploration of novel strategies in the geospatial domain focusing on

efficient utilization of computing resources, such as CPUs and GPUs. In this paper,

we present a CPU-GPU hybrid platform to accelerate the cross-matching operation of

geospatial datasets. We propose a pipeline of geospatial subtasks that are dynamically

scheduled to be executed on either CPU or GPU. To accommodate geospatial datasets

processing on GPU using pixelization approach, we convert the floating point-valued

vertices into integer-valued vertices with an adaptive scaling factor as a function of

the area of minimum bounding box. We present a comparative analysis of GPU

enabled cross-matching algorithm implementation in CUDA and OpenACC accelerated

C++. We test our implementations over Natural Earth Data and our results indicate

that although CUDA based implementations provide better performance, OpenACC

accelerated implementations are more portable and extendable while still providing

considerable performance gain as compared to CPU. We also investigate the effects of

input data size on the IO / computation ratio and note that a larger dataset compensates

for IO overheads associated with GPU computations. Finally, we demonstrate that an

efficient cross-matching comparison can be achieved with a cost-effective GPU.

Keywords: spatial-cross-matching, spatial-join, gpu, gpgpu, cpugpu-hybrid, geospatial, openacc

1. INTRODUCTION

Spatial data generation and availability have exploded over recent years due to the proliferation
of GPS devices, location-based services, high-resolution imaging technologies and volunteered
geographic information (Simion et al., 2012) systems, etc. For instance, as of February 2020,
OpenStreetMap (OSM), one of the most used collaborative geographic data platform, has gathered
about 5.75 billion data points frommore than 6million registered users performing 3.5millionmap
changes per day on average. While geospatial analysis has become essential to help guide decision
making in industrial as well as scientific domains (Wang et al., 2015), the unprecedented scale and

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2020.00014
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2020.00014&domain=pdf&date_stamp=2020-05-08
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://creativecommons.org/licenses/by/4.0/
mailto:furqan.baig@stonybrook.edu
https://doi.org/10.3389/fdata.2020.00014
https://www.frontiersin.org/articles/10.3389/fdata.2020.00014/full
http://loop.frontiersin.org/people/665334/overview
http://loop.frontiersin.org/people/739229/overview
http://loop.frontiersin.org/people/743181/overview

Baig et al. Spatial Cross-Matching With Hybrid CPU-GPU

rate of data generation make it increasingly difficult to design
effective real-world spatial querying solutions.

Geospatial data analysis encompasses a wide set of real-world
applications. For instance, traffic engineering, urban planning,
climate modeling, medical image analysis, etc. all typically
include combinations or variations of spatial proximity queries
between objects, nearest neighbor queries that determine the
datasets closest to the query point, spatial cross-matching queries,
window-based queries, and queries to discover global spatial
pattern, such as finding spatial clusters (Zhang et al., 2003; Aji
et al., 2013; Wang et al., 2015; Liang et al., 2016). One important
spatial query is the spatial cross-matching operation which is
used to compare geospatial objects or data points from multiple
surveys. Spatial cross-matching is essential to many real-world
use cases, such as finding all pairs of datasets with inter-distance
less than a threshold in astronomical catalogs (Jia and Luo, 2016),
and evaluating segmentation algorithms in pathological datasets
(Wang et al., 2012; Baig et al., 2015).

As massive amounts of data are generated, a gap exists
between the efficiency of the analytics system and the amounts
of data that need to be processed. Geospatial data processing
thus is challenged by both data- and compute- intensive
characteristics. Spatial queries are supported by traditional spatial
database management systems (SDBMSs), such as PostGIS
(Committee, 2018), Oracle Spatial (Oracle, 2018), and ArcGIS
(Esri, 2018). These databases support various spatial data types,
such as point, line, and polygon, and operations to compute
distance, intersection, and containment, etc. However, their
capabilities are fairly limited by a lack of effective spatial
partitioning mechanism to balance workloads and the difficulty
to manage computationally intensive operations, such as
geometric computations. Therefore, to mitigate these limitations
they typically rely on parallel computing capabilities to increase
the efficiency of geospatial data processing.

The emergence of MapReduce enables data partitioning and
distribution of partitioned data onto multiple workers and
conduct spatial queries in parallel on commodity hardware (Aji
et al., 2014; Eldawy, 2014; Vo et al., 2014). This greatly increases
the efficiency of the processing system to deal with large spatial
query workloads. Recently, the rapid availability of low cost
but powerful high memory systems has introduced iterative
in-memory processing models in a distributed environment.
Coupled with spatial processing engines, systems (such as
Jia Yu, 2015; You and Zhang, 2015; Xie et al., 2016; Baig
et al., 2017) further increase the efficiency and performance of
scalable distributed spatial data processing. However, while data
partitioning is effective in improving the query throughput, it is
not intended to address extensive geometric computation.

The compute-intensive challenge is well-suited to be handled
by General Purpose Graphical Processing Unit (GPGPU). Recent
works have proposed to utilize GPU in order to enable
high-performance spatial queries for computationally intensive
operations, such as spatial cross-matching or overlay of spatial
objects from images or maps. The GPU provides unprecedented
computing power by exploiting extreme parallelism which
can achieve up to 3× speedup compared to a multi-core
CPU with reasonable porting effort (Prasad et al., 2015). The

most fundamental characteristic of applications suitable for
GPU is being embarrassingly parallel where tasks function
independently. Geospatial data processing that directly falls into
this category includes points in polygon test, forming k clusters
in Geographic Information System (GIS) grid, and computation
of raster images. In general geospatial problems based on regular
grids/pixels are well-suited to be executed in parallel on GPU.
However, contemporary algorithms for geospatial operations,
such as computing intersection and union of polygon pairs
cannot naively be parallelized and require extra efforts to be re-
design according to GPU architecture. For instance, PixelBox
algorithm transforms the vector-based geometry representation
into raster representation, then computes the intersection and
union area of polygonal pairs (Wang et al., 2012).

Despite being able to address the computational aspect of
spatial processing, GPU is not by any means a panacea and
does have its own limitations. These include but are not limited
to data movement cost, lower clock speed, slower memory
access, etc. Additionally, modern CPUs are also able to utilize
parallelism to some extent. Concentrating a particular job
on either of the two resources only would leave the overall
system highly underutilized. Furthermore, specifically in terms
of spatial processing, different stages in the query pipeline have
independent characteristics and dependencies making some of
them suitable for CPU while others more fitting to be executed
on GPU.

Inspired by these observations, our work intends to explore
a hybrid approach by embracing heterogeneous computing
strategy including both CPU andGPU. This can not only increase
the overall resource utilization but also multiply the throughput
of task processing by using multiple CPU threads along with
GPU. In a hybrid platform, an execution engine determines the
device (CPU/GPU) to run the tasks based on factors, such as
potential speedup gain and data movement cost (Aji et al., 2014).
A major challenge of this approach is to determine an efficient
mechanism to schedule the tasks on CPU and/or GPU while
ensuring that all devices are fully utilized.When a GPU is selected
to accelerate data processing, the price of GPU is another factor
that needs to be taken into consideration. GPUs with different
prices can be used in applications corresponding to various use
cases and speedup requirements.

