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Abstract
Oscillations between high and low values of the membrane potential (UP and DOWN states

respectively) are an ubiquitous feature of cortical neurons during slow wave sleep and

anesthesia. Nevertheless, a surprisingly small number of quantitative studies have been

conducted only that deal with this phenomenon’s implications for computation.

Here we present a novel theory that explains on a detailed mathematical level the

computational benefits of UP states. The theory is based on random sampling by means of

interspike intervals (ISIs) of the exponential integrate and fire (EIF) model neuron, such that

each spike is considered a sample, whose analog value corresponds to the spike’s preced-

ing ISI. As we show, the EIF’s exponential sodium current, that kicks in when balancing a

noisy membrane potential around values close to the firing threshold, leads to a particularly

simple, approximative relationship between the neuron’s ISI distribution and input current.

Approximation quality depends on the frequency spectrum of the current and is improved

upon increasing the voltage baseline towards threshold. Thus, the conceptually simpler

leaky integrate and fire neuron that is missing such an additional current boost performs

consistently worse than the EIF and does not improve when voltage baseline is increased.

For the EIF in contrast, the presented mechanism is particularly effective in the high-con-

ductance regime, which is a hallmark feature of UP-states.

Our theoretical results are confirmed by accompanying simulations, which were con-

ducted for input currents of varying spectral composition. Moreover, we provide analytical

estimations of the range of ISI distributions the EIF neuron can sample from at a given

approximation level. Such samples may be considered by any algorithmic procedure that is

based on random sampling, such as Markov Chain Monte Carlo or message-passing

methods.

Finally, we explain how spike-based random sampling relates to existing computational

theories about UP states during slow wave sleep and present possible extensions of the

model in the context of spike-frequency adaptation.
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1 Introduction
Since the time of its earliest discovery [1; 2], the transient dynamics of a neuron’s baseline
membrane potential between high values close to the firing threshold (UP-state) and low levels
close to the resting potential (DOWN-state), both during slow-wave sleep and anesthesia, have
received considerable attention. Despite the large amount of work that has been spent on the
genesis of this phenomenon (see e.g. [3; 4; 5; 6; 7; 8; 9; 10]), only comparably few studies have
implicitly or explicitly dealt with its implications for information processing and computation
[11; 12; 13; 14; 7; 15]. Although amongst the latter a variety of qualitative theories has been
pushed forward, such as reliable information storage [7], the sustaining of activity for a neural
representation of working memory [11] or memory consolidation during slow wave sleep [12;
13], even fewer quantitative computational theories about the role of transient UP and
DOWN-states have been formulated [14; 15].

On the other hand, separate lines of research have indicated that interspike intervals (ISIs),
i.e. the time-lags between two successive action potentials, may contain information valuable
for computation, both across species and sensory modalities [16; 17; 18; 19; 20]. In [16] for
example, stimulus information contained by spikes from neurons in area V1 was shown to
depend strongly on a spikes preceding ISI. Furthermore, the structure of log-ISI histograms
obtained from such neurons was found impossible to be explained on the basis of rate modula-
tions alone (see also [20]).

Based on the exponential integrate and fire (EIF) neuron model [21], we here present a
computational interpretation of UP-states, which matches in a detailed, quantitative way the
functional properties of the EIF neuron with computational requirements of an ideal ISI-based
random sampler. More specifically, we show how the sequence of ISIs, elicited by a current
driven EIF neuron during UP-states, may correspond to a sequence of random numbers (Fig
1a), that can be utilized within any algorithmic procedure that is based on random sampling,
such as Markov-Chain-Monte-Carlo (MCMC)-methods [22; 23], or message-passing algo-
rithms [24; 25]. At its core, our method relies on an approximative analytic matching between
the ISI distribution of the EIF and an ‘ideal ISI-sampler’, whose firing is controlled by standard
equations from renewal theory. The ISI distribution the neuron is supposed to sample from
may be defined as a multiplicative modulation of an exponential distribution and is specified
by the input current (Fig 1b). As we show, for the EIF neuron but not the ordinary leaky inte-
grate and fire (LIF) neuron, this approximation depends on the baseline level of the membrane
potential and improves upon increasing this level towards firing threshold. This way our theory
provides a computational meaning to UP-states.