In addition to providing generic GPU algorithms for
spatial cross-matching, in this study we also evaluate various
implementations of the proposed algorithm on CPU and
GPU in CUDA and OpenACC (Nvidia, 2019). Programming
language and interface play an important role in the research
and development life cycle of an algorithm. Algorithms
implemented in well-known generic languages usually tend to
be more portable, easier to maintain and extend. While CUDA,
a specialized parallel computing application programming
interface, has been the de facto (Nvidia) GPU programming
standard for over a decade, OpenACC has emerged as more
suitable for hybrid platforms over the recent years. Unlike
CUDA, OpenACC is a directive-based parallel computing model
developed by NVidia and its partners to simplify programming
of heterogeneous hardware platforms equipped with multiple
processing units, such as CPUs and GPUs. Developers can

Frontiers in Big Data | www.frontiersin.org 2 May 2020 | Volume 3 | Article 14

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Baig et al. Spatial Cross-Matching With Hybrid CPU-GPU

implement their algorithms in well-known languages, such as
C/C++. The same code can then be annotated with OpenACC
compiler directives to be accelerated on GPUs.

Specifically in this study, we identify, explore and evaluate
spatial cross-matching subtasks suitable for acceleration on our
proposed hybrid platform. We implemented several extensions
and variations of PixelBox algorithm to perform these subtasks
efficiently on CPU and GPU. In particular, for GPU, we
investigate different parameters and trade-offs for CUDA based
implementation vs. OpenACC accelerated code. We extend our
previous work (Wang et al., 2012; Aji et al., 2014; Gao et al.,
2018) from the user case of pathological imaging analysis to
enable spatial join query processing of geospatial datasets. There
are several differences between the two types of applications:
the pathology image data considers each polygon with edges
along vertical/horizontal directions and with vertices in integer-
based coordinates. However, in general, geospatial polygons
can have edges with any orientation and their vertices can be
represented by floating point numbers. To accommodate such
geospatial datasets to GPU, we propose an adaptive scaling
strategy as a function of the area of minimum bounding box of
query polygons.

This study is based on the following contributions from our
previous work (Gao et al., 2018).

• We proposed and studied a hybrid CPU-GPU architecture to
accelerate spatial cross-matching queries on a single node.

• We employed an adaptive scaling factor method to convert
geospatial datasets from floating point-valued vertices to
integer-valued vertices to accommodate GPU computation
with pixelization method.

• We investigated the effect of input data size on proposed
system performance including IO and computation time.

• We studied the effect of two different GPUs on the speedup
ratio to process geospatial datasets and demonstrate the
feasibility of computation with a cost-effective GPU.

Extending on above, our main contributions in this study are
summarized as follows

• We study the trade-off between performance and portability
for GPU accelerated code

• We implement CPU-GPU hybrid pipeline in C++ accelerated
by OpenACC

• We implement Pixel based GPU cross-matching algorithm
in CUDA

• We evaluate performance of pixel based algorithm vs.
geometry based algorithm implemented on CPU

• We analyze performance of CUDA vs. OpenACC for pixel
based algorithm on GPU

The rest of the paper is organized as follows. We first present
necessary background and related research in section 2. Section
3 overviews the architectural components of the CPU-GPU
platform along with the updates to the underlying engine. For the
sake of completeness, section 4 highlights spatial cross-matching
workflow identified in our previous work (Gao et al., 2018)
whereas section 5 explains the details of multiple adaptations of
geometry and pixel based spatial cross-matching tasks specifically

implemented for CPU, GPU and Hybrid processing units.
Experimental evaluation with analysis of these implementations
on real world dataset is presented in section 6 which is followed
by conclusion.

2. BACKGROUND AND RELATED WORK

2.1. Spatial Cross Matching
Spatial cross-matching defines the set of operations used to cross-
compare two or more datasets with spatial predicates. In spatial
literature, the operation can be characterized as an extension of
spatial join. Spatial cross-matching essentially is a spatial join
operation followed by computation of spatial features, such as
area of intersection and union area etc. of query spatial objects.

The datasets for spatial join usually cover a wide range
of spatial data types. For example, combining Point-Point
dataset produces Multipoint result, LineString-Polygon
results in Multi-LineString, Point-Polygon data produces
Multi-Point etc. However, this study is mainly focused on
Polygon-Polygon datasets.

The cross-matching query itself relies on several predicates
to work with. For instance, intersects, tests if spatial objects in
datasets intersect with each other, contains tests if one object
is fully inside another, etc. These predicates generally translate
directly to Boolean operators from the domain of polygon overlay.
For instance, AND corresponds to intersects and OR directly
translates to union predicates.

Based on these predicates, further computations are
performed on these spatial objects (mainly polygons in this
study), such as their intersection area, union area, and their
respective ratios. The results from these computations are then
used to define functions, such as the Jaccard similarity coefficient
etc. to perform complex spatial analytics.

2.2. Object Level Parallelism
Spatial cross-matching is a highly compute-intensive operation.
In particular, Traditional Spatial Database Management Systems
(SDBMS) have major limitations on managing and querying
large scale spatial data. A performance profiling of a typical
spatial cross-matching operation on PostGIS (Committee, 2018),
a popular open-source SDBMS, reveals an overwhelming 90% of
the total query execution time was spent in computing spatial
cross-matching predicates (Wang et al., 2012). Additionally,
SDBMSs also suffer from the high overhead of data loading as
another major bottleneck (Özsu and Valduriez, 2011; Aji et al.,
2013).

SDBMSs (Adler, 2001; Committee, 2018; IBM, 2018) can rely
on parallel DBMS architectures to partition data on multiple
disks. This not only allows for parallel query execution but
also tends to reduce the overall I/O bottleneck. However, the
general-purpose spatial algorithms used by underlying libraries
for SDBMSs are typically not designed for parallel execution
(Wang et al., 2012). In addition to that, data skew, introduced
by partitioning, adversely affects parallel query performance.

Map-Reduce based distributed spatial processing systems
(Nishimura et al., 2011; Eldawy, 2014; Jia Yu, 2015; You and
Zhang, 2015; You et al., 2015; Xie et al., 2016; Baig et al., 2017)

Frontiers in Big Data | www.frontiersin.org 3 May 2020 | Volume 3 | Article 14

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Baig et al. Spatial Cross-Matching With Hybrid CPU-GPU

FIGURE 1 | Hybrid CPU/GPU architecture to accelerate geospatial query processing.

are able to scale out and efficiently distribute geospatial queries.
Furthermore, in-memory frameworks built on Apache Spark,
etc., can take advantage of iterative processing model to further
mitigate IO overheads. However, the underlying processing
engines of these systems handle each object independently and
thus can at most parallelize at object level only. While the overall
system performance is commendable in terms of scalability
and parallelism, geometric computation still accounts for the
majority of query cost. For example, despite utilizing distributed
parallelism and iteratively processing geospatial data in memory,
a cross-matching query in SparkGIS (Baig et al., 2017) was
dominated by spatial computations.

2.3. GPU Enabled Intra-Object Level
Parallelism
Recent research in the geospatial paradigm has proposed
algorithms that exploit intra-object parallelism using high
throughput Graphical Processing Units. Puri et al. (2015)
studied traditional CPU and GPU based geometry computation
platforms and concluded that CPU based traditional algorithms
are not suited for performance gain when executed on GPU.
They proposed to develop new spatial computation algorithms
optimized for GPU architecture. Specifically, they concluded that
such algorithms need to accommodate the Single-Instruction
Multiple-Threads (SIMT) paradigm of GPU.

Lo et al. (2011) proposed a parallel rectangle intersection
algorithm and observed a 30× speedup for 10 million rectangles
when executed on GPU. They estimated and assigned at most
T rectangles to each thread block, and each thread compared
one rectangle with all rectangles in the same cell. Similarly,
You et al. (2016) proposed and implemented a GPU accelerated
polyline intersection algorithm specifically designed for spatial
join operation. They assigned a pair of polyline to a GPU thread
block and within each block, they used each thread to check a
pair of line segments intersection. They were able to accelerate
the spatial join operation by 20% as compared to CPU. Using
the LDE framework, they further achieved 22.6× speedup on
their high-end workstation (Zhang et al., 2015b). Yampaka and
Chongstitvatana (2013) implemented overlap and spatial join

operations on GPU over rectangles. Zhang and You (2012)
developed a GPU-based spatial join framework to conduct the
point-in-polygon (PIP) test using both the block and thread-
level parallelisms.