This paper is organized as follows: After providing the necessary fundamentals of renewal
theory and the EIF/LIF model, we analytically derive a match between the two and the approxi-
mations/assumptions it relies on. By analyzing this situation in the frequency domain (spectral
analysis), performance of the LIF neuron is shown to be consistently worse compared to the
EIF. These theoretical results are then corroborated by accompanying simulations, where the
two types of neurons are used to sample from ISI distributions of varying spectral composition.
Subject to the assumptions behind our analytic derivation, an estimation of the range of ISI dis-
tributions from which the EIF neuron can sample is subsequently derived. In the discussion
part, we qualitatively describe implications of the model for interpreting spike data from exper-
iments, along with a possible extension of the model that includes spike-frequency adaptation.
Model predictions and a more computational interpretation of the meaning of ISI-based ran-
dom sampling during slow-wave sleep are also provided.
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2 Methods

2.1 Fundamental Dependencies of Renewal Theory
Here we briefly present some basic equations from the field of renewal theory, which relate two
quantities that are key to the contents of this paper: The stochastic intensity (or hazard h) and
the interspike interval distribution p.

Intuitively the hazard can be regarded as a conditional instantaneous firing rate (i.e. h(t)dt
gives the probability of firing a spike in an infinitesimally small interval dt around t), where the

Fig 1. Basic Principles of the Proposed Model. a) Random sampling with interspike intervals (ISIs): Each spike in a train is interpreted as carrying an
analog label, whose value corresponds to the length of the ISI preceding the spike, i.e. to the difference in spike times between the considered spike and its
predecessor (see numbers above spikes in arbitrary units). These analog values are therefore samples from the ISI distribution p(t) underlying the spike
train. Depending on the computational context, p(t) may be stationary or not. (Figure adapted with permission from [25]) b) EIF neuron as ISI sampler and
probability transducer: A ‘user-defined’, target ISI distribution pin(t) that is given by a small, multiplicative modulation (left black trace) of an exponential
distribution (blue/red dotted trace) is specified as input current to the EIF neuron. Subject to noise, the neuron responds with a membrane potential fluctuating
around some baseline value and thus with the stochastic firing of output spikes, whose ISI distribution also follows a modulated exponential distribution pEIF(t)
(right black trace). Our theory shows that modulations at the output may approximate those at the input, provided the latter stay within sufficiently small
margins (blue/red shaded areas). Approximations are improved upon increasing the baseline level of the membrane potential towards firing threshold.

doi:10.1371/journal.pone.0132906.g001
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conditioning is on the time of the last spike. In other words, h(t) is a time dependent rate pro-
file that is not influenced in any way by spiking activity prior to the last spike. Assuming the
last spike to have happened at time t0 = 0, a standard result from renewal theory relates h(t) to
p(t) in the following way [26; 27]:

pðtÞ ¼ SðtÞhðtÞ ð2:1Þ

SðtÞ≔1�
Z t

0

pðt0Þdt0 ¼ exp �
Z t

0

hðt0Þdt0
� �

ð2:2Þ

where S(t) gives the probability of not firing (’surviving’) until time t and is hence called the
survivor function. Eq 2.1 has a simple, intuitive interpretation: The probability of an ISI of
length t is equal to the probability of not firing until t (S(t)), times the probability of a spike
exactly at t, given that the neuron has not fired so far (h(t)). Conversely, Eq 2.1 may be solved
for h(t), thereby expressing the hazard in terms of p(t) and the survivor function

hðtÞ ¼ pðtÞ exp
Z t

0

hðt0Þdt0
� �

ð2:3Þ

) d
dt

lnhðtÞ � hðtÞ ¼ d
dt

lnpðtÞ ð2:4Þ

It is differential Eq 2.4 that is followed by what we define as an ideal ISI sampler: If the term on
the right hand side is interpreted as a time dependent input to the sampler (e.g. a current
injected into a neuron) and the samplers hazard dynamics are guaranteed to follow 2.4, then its
output ISI distribution will be directly determined by the input. In other words, the input-spec-
ified ISI distribution will be transduced to the samplers output without distortion (cf.Fig 1b).
As we show, Eq 2.4 can be approximated by an EIF neuron and we will thus call it the hazard
equation of the ideal ISI-sampler.

2.2 The Exponential Integrate-and-Fire Model Combined with Stochastic
Firing
In the EIF model, a neuron’s membrane potential dynamics are given by the following differen-
tial equation [21]

Cm
_V ðtÞ ¼ �gLðVðtÞ � ELÞ þ gLDT exp

VðtÞ � VT

DT

� �
þ IðtÞ ð2:5Þ

, _V ðtÞ ¼ � 1

tm
ðVðtÞ � ELÞ þ

1

tm
DT exp

VðtÞ � VT

DT

� �
þ I�ðtÞ ð2:6Þ

where V is the membrane potential, tm≔
Cm
gL
the membrane time constant based on leak con-

ductance gL and membrane capacitance Cm. I�≔ I
Cm

is the total input current of the neuron

divided by the membrane capacitance, EL the leak reversal potential, VT the threshold voltage
and ΔT the so called slope factor. The slope factor determines the effectiveness of the exponen-
tial term in Eq 2.6, which mimics the continuously increasing number of open sodium chan-
nels when V approaches the threshold VT and consequently leads to a strong increase of
current into the neuron. Once VT is crossed, positive feedback induced by the exponential term
renders the voltage dynamics self-sustained. That is, even in the absence of any driving current
I, V starts to diverge to infinity in finite time. Therefore, a spike is said to have occurred once V
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crosses a peak potential Vp � VT, after which V is reset to some reset potential Vr (see methods
section 2.5 for a list of parameter values that we have used for the simulations presented in the
results section). Note that the thus defined dynamics of the EIF neuron contain those of the
more conventional LIF neuron as a special case, namely if Vp = Vt and ΔT ! 0.

For the EIF neuron, the voltage trajectory between the times at which VT and Vp were
respectively crossed is supposed to qualitatively match the spike waveform of biological neu-
rons. Importantly however, the opening of sodium channels influences voltage dynamics even
below the threshold, which, as we explain in the results section, is crucial for a neural approxi-
mation of the hazard equation of the ideal ISI-sampler (Eq 2.6). For the same reason, we make
use of the high-conductance regime, consisting of a large gL and, consequently, a small τm.
Interestingly, it is also this regime that is characteristic for UP-states [28; 29; 30] (More specifi-
cally, it is the 3–5 fold increase in synaptic, not leak conductance that is characteristic for UP-
states. However, based on the Ansatz in [31], the two types of synaptic synaptic conductances
(exc./inh.) can be rearranged, such that their (constant) average plays the role of a leak conduc-
tance. This way, Eq 2.5 is reobtained with a higher leak conductance and new VT, I(t), both of
which were redefined through the addition of constants).

In addition, for the approach put forward in this paper, the EIF/LIF voltage dynamics of Eq 2.6
are combined with a stochastic firing criterion, such that spikes may be fired even below the thresh-
old. More specifically, we introduce a firing hazard, which depends exponentially on the mem-
brane potential trajectory via some convolution kernelK(t) that is normalized to

R1
�1 KðtÞdt ¼ 1.

hðtÞ≔ 1

Ktm
exp

ðK � ðV � VTÞÞðtÞ
DT

� �
ð2:7Þ

where K is a dimensionless scaling factor for adjusting the max. firing rate of the neuron at thresh-
old (which we have chosen to be 10 Hz, based on the reported, low values for the firing rate during
UP-states, see e.g. [3; 32]). Note that in Eq 2.7 the spiking determinism parameter is assumed to be
identical to the slope-factor ΔT = 3mV of the EIF neuron, both for the EIF and LIF neuron. In
other words, throughout the manuscript we have exclusively used in Eq 2.7 a spiking determinism
parameter equal to 3mV, although in case of the LIF neuron the slope factor controlling membrane
potential dynamics was zero. This way both types of neurons may be compared on a fair basis,
with all factors being equal except the slope factor.