In one of our previous works, we proposed the PixelBox
algorithm for speeding up cross-comparison queries for
pathology images (Wang et al., 2012). This approach first
partitions the Minimum Bounding Box (MBB) of each polygon
pair into boxes at coarser granularity and determines the relative
position of each box with respect to the polygon pair, then for
boxes with a small number of pixels, it reduces the computation
into the pixel-in-polygon test that is well-suited for GPU. It
achieved 18× speedup compared with a parallelized spatial
database approach. Furthermore, we incorporated the PixelBox
algorithm into a MapReduce framework (Aji et al., 2014).

Despite being able to achieve high intra-object level
parallelism, all of the above-mentioned strategies are GPU
centric and thus have to adapt all workloads to suit GPU
inherent patterns, such as lower clock speeds, memory access,
etc. Contrarily, our proposed model takes a hybrid approach to
schedule workloads onCPUs as well as GPUs simultaneously thus
providing higher resource utilization and consequently better
support and performance.

3. CPU-GPU HYBRID SPATIAL QUERY
SYSTEM OVERVIEW

A typical geospatial query can be divided and pipelined
into several sub-phases. In general, these are (1) parsing, (2)
indexing/filtering, and (3) refining. In the first phase, input
data is usually converted from textual or binary format to in-
memory spatial data structures. These spatial data structures are
then used to build spatial index on input datasets. Using the
indexes, spatial data objects from the input are filtered to keep
only operation relevant objects in memory. Finally, the compute
intensive geospatial computation is applied only to relevant
filtered spatial objects to produce query results. In this section,
we explore these phases for spatial cross-matching operation in

Frontiers in Big Data | www.frontiersin.org 4 May 2020 | Volume 3 | Article 14

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Baig et al. Spatial Cross-Matching With Hybrid CPU-GPU

detail and explain how can they be adapted for the proposed
CPU/GPU hybrid architecture.

There are three major logical components of our system;
tasks, scheduler and execution engine. Figure 1 illustrates the
interaction among these components when deployed over a
single node.

3.1. Query Tasks
After reading input spatial data, the system divides the cross-
matching workflow into pipeline of tasks. This pipelining is
essential since it allows different stages of the query operation
to be scheduled and executed on different processing units
available on the underlying compute node. In this particular case,
these processing units include a multi-core CPU and a GPGPU.
The decision to execute a particular task on a processing unit
is dependent on the characteristics of that task. For instance,
parsing, indexing, and filtering tasks although can be parallelized
but have processing dependencies which make them unsuitable
to be executed on GPU. The refiner task, however, allows for
computation at pixel level and thus can easily be parallelized on
GPU cores.

3.2. Scheduler
The hybrid architecture allows for the system to fully exploit all
of the processing units available in a modern compute nodes. As
discussed earlier, a workload is divided into parse, index/filter and
refine tasks. Considering available parallelism, the first two tasks
are always executed on amulti-core CPUwhereas the refiner task,
ideally is processed on the GPU. However, despite being suitable
for GPU parallelism, running a task on GPU have overheads that
need to be justified by the actual processing. For instance, data
needs to be copied from main memory to GPU memory, which
is an extra step in case a particular task needs to be executed on
the GPU. This data copying cost can easily surpass the benefits
of accelerating the task processing through GPU. In such cases,
it would rather make more sense to be content with relatively
limited parallelism provided by a multi-core CPU which can still
outperform the GPU in terms of overall processing time.

The second important component in our system is the
scheduler. As illustrated in Figure 1, the scheduler has two sets
of queues; namely task and thread queues. The scheduler assigns
new incoming tasks to available workers using either first come
first server (FCFS) or priority queue (PQ). For FCFS, parse and
index/filter tasks are always assigned to the CPU threads whereas
the refiner task is either executed on CPU or GPU based on
its position in task queue and the availability of the processing
unit. Alternatively, for PQ, the scheduler assigns a priority to the
incoming tasks based on their potential speedup gain if executed
on GPU. Higher the priority, higher is the chance that the task
will be executed on GPU. Note here that parse and index/filter
tasks are always assigned the lowest priority so that they must
always execute on CPU workers.

3.3. Execution Engine
Finally, the execution engine consists of libraries for actual
spatial computation. In particular, the engine comprises of

two separate libraries to perform the refinement task on CPU
and GPU.

3.3.1. CPU Refiner
We employ the Boost library to conduct refinement of
polygonal pairs on CPU. The boost library conducts the
computation in a serial manner, that is, in each tile, the
polygon set is processed on CPU thread one after another.
Then multiple tiles are executed in parallel on multiple
CPU threads.

3.3.2. GPU Refiner
We extend the PixelBox algorithm to conduct refinement of
polygonal pairs on GPU. First, the information of two polygon
sets is copied from CPUmemory to GPUmemory. Each polygon
pair in a tile is scheduled to a thread block. The MBB of each
polygon pair is partitioned to individual pixels, and the relative
position of each pixel is evaluated against the two polygons.
Then the number of pixels within each of the polygons is
used as a measure of intersection and union area. Finally, the
results are copied back to CPU to evaluate the accuracy of
the computation.

4. CROSS-MATCHING QUERY WORKFLOW

The cross-matching query workflow can broadly be categorized
into three phases; (1) parse, (2) filter, and (3) refine. In
this section, we explain these phases in detail with respect
to their implementation on the proposed hybrid architecture.
Algorithm 1 presents a logical flow of the cross-matching query.
Given two datasets, first, they are loaded from source into
memory. Since both datasets are independent of each other at
this stage, they can be loaded simultaneously in different CPU
threads. The load process also partitions both of the datasets
into tiles according to the user-selected partitionMethod. Once
partitioned and loaded in memory, each pair of tiles from the two
datasets is passed on to the index/filter stage to produce a set of
partial results. Finally, these results are refined using either CPU
or GPU refiner considering scheduling heuristics.

4.1. Input Data Parsing
The steps in the parsing phase are listed in Algorithm 2. Input
geospatial data in our case consists of polygons and is represented
either in textual or binary format. Once loaded into memory,

Algorithm 1: Cross-Matching Query

1: procedure QUERY(dataset1, dataset2, partitionMethod)
2: /* executed in parallel */
3: tiles1 = Load(dataset1, partitionMethod)
4: tiles2 = Load(dataset2, partitionMethod)
5: for each pair (tile1, tile2) in (tiles1, tiles2) do
6: partialResults = IndexFilter(tile1, tile2)
7: Refiner(partialResults)
8: end for

9: end procedure

Frontiers in Big Data | www.frontiersin.org 5 May 2020 | Volume 3 | Article 14

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Baig et al. Spatial Cross-Matching With Hybrid CPU-GPU

the data is partitioned according to user-specified partitioning
method. The details of spatial partitioning are beyond the scope
of this paper. However, for practical purposes, we assume the
partition to be Fixed Grid which divides the input data space
in tiles of equal dimensions. After partitioning each tile is then
processed further to compute tile specific spatial parameters.
Furthermore, for each polygon in the tile number of vertices,
MBB and list of coordinate vertices are computed which then
are aggregated to derive tile specific parameters. One important
observation to note here is that the parsing phase is not optimized
for GPU processing since processing is mostly done at the object
level. Therefore, the opportunity for parallelism is fairly limited.
Due to the this, parsing phase is always scheduled to be executed
on CPU in parallel on multiple available cores.