The hazard h(t) in Eq 2.7 is an abstraction of what is called diffusive noise [27], i.e. the
strong voltage fluctuations measured in biological neurons, due to their random bombardment
by a large number of balanced inhibitory and excitatory inputs. In particular, such a network
effect is thought to be a characterizing feature of UP-states [33; 3; 34; 5; 4; 8]. Whereas the haz-
ard Eq 2.7 involves a deterministic membrane potential trajectory combined with stochastic
firing, diffusive noise is based on a noisy membrane potential combined with deterministic fir-
ing (a spike is fired only if a fixed threshold is crossed). Although intuitively the two noise
models may seem to be equivalent, in general they are not, but may well approximate each
other phenomenologically in case of the more widespread LIF neuron [35]. For the EIF neuron
however, no such phenomenological model exists so far, which is why for this study we have
used the hazard Eq 2.7 as a proxy for the biologically more realistic case of diffusive noise. Note
however that Eq 2.7 only assumes the logarithm of the hazard h(t) to depend on the membrane
potential trajectory V(t) via some linear filter (with normalized filter kernel), an assumption
that entails the frequently used exponential escape noise model [27] as a special case, i.e. when
K is set toK(t) = δ(t) such that for any time t the hazard depends only on the momentary dis-
tance between V(t) and VT. IfK(t) is not normalized to 1 the normalization constant may be
absorbed by ΔT, provided the normalization constant is positive.
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2.3 Construction and Performance Evaluation of Example ISI
Distributions
We evaluated the representational capabilities of the EIF and LIF neuron based on two types of
target ISI distributions pin(t) = p0(t)Δpin(t), where p0(t)≔ h0exp(−h0t) is an exponential ‘base-
line’ distribution with hazard h0 and Δpin(t) a modulation function ‘around’ p0(t) (e.g. multipli-
cative noise).

For the first type of target distribution (low-frequency noise), ln Δpin(t) was chosen as a
superposition of 60 sinusoids with random phases and unit amplitudes. Frequencies of the
sinusoids were taken equidistantly from the interval [10, 100] Hz. The thus obtained ln Δpin(t)
was then centered to a mean of zero and scaled such that the min/max range of Δpin(t) was 1 ±
rΔp. The parameter 0� rΔp � 1 controls the degree by which the (unnormalized) pin(t) deviates
from p0(t) and we will refer to it as the probability fluctuation ratio. The second type of modu-
lation function (high-frequency noise) was constructed in an identical manner, but with fre-
quencies chosen from [100, 200] Hz. Finally, both types of modulation functions were
multiplied by a constant, such that the resulting pin(t) was normalized to one.

In both cases, we systematically varied h0 and rΔp and, for each such combination, evaluated
the quality of the EIF and LIF neuron to approximate Δpin(t). For that, pEIF;

LIF
ðtÞDpEIF;

LIF
ðtÞ -the out-

put ISI distributions of the EIF and LIF neuron respectively- were obtained by numerical inte-
gration of Eq 2.1, based on the neuron’s membrane potential V(t) and Eq 2.7. V(t) was given in
response to some input current I(t), which was suitably chosen in order for the neuron to
approximate the target probability modulation Δpin(t) (see results). To produce a ‘clean’mem-
brane potential trajectory suitable for numerical integration, the neuron was prevented from
firing in the subthreshold region, but could fire and reset once the threshold (LIF case), or the
peak potential (EIF case) had been crossed.

The neuron’s performance of approximating ln Δpin(t) was evaluated using the normalized
L1-distance:

L1normðlnDpin; lnDpEIF;LIFÞ≔
jjlnDpin � lnDpEIF;LIF jj1

jjlnDpinjj1 þ jjlnDpEIF;LIF jj1
ð2:8Þ

jjf jj1≔
Z 1

0

jf ðtÞjdt ð2:9Þ

2.4 Analytic Derivation of the Probability Modulation Transfer Function
Here we give full account of how the probability modulation transfer function (Eq 3.20) is
derived, as it is central to our spectral analysis. In the following, we restrict ourself to the EIF
neuron, such that cluttered notation is avoided. The LIF case may be derived analogously.

Assume the multiplicative probability modulation ΔpEIF(t) to be caused by some additive,
small hazard modulation Δh(t). Then, according to Eqs 2.4 and 3.16

d
dt

lnðh0 þ DhðtÞÞ � ðh0 þ DhðtÞÞ ¼ d
dt

lnpEIFðtÞ ¼
d
dt

lnðp0ðtÞDpEIFðtÞÞ ð2:10Þ

) d
dt

ln 1þ DhðtÞ
h0

� �
� DhðtÞ ¼ d

dt
lnDpEIFðtÞ ð2:11Þ
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If Δh(t)/h0 << 1, then ln 1þ DhðtÞ
h0

� �
� DhðtÞ

h0
and hence

1

h0

d
dt

DhðtÞ � DhðtÞ ¼ d
dt

lnDpEIFðtÞ ð2:12Þ

Assuming Δh(0) = ln ΔpEIF(0) = ln Δpin(0) = 0, Laplace transformation of Eq 2.12 then yields
the intermediate result

LfDhðtÞgðsÞ ¼ h0s
s� h0

LflnDpEIFðtÞgðsÞ ð2:13Þ

On the other hand, following the derivations of section 3.1, we know that for the EIF neuron ln
pEIF(t) = ln (p0(t)ΔpEIF(t)) develops according to Eq 3.14 and hence

d
dt

lnDpEIFðtÞ ¼
d
dt

lnpEIFðtÞ �
d
dt

lnp0ðtÞ ¼ KEIF;0 DhðtÞ þ d
dt

lnDpinðtÞ ð2:14Þ

which upon the Laplace transform gives

s � LflnDpEIFðtÞgðsÞ ¼ KEIF;0 LfDhðtÞgðsÞ þ s � LflnDpinðtÞgðsÞ ð2:15Þ

Inserting the intermediate result Eq 2.13 and rearranging terms then yields the probability
modulation transfer function Eq 3.20.

2.5 Parameters used in Numerical Simulations and Spectral Analysis
Table 1 lists all parameters and values we have used for our numerical simulations of the EIF-
and LIF-neuron and for obtaining results of the spectral analysis of section 3.2.

3 Results

3.1 Mapping the EIF Voltage Dynamics onto the Hazard Equation of the
Ideal ISI-Sampler
Our first result is a mathematical description of how EIF voltage dynamics (Eq 2.6), together
with the hazard model of Eq 2.7, enable the neuron to fire with an ISI distribution pEIF(t)≔
p0(t)ΔpEIF(t) that is given by the product of a baseline exponential distribution p0(t)≔ h0 exp
(−h0t) and some controllable modulatory term ΔpEIF(t)> 0. To achieve controllability, as we
will show, the neuron’s input current I�(t) is supposed to encode for some ‘user-defined’ distri-
bution pin(t)≔ p0(t)Δpin(t)> 0, such that under distinct conditions ΔpEIF(t)� Δpin(t) (see Fig
1b). For the LIF neuron however, the analogously defined pLIF(t)≔ p0(t)ΔpLIF(t) leads to an
approximation ΔpLIF(t)� Δpin(t) that is consistently worse when compared to the EIF neuron.

To mimic the voltage situation encountered during UP-states (Fig 2), the neuron’s mem-
brane potential V(t) = V0 + ΔV(t) is assumed to fluctuate with some time-dependent voltage
ΔV(t) around a constant baseline value V0 < VT, causing the hazard h(t) = h0 + Δh(t) to
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Table 1. Parameters underlying the numerical simulations of the EIF/LIF neuron and the theoretical results of section 3.2.