4.2. Indexing/Filtering
Algorithm 3 lists the pseudo-code for the second phase of the
geospatial cross-matching operation. In order to accelerate query
processing, a local index is created using MBBs of polygons from
every pair of tiles. In our implementation, we created Hilbert R-
Tree index. The index is then used to filter out polygons whose
MBBs intersect with each other. It is worth noting that although
this process consists of geospatial computation, the complexity
of it is relatively simpler since the intersection is computed
for regular bounding boxes only and not for actual polygons.
Consequently, the results returned by this phase are regarded as
partial results containing relevant geospatial objects only. Again,
since this stage also operates at object level, it is better suited to
be parallelized on multiple CPU cores only.

4.3. Result Refinement
The final phase in the cross-matching operation is to refine
the partial results generated in the previous step (section 4.2)

Algorithm 2: Parse Phase

1: procedure PREPARE(tile)
2: Initialize tileConfig
3: /* executed in parallel */
4: for each spatialObject in tile do
5: vCount = countVertices(spatialObject)
6: mbb = extractMBB(spatialObject)
7: List coord = extractCoordinates(spatialObject)
8: tileConfig.addObject(mbb, vCount, coord)
9: end for

10: return tileConfig
11: end procedure

12: procedure LOAD(dataset, partitionMethod)
13: Read textual spatial data in memory
14: Initialize List tileConfigs
15: List tiles = partition(dataset, partitionMethod)
16: for each tile in tiles do
17: tileConfigs.add(Prepare(tile))
18: end for

19: return tileConfigs
20: end procedure

and produce polygons that actually intersect. In addition to just
returning intersecting polygons, this phase also computes the
area of intersection of pairs of intersecting polygons as noted in
Algorithm 4. The scheduler discussed in section 3.2, estimates
parameters, such as the number of polygons, geospatial data
size in partial results and data movement cost from CPU main
memory to GPU memory. Based on these parameters, it comes
up with a priority value assigned to the incoming task which
is then used to determine whether to execute the refiner phase
on CPU cores or on GPU. In case the priority values are low
based on speedup estimations, the refiner task is simply executed
linearly on CPU for each pair of polygons from partial results
set. However, if the potential estimated speedup is considerable,
the refiner task is executed on GPU using an extension of the
PixelBox algorithm (Wang et al., 2012).

5. GENERALIZED SPATIAL
CROSS-MATCHING ALGORITHM

5.1. PixelBox Algorithm
PixelBox is a GPU algorithm that computes areas of intersection
and union for a set of input polygon pairs. The algorithm first
pixelizes the minimum bounding box of each polygon pair and
utilizes ray casting method to determine every pixel’s position
relative to input polygons. Since computation at every pixel
is independent of each other, the method is very well-suited
to be parallelized on GPU threads. However, this also means
that the computation complexity of the algorithm increases
dramatically with higher resolution images having more number
of pixels. To reduce this complexity and make the algorithm
more scalable, PixelBox combines the pixelization approach with
sampling box method. Sampling Box exploits the spatial locality
characteristics of pixels to compute areas of polygon intersection
and union region by region instead of pixel by pixel. This allows
the PixelBox algorithm to perform much more efficiently and
improves overall scalability.

The original PixelBox algorithm was designed to operate
specifically on spatial objects identified by medical analytics

Algorithm 3: Index/Filter Phase

1: procedure INDEXFILTER(tile1, tile2)
2: /* create local Hilbert R-Tree index */
3: localIndex = tile2.createIndex()
4: Initialize List results
5: /* filter spatial objects whose MBBs intersect */
6: for each object1 in tile1 do
7: /* use index to get qualifying objects */
8: for each qualifying object2 from tile2 do
9: ifMBBs of object1 and object2 intersect then
10: append both to results
11: end if

12: end for

13: end for

14: return results
15: end procedure

Frontiers in Big Data | www.frontiersin.org 6 May 2020 | Volume 3 | Article 14

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Baig et al. Spatial Cross-Matching With Hybrid CPU-GPU

Algorithm 4: Refiner Phase

1: procedure CPUREFINER(partialResults)
2: Initialize List results
3: for each pair (obj1,obj2) in partialResults do
4: if obj1.intersects(obj2) then
5: results.append(obj1, obj2)
6: end if

7: end for

8: return results
9: end procedure

10: procedure GPUREFINER(partialResults)
11: copyFromCpuToGpuMem(partialResults)
12: /* executed in parallel separate thread blocks */
13: for each pair (obj1,obj2) in partialResults do
14: MBB partitioned to each individual pixel
15: Relative position of each pixel w.r.t (obj1,obj2)
16: results = Numberofpixelsineachobj
17: end for

18: copyFromGpuToCpuMem(results)
19: end procedure

20: procedure REFINER(partialResults)
21: /* estimate parameters for scheduling */
22: params = estimateParameters(partialResults)
23: executor = evaluateExecutor(params)
24: if executor == CPU then

25: return CPURfiner(partialResults)
26: else

27: return GPURfiner(partialResults)
28: end if

29: end procedure

in pathological image datasets (Wang et al., 2012). Polygons
represented in such datasets were assumed to have edges along
horizontal/vertical directions only. Additionally, the algorithm
was designed to handle polygons with vertices represented
in integer-based coordinates only. Consequently, the PixelBox
algorithm could not be applied directly to real-world datasets
containing polygons having edges with any orientation and
vertices represented by floating-point numbers.

5.2. Geo-PixelBox Workflow
In order to generalize the PixelBox algorithm for geospatial
datasets, we created a multi-step workflow termed as Geo-
PixelBox. Before processing the data on GPU, we converted
the original geospatial polygon datasets to integer-valued vertex
coordinates. This is achieved by multiplying the original
minimum bounding rectangle of each polygon pair by a scaling
factor K, which is varied depending on the floating point-valued
area of the original MBB. Figure 2 illustrates this approximation
process. This allows us to compute and compare the intersection
and union areas on GPU. However, it must be noted that there
is a loss of accuracy during the data conversion process. For each
polygon pair, we created a set of values for the factor K and keep
K as small as possible while maintaining the error of computation
within 5%.

The left, right, bottom and top boundaries of a minimum
bounding rectangle are used to compute the originalMBB area. A
new boundary is formed by rounding down the lower boundaries
and rounding up the upper boundaries by multiplying the factor
K. Assume each pixel occupies unit area, then the number of
pixels within the new boundary accounts for the polygon area
after scaling. An error of conversion is evaluated between the

FIGURE 2 | Approximation of geospatial object with a scaling factor k to convert vector based expression to pixel based expression.

Frontiers in Big Data | www.frontiersin.org 7 May 2020 | Volume 3 | Article 14

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Baig et al. Spatial Cross-Matching With Hybrid CPU-GPU

original area and the new area. We set a threshold of error as 0.05
and compute the error using formula

error =
abs(

areascaling
K2 − areaoriginal)

areaoriginal
(1)

For qualified polygon pairs, we determine the relative position of
each pixel at location (x,y) with the two polygonal pairs, using
formula (for an upward edge)

x ≤ xs[i]+ (y− ys[i]).
xs[i+ 1]− xs[i]

ys[i+ 1]− ys[i]
(2)

y ≥ ys[i], y ≤ ys[i+ 1] (3)

where (xs [i], ys [i]) and (xs [i+1], ys [i+1]) are two vertices of
each edge of a polygon. Finally, determine the area of intersection
and union by counting number of pixels falling into each of these
two polygons.

5.3. Implementation
5.3.1. Geometry Based Implementation
Most of the available geospatial processing libraries operate
on geometries of objects since they primarily utilize CPU
and its comparatively limited parallelism. We used Geometry
Engine Open Source (GEOS) (OSGeo, 2019) library which
provides implementations of fundamental geospatial algorithms
conforming to Open Geospatial Consortium (OGC, 2019). In
particular for spatial cross matching, GEOS usually issues
repeated Point-in-Polygon queries against the fixed query
polygon to generate results satisfying intersects and contains
predicates. GEOS utilizes implementations of Fast Point-in-
Polygon along with spatial indexes, such asQuadTree and STRtree
to optimize the query performance.

5.3.2. Pixel Based CUDA Implementation
PixelBox (Wang et al., 2012) provides a sophisticated native
CUDA based implementation designed to operate on Nvidia
GPUs. We extend the same algorithm with modifications
discussed in section 5.2. We first scale MBRs of query polygons
followed by pixelizing the polygon space comprised of combined
Minimum Bounding Rectangle of query polygons. Pixelization
allows for determining each pixel’s relative position totally
independent of each other. Then using sampling boxes technique,
we reduce the processing space and thus the total compute
intensity. Finally, we combine the pixelization and sampling box
approaches to efficiently compute cross-matching union and area
of intersection of query polygons.

5.3.3. Pixel Based OpenACC Implementation
Finally, we implemented the Geo-PixelBox in c++ primarily to
experiment with OpenACC. However, since OpenACC is more
portable than CUDA, switching on/off a single parameter i.e., -acc
to the PGI compiler, we can have the same piece of code running
on CPU and GPU.

We implemented the same pixel-based algorithm, described
in section 5.3.2, in C++. In essence, all pixels of minimum
bounding rectangle were compared against the boundaries of
intersecting polygon. Then we applied OpenACC compiler
directives to accelerate the code for GPU execution. In particular,
for OpenACC accelerated GPU execution, there were two levels
of parallelism; first on polygon pairs level achieved by multiple
gangs, and second is on polygon pixel level achieved by vectors.

6. EXPERIMENTAL EVALUATION

6.1. Experimental Setup
We used a single node having access to a multi-core CPU
and two GPUs. The multi-core CPU was able to support up
to 16 parallel threads. The node had GeForce GTX 750 and
Tesla K80 GPUs. The former GPU had 640 cores, 5 streaming
multiprocessors (SM), 2 GB GDDR 5 memory with 86.4 GB/s
memory bandwidth, 256 KB register per SM, and 64 KB shared
memory per SM. On the other hand, Tesla K80 had 4,992
cores, 26 SMs, 24 GB GDDR5 memory with 480 GB/s memory
bandwidth. At the time of writing, the price for GTX 750 is $150
and K80 is $5,000.

In order to compile pixel based c++ code accelerated by
openacc, we used PGI compiler version 18.10-1 on a 64-bit
target machine running x86-64 CentOS. We configured openacc
with 32 gangs, 1 worker and vector length of 1,024. All of the
experimental details are summarized in Table 1.

6.2. Experiment Design
6.2.1. Dataset
We applied the pixelization method to geospatial vector dataset
from Natural Earth Data (Natural Earth, 2018) in ESRI shapefile
format with UTF-8 character encoding. We used two datasets
in shapefile format containing polygon representation of U.S.A
state boundaries and urban areas in the United States. Each
of these files contained vector data at the scale of 1:10 million
with 1 inch representing 158 miles. The data was replicated
multiple times to stress test our system with a larger number of
intersecting polygons.

6.2.2. Scaling Factor and Error Rate
To find the optimal scaling factor, we varied the scaling factor k
from the set which ends up with a different number of pixels. We
multiplied the coordinates in original input data by the estimated
scaling factor k to achieve the integer representation of geospatial
polygon sets. The selection of k depends on the area of each
polygon. Furthermore, the value of k determines the number of
pixels after approximation, which is directly correlated to GPU
performance. In our experiments, k’s value was set to 50, 100, and
150, respectively.

In order to study the effect of scaling factor on error rate,
we selected three; smallest, medium and largest, represented
polygons from our dataset. The areas of these polygons
were computed in inches2 using latitude and longitudes of
polygon vertices. These polygons with areas (a) 0.012631360,
(b) 0.050525440, (c) 0.2021017588 were used to derive the
relationship between error vs. scaling factor, and the number of

Frontiers in Big Data | www.frontiersin.org 8 May 2020 | Volume 3 | Article 14

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Baig et al. Spatial Cross-Matching With Hybrid CPU-GPU

TABLE 1 | Summary of experimental setup.

GTX 750 Tesla K80 OpenACC Configuration

of cores 640 4,992 # of gangs 32

Streaming multiprocessors 5 26 # of workers 1

Memory (GDDR5) 2GB 24GB Vector length 1,024

Memory bandwidth (GB/s) 86.4 480 Compiler PGI

Cost ($) 150 5,000 PGI version pgc++ 18.10-1 64-bit

TABLE 2 | Summary of terminologies used in evaluation.

Implementation Description

CPU C++ geometry based implementation

Geo-PixelBox-CPU C++ pixel based implementation

Geo-PixelBox-OpenACC C++ pixel based implementation accelerated

by OpenACC

GPU, Geo-PixelBox-CUDA CUDA pixel based implementation

pixels vs. scaling factor. 9 decimal digits are considered here for
the coordinates of vertices. Using the natural earth data as input,
we investigated the relationship of accuracy and number of pixels.
With up to 5% error in area computation, less number of pixels
is desired.

6.2.3. Refinement Task Implementations
We evaluated several implementations of the refinement task
on CPU and GPU. For CPU, the default implementation was
based on boost and geos library performing geometry based
cross-matching task. All of the following evaluation results
mentioning CPU refer to this default version unless noted
otherwise. Since OpenACC allowed accelerating C++ code for
GPU, we implemented Geo-PixelBox in C++ as well. The same
code was executed on CPU when appropriate compiler directives
were disabled. This version is referred to as Geo-PixelBox-CPU
throughout the evaluation.

6.2.4. GPU Accelerated Implementations
For GTX750 and K80 GPUs, we used two implementations of
Geo-PixelBox algorithm, i.e., Geo-PixelBox implemented in C++
and accelerated for GPUs using OpenACC and Geo-PixelBox
implemented in CUDA. During our evaluation, these are referred
to as Geo-PixelBox-OpenACC and GeoPixelBox-CUDA. Table 2
summarizes these terminologies for reference. The IO time was
excluded from timing results unless noted otherwise. For both
of the GPUs, the number of block was selected as N

10 + 1, where
N is the number of polygon pairs to be processed. Similarly, the
number of threads per block was selected as 1,024 for both GPUs.

In order to evaluate the performance and efficiency of CPU-
GPU hybrid architecture, we employed several combinations of
processing units. For a baseline comparison, we used a single-
threaded CPU to execute all the cross-matching operation tasks.
We then compared the performance of different combinations
of 1GPU, 1CPU-GPU, 4CPU-GPU, and 16CPU-GPU approaches
for several datasets. These datasets mostly consisted of polygon

FIGURE 3 | Time spent in refinement phase by GPUs and a single threaded

CPU along with their respective speedup.

pairs within a single tile ranging from 10,000 to 280,00 pairs. To
study the performance, we computed speedup as a ratio between i
number of CPU threads plus GPU and i number of CPU threads,
where i = 14 and 6

Speedup =
TiCPU

TiCPU+GPU
(4)

One important consideration resulting from partitioning is
data skew which is inherent to geospatial datasets. Having data
skew, the performance of the overall system is only as good as
the slowest worker having most of the data. This is a well-studied
field in literature and thus is beyond the scope of this study. In
order to mitigate the effects of data skew among partitioned tiles,
we generated synthetic data by duplicating the tile with 280,000
polygon pairs. These number of tiles were varied from 20, 50, 100,
200 to 400 tiles for different experiments.