Parameter Description Value Remarks

dt Simulation time step 0.05 ms Used by a 3rd order Runge-Kutta method for num. integration

VT Threshold potential -50.4 mV

Vp Peak potential -40.4 mV

Vr Reset potential V0 Vr differed for each voltage/hazard baseline, mimicking the small effect of AHP on membrane
voltage in cortical regular spiking neurons during UP-states, see e.g. [5; 8]

EL Leak reversal
potential

-70.6 mV

ΔT Slope-factor 3 (0) mV For the EIF (LIF) neuron respectively. In both cases ΔT = 3ms was used for the hazard model
of Eq 2.7

Cm Membrane
capacitance

0.281 nF

gL Membrane leak
conductance

5�30 nS (1�30 nS) In the high (low) conductance regime respectively

τm Membrane time
constant

Cm
gL

� 1:9ð9:4Þ ms In the high (low) conductance regime respectively

K Hazard scaling factor 1
10Hz�tm � 53:4ð10:7Þ In the high (low) conductance regime respectively

doi:10.1371/journal.pone.0132906.t001

Fig 2. Dynamical Situation of the Membrane Potential During UP States of the EIF Neuron: Our approach assumes the membrane potential V(t) =
V0 + ΔV(t) (blue trace) to fluctuate around some constant value V0, with time-dependent fluctuationsΔV(t). V0 is supposed to be close to the firing
threshold VT (and generally far from the resting (leak reversal) potential EL), such that the exponential input current of the EIF (red trace) becomes effective.
The exponential term is crucial for an approximation of the ideal ISI sampler (see main text for details).

doi:10.1371/journal.pone.0132906.g002
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fluctuate as well around h0. It then follows from Eq 2.7:

DT ln
hðtÞ
h0

¼ ðK � DVÞðtÞ; with h0≔
1

Ktm
exp

V0 � VT

DT

� �
ð3:1Þ

) d
dt

DT ln
hðtÞ
h0

� �
¼ K � _DV

� �
ðtÞ ¼ K � _V

� �ðtÞ ð3:2Þ

¼ð2:6Þ K � � 1

tm
ðV � ELÞ þ

1

tm
DT exp

V � VT

DT

� �
þ I�ðtÞ

� �� �
ðtÞ

¼ � 1

tm
ðV0 � ELÞ �

1

tm
ðK � DVÞðtÞ þ 1

tm
DT exp

V0 � VT

DT

� �
: ð3:3Þ

K � exp
DV
DT

� �� �
ðtÞ þ ðK � I�ÞðtÞ ð3:4Þ

We now assume the fluctuations ΔV(t) to be sufficiently small such that:

(a) jΔV(t)j � ΔT

(b) j(K�ΔV)(t)j � ΔT

(c) hðtÞ
h0

¼ 1þ DhðtÞ
h0

� 1

from which it follows

K � exp
DV
DT

� �� �
ðtÞ�ðaÞ K � 1þ DV

DT

� �� �
ðtÞ ð3:5Þ

¼ 1þ 1

DT

ðK � DVÞðtÞ ð3:6Þ

�ðbÞ exp 1

DT

ðK � DVÞðtÞ
� �

ð3:7Þ

¼ð3:1Þ hðtÞ
h0

ð3:8Þ

where the approximations are due to the Taylor expansion of the exponential function around
ΔV = 0. Subsequently, inserting Eqs 3.1 and 3.8 into Eq 3.4 yields

DT

d
dt

ln
hðtÞ
h0

� �DT

tm
ln
hðtÞ
h0

þ DT

tm
exp

V0 � VT

DT

� �
� hðtÞ
h0

þ ðK � I�ÞðtÞ � 1

tm
ðV0 � ELÞ ð3:9Þ

�ðcÞ � DT

tm

DhðtÞ
h0

þ DT

tm
exp

V0 � VT

DT

� �
� hðtÞ
h0

þ ðK � I�ÞðtÞ � 1

tm
ðV0 � ELÞ ð3:10Þ

, d
dt

lnhðtÞ � �Kc0 � DhðtÞ þ K � hðtÞ � ðK � 1Þh0 þ
d
dt

lnpinðtÞ ð3:11Þ
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where

c0≔ exp
VT � V0

DT

� �
ð3:12Þ

1

DT

ððK � I�ÞðtÞ � 1

tm
ðV0 � ELÞÞ≔� ðK � 1Þh0 þ

d
dt

lnpinðtÞ ð3:13Þ

In other words, the (K-filtered) input current is set linear to d
dt
lnpinðtÞ. Note that the assumed