Finally, we also measured the effects of two scheduling
methods; First Come First Server (FCFS) and Priority Queue
(PQ), in terms of speedup ratio.

6.3. GPU Cost Effectiveness
After input data was converted into pixel representation, we
employed twoGPUs to compute the time of refinement of a single
tile and running time of the same input data on CPU using boost
library (Figure 3). The CPU running time was 5,799 ms. For the

Frontiers in Big Data | www.frontiersin.org 9 May 2020 | Volume 3 | Article 14

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Baig et al. Spatial Cross-Matching With Hybrid CPU-GPU

FIGURE 4 | Comparison of refinement phase executions on single threaded

CPU vs. Hybrid (1CPU-GPU) with respect to increasing number of polygons,

i.e., spatial computation.

same refinement task GPUs GTX750 and K80 took 561 and 401
ms, respectively. The corresponding speedup ratio was 10× for
GTX 750, and 14× for K80.

As noted earlier, the cost of GTX750 is ∼$150 whereas K80
costs around $5,000. This means that we achieved 1.4× speedup
while paying about 33×more. Therefore, we may safely conclude
that GTX750 is much more cost effective than K80 for the dataset
and geospatial operation in consideration.

6.4. CPU vs. GPU Speedup Baseline
In order to come up with a baseline for our evaluation, we
compared the running times of refinement task on a CPU with
single thread vs. running time of the same task on GPU. Figure 4
shows this execution time comparison of refinement task for
increasing dataset size. As the number of intersecting polygons
increased from 10,000 to 280,000, the time of refinement on
a single CPU with 1-thread increased from 239 to 6,647 ms.
Alternatively, for the same operation on the same dataset for
GTX750 the time increased from 22 to 602 ms. Overall the
speedup ratio varied between 10× to 11× for different number
of intersecting polygons in a single tile.

6.5. Geo-PixelBox Scaling Accuracy
As stated in section 5, we have to convert geospatial polygons
with floating point representation into integer representation to
use the PixelBox algorithm for GPU enabled geospatial cross-
matching. We tested the accuracy of approximation to enable
GPU-based geospatial cross-matching operation. The error of
approximation and resulting number of pixels for a geospatial
polygon were evaluated with respect to different scaling factors k.

The polygon size was represented by its area Ap computed
based on map coordinates. A polygon size on the order of
Ap ≈ 0.01 has a 14% error after approximating to integer-based
coordinates with scaling factor k = 50 (Figure 5). The scaling

error was continuously reduced to <2% when k was increased to
150. A relatively larger polygon with area Ap ≈ 0.05 can achieve
4% error with k = 50. The largest polygon where Ap ≈ 0.2
shows a similar result to Ap ≈ 0.05. In addition, the number of
pixels vary with respect to different scaling factor k. The polygon
with Ap ≈ 0.01 has <500 pixels when k = 150. However, under
same k, the larger polygons Ap ≈ 0.05 results in 1,500 pixels and
Ap ≈ 0.2 results in 4,500 pixels.

6.6. Geometry vs. Pixel Based Cross
Matching on CPU
In section 6.4, we’ve discussed the baseline performance of
geometry based CPU vs. pixel based CUDA implementation on
GPU. To extend this further, we now analyze the performance
of pixel based cross-matching algorithms on CPU as well
as when accelerated by OpenACC. Figure 6, illustrates the
results affirming the hypothesis that pixel based method is
not suitable to be parallelized by CPU. For all experiment
datasets, geometry based implementation always outperformed
pixel based implementation when cross-matching operation was
executed on CPU.

6.7. Pixel Based Cross Matching on CPU
vs. GPU
Figure 7 shows the execution time and speedup when Geo-
PixelBox was executed on CPU against when it was accelerated
using OpenACC to be executed on GPU. These results again
support the fact that the performance of pixel based cross-
matching is proportional to the availability of parallelism in the
processing unit.

6.8. Geometry Based Cross Matching on
CPU vs. OpenACC Accelerated Pixel
Based Cross Matching on GPU
Results from sections 6.6 and 6.7 clearly establish the fact
that pixel based cross-matching is a much better fit to be
parallelized on GPU as compared to CPU having limited
parallelism. However, it must be noted, that geometry based
cross-matching when executed on CPU does have considerable
performance results. While results from section 6.4 unarguably
show pixel based cross-matching implemented in CUDA to
clearly outperform geometry based cross-matching, in this
section we evaluate the performance of OpenACC accelerated
pixel based cross-matching.

Figure 8 shows that accelerating pixel based cross-matching
with OpenACC does not yield as high speedup as compared
to CUDA. In fact, for smaller datasets, geometry based cross-
matching outperforms pixel based OpenACC accelerated GPU
cross-matching. Although, this can very well be associated with
IO overheads as discussed in section 6.9, it can safely be assumed
that for geospatial datasets in particular, and in general GPU code
implemented in CUDA gives more performance gain than GPU
code accelerated with OpenACC.

Frontiers in Big Data | www.frontiersin.org 10 May 2020 | Volume 3 | Article 14

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Baig et al. Spatial Cross-Matching With Hybrid CPU-GPU

FIGURE 5 | Accuracy of approximation to enable GPU based cross matching operation with respect to scaling factor k.

FIGURE 6 | Geometry based cross matching vs. Pixel based cross matching

operation when executed on CPU.

6.9. Data Copying Overheads for GPU
Computations
As mentioned in section 3.2, the cost of copying data from main
memory to GPUmemory can dominate the total processing time.
This can reduce or in some cases surpass the benefits achieved
from accelerating the task through GPU. To study the effects of
data copying cost we compared the percentage time spent in IO
by a single CPU thread and GPU for the refinement task.

In our experiments, the total time to perform refinement task
using 1CPU and 1CPU-1GPU was almost similar ranging from
0.8 to 1 s. However, although CPU-GPU was able to accelerate
the processing and cut on the computation, it spent considerably
more time in IO as compared to CPU. Figure 9 shows the ratio

FIGURE 7 | Pixel based cross matching executed on CPU vs. on GPU

accelerated by OpenACC.

of IO vs. total running time. By using 1 CPU, the IO took 14%
of the total time when there were 20 tiles to process. This value
reduced to <1% when 400 tiles were processed. However, for
CPU-GPU, the IO/total ratio was 60% when there were only 20
tiles. This value reduced to 11% with 400 tiles were processed.
This comparison clearly illustrates that careful consideration is
needed in terms of dataset size and potential speedup when
accelerating jobs on GPU.

6.10. CPU-GPU Hybrid Geospatial
Cross-Matching
Benchmarking GPU accelerated tasks with a single threaded CPU
is not fair by any means. Modern CPUs are very capable of
parallelizing tasks although relatively at a limited scale. For a
fair comparison, we extended our 1CPU-1GPU hybrid approach

Frontiers in Big Data | www.frontiersin.org 11 May 2020 | Volume 3 | Article 14

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Baig et al. Spatial Cross-Matching With Hybrid CPU-GPU

FIGURE 8 | Geometry based cross matching executed on CPU vs. Pixel

based cross matching on GPU accelerated by OpenACC.

FIGURE 9 | Percentage of time spent in IO of 1CPU/GPU and single threaded

CPU with increasing number of polygon tiles.

to 4CPU-GPU and 16CPU-GPU. Figure 10 show the effects
of adding more CPUs to the computation. Since parsing and
index/filtering tasks are always scheduled on CPU, more CPUs
meant more workers thus further accelerating these stages. In
conjunction with the refiner task running on GPU, the maximum
speedup achieved was 17× when 400 tiles were processed using
16CPU-GPU.

6.11. Scheduling Methods
Figure 11 shows the speedup of hybrid 1CPU-GPU with respect
to a single threaded CPU for two different scheduling methods.
Interestingly, the results demonstrate that both PQ and FCFS

FIGURE 10 | Speedup of 1CPU/GPU, 4CPU/GPU, 16 CPU/GPU with respect

to single threaded CPU with increasing number of polygon tiles.

FIGURE 11 | Speedup of 1CPU/GPU under two scheduling methods (Priority

Queue and FCFS) with respect to a single threaded CPU with number of

polygon tiles.

scheduling methods achieve similar speedup ratios when the
number of tiles increased from 20 to 400.

7. CONCLUSIONS

Spatial data analysis is inherently compute intensive making it
a good candidate for acceleration via parallel processing units,
such as GPU (Wang et al., 2015). Recent works in this domain
(Zhang et al., 2015a; Liang et al., 2016) have tried addressing this
problem but are mainly limited to medical datasets for health
care analytics. In this study, we extend our proposed CPU-GPU

Frontiers in Big Data | www.frontiersin.org 12 May 2020 | Volume 3 | Article 14

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Baig et al. Spatial Cross-Matching With Hybrid CPU-GPU

hybrid approach (Gao et al., 2018) to perform spatial cross-
matching on geospatial datasets focusing on potability, high
resource utilization, and performance.

Our proposed workflow creates a pipeline of subtasks for
cross-matching operation. These subtasks are then dynamically
scheduled on CPU or GPU and are able to utilize parallelism at
both inter- as well as intra-object level. By distributing multiple
polygon pairs to different thread blocks, we were able to achieve
object level parallelism. At the same time, intra-object parallelism
was achieved by distributing pixels onto multiple GPU threads.
We extensively studied the effects of various systems parameters
including data size, speedup, approximation error, and cost
effectiveness.

By implementing Geo-PixelBox algorithm in CUDA as well as
in OpenACC accelerated C++, we studied the trade-off between
performance and portability for GPU implementations. While
CUDA based implementation achieved the best performance in
terms of job execution time, OpenACC accelerated C++ code was
definitely more portable and extendable. In particular for cross-
matching operation, the former was able to achieve up to 14×
speedup whereas the later achieved about 2× speedup compared
to CPU based implementation.

In terms of the dataset, we studied the effects of data
copying overheads from main memory to GPU memory when
parallelizing geospatial cross-matching operation over GPU. As
expected, our experiments indicate that the high ratio of IO vs.
computation for CPU-GPU approach should be mitigated by
increasing dataset size to achieve better performance. Similarly,
our results indicated that the number of polygon pairs within
a single tile does not affect the speedup ratio. As more polygon
pairs exist in a single tile, the computation time for both
CPU and GPU was increased and a similar speedup ratio
was observed.

Finally, we studied the performance of our system when
proposed pipeline was executed on combined multi-threaded
CPU and GPU. Our results show that a similar speedup ratio
was achieved when a combination of CPU threads and GPU
were employed. This is because GPU is more efficient to perform
refinement operation (10× speedup), and therefore can take
more tasks than CPU threads. This fact was further confirmed
by the scheduling methods, where the priority queue and First-
Come-First-Serve demonstrated similar results.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

FB and FW contributed to the major design and conception
of the work. JK provided the initial data set and insights for
the project. CG implemented and carried out experiments and
provided interpretation and analysis for the work along with FB
and DT. FB wrote the manuscript with support from CG and DT.
DT contribution helped in improving overall intellectual value of
the work. FB, CG, and DT approved the final manuscript under
FW supervision.

ACKNOWLEDGMENTS

This journal paper is a substantial extension from our work
previously presented in IEEE Big Data Conference Gao et al.
(2018). This research study is supported in part by grants from
National Science Foundation ACI 1443054, IIS 1350885 and
NCI U01CA242936.

REFERENCES

Adler, D. W. (2001). “Db2 spatial extender-spatial data within the RDBMS,” in
VLDB (Roma), 687–690.

Aji, A., Teodoro, G., andWang, F. (2014). “Haggis: turbocharge amapreduce based
spatial data warehousing system with GPU engine,” in Proceedings of the 3rd

ACM SIGSPATIAL InternationalWorkshop on Analytics for Big Geospatial Data

(Dallas, TX: ACM), 15–20.
Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., et al. (2013). Hadoop

GIS: a high performance spatial data warehousing system over mapreduce.
Proceedings VLDB Endowment 6, 1009–1020. doi: 10.14778/2536222.2536227

Baig, F., Mehrotra, M., Vo, H., Wang, F., Saltz, J., and Kurc, T. (2015). “Sparkgis:
efficient comparison and evaluation of algorithm results in tissue image analysis
studies,” in Biomedical Data Management and Graph Online Querying (Kohala:
Springer), 134–146.

Baig, F., Vo, H., Kurc, T., Saltz, J., and Wang, F. (2017). “Sparkgis: resource aware
efficient in-memory spatial query processing,” in Proceedings of the 25th ACM

SIGSPATIAL International Conference on Advances in Geographic Information

Systems (Redondo Beach, CA: ACM), 28.
Committee, P. P. S. (2018). Spatial and Geographic Objects for PostgreSQL.

Available online at: https://postgis.net (accessed September 24, 2018).
Eldawy, A. (2014). “Spatialhadoop: towards flexible and scalable spatial processing

using mapreduce,” in Proceedings of the 2014 SIGMOD PhD Symposium,

SIGMOD’14 PhD Symposium (New York, NY: ACM), 46–50.
Esri (2018). Arcgis. Available online at: https://www.arcgis.com/index.html

(accessed September 24, 2018).

Gao, C., Baig, F., Vo, H., Zhu, Y., and Wang, F. (2018). “Accelerating cross-
matching operation of geospatial datasets using a CPU-GPU hybrid platform,”
in IEEE International Conference on Big Data, Big Data 2018 (Seattle, WA),
3402–3411.

IBM (2018). IBM DB2 Spatial Extender. Available online at: https://www.ibm.
com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.spatial.
topics.doc/doc/csbp1001.html (accessed September 24, 2018).

Jia, X., and Luo, Q. (2016). “Multi-assignment single joins for parallel cross-match
of astronomic catalogs on heterogeneous clusters,” in Proceedings of the 28th

International Conference on Scientific and Statistical Database Management

(Budapest: ACM), 12.
Jia, Y., and Mohamed Sarwat, J. W. (2015). “Geospark: a cluster computing

framework for processing large-scale spatial data,” in Proceedings of the 2015

International Conference on Advances in Geographic Information Systems, ACM

SIGSPATIAL 2015. Seattle, WA.
Liang, Y., Vo, H., Aji, A., Kong, J., and Wang, F. (2016). “Scalable

3d spatial queries for analytical pathology imaging with mapreduce,”
in Proceedings of the 24th ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems (San Fransisco,
CA: ACM), 52.

Lo, S.-H., Lee, C.-R., Chung, Y.-C., and Chung, I.-H. (2011). “A parallel rectangle
intersection algorithm on GPU+ CPU,” in 2011 11th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGrid) (Newport Beach,
CA: IEEE), 43–52.

Natural Earth (2018). Natural Earth Data. Available online at: https://www.
naturalearthdata.com (accessed September 24, 2018).

Frontiers in Big Data | www.frontiersin.org 13 May 2020 | Volume 3 | Article 14

https://doi.org/10.14778/2536222.2536227
https://postgis.net
https://www.arcgis.com/index.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.spatial.topics.doc/doc/csbp1001.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.spatial.topics.doc/doc/csbp1001.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.spatial.topics.doc/doc/csbp1001.html
https://www.naturalearthdata.com
https://www.naturalearthdata.com
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Baig et al. Spatial Cross-Matching With Hybrid CPU-GPU

Nishimura, S., Das, S., Agrawal, D., and Abbadi, A. E. (2011). “Md-hbase: a
scalable multi-dimensional data infrastructure for location aware services,”
in Proceedings of the 2011 IEEE 12th International Conference on Mobile

Data Management–Volume 01, MDM ’11 (Washington, DC: IEEE Computer
Society), 7–16.

Nvidia (2019). Openacc More Science Less Programming. Available online at:
https://www.openacc.org (accessed May 15, 2019).

OGC (2019). Open Geospatial Consortium. Available online at: http://www.
opengeospatial.org (accessed May 13, 2019).

Oracle (2018). Oracle Spatial. Available online at: https://www.oracle.com/
technetwork/database/options/spatialandgraph/downloads/index.html
(accessed September 24, 2018).

OSGeo (2019). Geometry Engine Open Source. Available online at: https://trac.
osgeo.org/geos (accessed May 13, 2019).

Özsu, M. T., and Valduriez, P. (2011). Principles of Distributed Database Systems.
Springer Science & Business Media.

Prasad, S. K., McDermott, M., Puri, S., Shah, D., Aghajarian, D., Shekhar, S.,
et al. (2015). A vision for GPU-accelerated parallel computation on geo-spatial
datasets. SIGSPATIAL Special 6, 19–26. doi: 10.1145/2766196.2766200

Puri, S., Agarwal, D., and Prasad, S. K. (2015). “Polygonal overlay computation on
cloud, hadoop, and MPI,” in Encyclopedia of GIS, 1–9.

Simion, B., Ray, S., and Brown, A. D. (2012). “Surveying the landscape: an in-depth
analysis of spatial database workloads,” in Proceedings of the 20th International

Conference on Advances in Geographic Information Systems (Redondo Beach,
CA: ACM), 376–385.

Vo, H., Aji, A., and Wang, F. (2014). “Sato: a spatial data partitioning framework
for scalable query processing,” in Proceedings of the 22nd ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems

(Dallas, TX: ACM), 545–548.
Wang, F., Aji, A., and Vo, H. (2015). High performance spatial queries for

spatial big data: from medical imaging to GIS. SIGSPATIAL Special 6, 11–18.
doi: 10.1145/2766196.2766199

Wang, K., Huai, Y., Lee, R., Wang, F., Zhang, X., and Saltz, J. H.
(2012). Accelerating pathology image data cross-comparison on cpu-
gpu hybrid systems. Proceedings VLDB Endowment 5, 1543–1554.
doi: 10.14778/2350229.2350268

Xie, D., Li, F., Yao, B., Li, G., Zhou, L., and Guo, M. (2016). “Simba: efficient in-
memory spatial analytics,” in Proceedings of 35th ACM SIGMOD International

Conference on Management of Data, SIGMOD’16 (San Fransisco, CA).

Yampaka, T., and Chongstitvatana, P. (2013). Spatial join with R-tree on graphics
processing units. Int. J. Appl. Sci. Technol. 5, 1–7.

You, S., and Zhang, J. (2015). Large-Scale Spatial Join Query Processing in Cloud.
Technical report, City University of New York.

You, S., Zhang, J., and Gruenwald, L. (2015). “Large-scale spatial join query
processing in cloud,” in IEEE CloudDM Workshop. Available online at: http://
www-cs.ccny.cuny.edu/~jzhang/papers/spatial_cc_tr.pdf

You, S., Zhang, J., and Gruenwald, L. (2016). “High-performance
polyline intersection based spatial join on GPU-accelerated clusters,”
in Proceedings of the 5th ACM SIGSPATIAL International Workshop

on Analytics for Big Geospatial Data (San Fransisco, CA: ACM),
42–49.

Zhang, J., and You, S. (2012). “Speeding up large-scale point-in-polygon test based
spatial join on GPUs,” in Proceedings of the 1st ACM SIGSPATIAL International

Workshop on Analytics for Big Geospatial Data (Redondo Beach, CA: ACM),
23–32.

Zhang, J., You, S., and Gruenwald, L. (2015a). Large-scale spatial data processing
on GPUs and GPU-accelerated clusters. SIGSPATIAL Special 6, 27–34.
doi: 10.1145/2766196.2766201

Zhang, J., You, S., and Gruenwald, L. (2015b). “Lightweight distributed execution
engine for large-scale spatial join query processing,” in 2015 IEEE International

Congress on Big Data (BigData Congress) (New York City, NY: IEEE),
150–157.

Zhang, J., Zhu, M., Papadias, D., Tao, Y., and Lee, D. L. (2003). “Location-
based spatial queries,” in Proceedings of the 2003 ACM SIGMOD

International Conference on Management of data (San Diego, CA: ACM),
443–454.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Baig, Gao, Teng, Kong and Wang. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Big Data | www.frontiersin.org 14 May 2020 | Volume 3 | Article 14

https://www.openacc.org
http://www.opengeospatial.org
http://www.opengeospatial.org
https://www.oracle.com/technetwork/database/options/spatialandgraph/downloads/index.html
https://www.oracle.com/technetwork/database/options/spatialandgraph/downloads/index.html
https://trac.osgeo.org/geos
https://trac.osgeo.org/geos
https://doi.org/10.1145/2766196.2766200
https://doi.org/10.1145/2766196.2766199
https://doi.org/10.14778/2350229.2350268
http://www-cs.ccny.cuny.edu/~jzhang/papers/spatial_cc_tr.pdf
http://www-cs.ccny.cuny.edu/~jzhang/papers/spatial_cc_tr.pdf
https://doi.org/10.1145/2766196.2766201
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Accelerating Spatial Cross-Matching on CPU-GPU Hybrid Platform With CUDA and OpenACC
	1. Introduction
	2. Background and Related Work
	2.1. Spatial Cross Matching
	2.2. Object Level Parallelism
	2.3. GPU Enabled Intra-Object Level Parallelism

	3. CPU-GPU Hybrid Spatial Query System Overview
	3.1. Query Tasks
	3.2. Scheduler
	3.3. Execution Engine
	3.3.1. CPU Refiner
	3.3.2. GPU Refiner

	4. Cross-Matching Query Workflow
	4.1. Input Data Parsing
	4.2. Indexing/Filtering
	4.3. Result Refinement

	5. Generalized Spatial Cross-Matching Algorithm
	5.1. PixelBox Algorithm
	5.2. Geo-PixelBox Workflow
	5.3. Implementation
	5.3.1. Geometry Based Implementation
	5.3.2. Pixel Based CUDA Implementation
	5.3.3. Pixel Based OpenACC Implementation

	6. Experimental Evaluation
	6.1. Experimental Setup
	6.2. Experiment Design
	6.2.1. Dataset
	6.2.2. Scaling Factor and Error Rate
	6.2.3. Refinement Task Implementations
	6.2.4. GPU Accelerated Implementations

	6.3. GPU Cost Effectiveness
	6.4. CPU vs. GPU Speedup Baseline
	6.5. Geo-PixelBox Scaling Accuracy
	6.6. Geometry vs. Pixel Based Cross Matching on CPU
	6.7. Pixel Based Cross Matching on CPU vs. GPU
	6.8. Geometry Based Cross Matching on CPU vs. OpenACC Accelerated Pixel Based Cross Matching on GPU
	6.9. Data Copying Overheads for GPU Computations
	6.10. CPU-GPU Hybrid Geospatial Cross-Matching
	6.11. Scheduling Methods

	7. Conclusions
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