form of pin(t) imposes a constraint on I�(t); In particular, if there are no modulations and thus
pin(t) = p0(t), the resulting current is constant and equal to the current needed to establish con-

stant voltage baseline V0 (cf. Eq 2.6 when _V ðtÞ ¼ 0).
Finally, using d

dt
lnpinðtÞ ¼ �h0 þ d

dt
lnDpinðtÞ and h(t) = h0 + Δh(t) in Eq 3.13 one ends up

with:

d
dt

lnpEIFðtÞ¼
ð2:4Þ d

dt
lnhðtÞ � hðtÞ �ð3:11Þð�Kc0 þ K � 1ÞDhðtÞ � h0 þ

d
dt

lnDpinðtÞ

¼ ð�Kc0 þ K � 1ÞDhðtÞ þ d
dt

lnpinðtÞ
ð3:14Þ

Eq 3.14 is the main result of this paper and its significance is as follows: Suppose the term con-
taining Δh(t) on the right hand side could be neglected. Then, for small modulations, the EIF
neuron would implement the hazard equation of the ideal ISI sampler with d

dt
lnpinðtÞ as input

(cf. Eq 2.4). Consequently pEIF(t) would be given as the product of exponential baseline p0(t) and
the undistorted modulatory term ΔpEIF(t) = Δpin(t) and hence pEIF(t) = pin(t). Because of the
derivative, this condition is certainly fulfilled for the high spectral components of ln Δpin(t),
regardless of the baseline voltage V0 that determines c0. In other words, high frequencies are
transduced without distortion from the user-provided input to the ISI output of the EIF neuron.

For low frequencies in contrast, the Δh(t) term cannot be neglected, but when V0 ! VT its
weight j−Kc0 + K − 1j decreases exponentially upon converging to 1. Decreasing this weight
term becomes particularly relevant when it is strong, i.e. for large K, which is the predominant
regime during UP-states, due to the simultaneous presence of high-conductance (i.e. small τm)
and low firing rates* 10Hz (cf. Eq 2.7). This is exactly the proposed mechanism, by which
UP-states with baseline levels close to the firing threshold facilitate transduction of the low-fre-
quency components of ln Δpin(t).

For the LIF neuron, steps Eq 3.1 to Eq 3.14 may be repeated in an analogous fashion, upon
neglecting the exponential term in Eq 3.3 and substituting the r.h.s. of Eq 3.13 by
h0 þ d

dt
lnpinðtÞ. Thus, in the LIF case, the input current is also linearly dependent on

d
dt
lnDpinðtÞ, but with a different y-intercept as for the EIF. The analogous expression of Eq 3.14

then reads:

d
dt

lnpLIFðtÞ � ð�Kc0 � 1ÞDhðtÞ � h0 þ
d
dt

lnDpinðtÞ

¼ ð�Kc0 � 1ÞDhðtÞ þ d
dt

lnpinðtÞ
ð3:15Þ

Importantly, for V0 ! VT the weight term j−Kc0 − 1j converges to K + 1 here, not 1. Hence,
unlike the EIF case, Δh(t) cannot be neglected for large K, even when voltage baseline is high.
This means that low-frequency input modulations ln Δpin(t) are severely distorted at the output
lnΔpLIF(t).

We will now quantify these arguments in a more rigorous fashion.
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3.2 Spectral Analysis of the Probability Modulation Transfer Function for
the EIF and LIF Neuron
In this section we investigate the degree of distortion, when a log-probability modulation ln
Δpin(t) is to be conveyed from the input to the ISI output ln ΔpEIF(t), ln ΔpLIF(t) of the EIF and
LIF neuron respectively. For that, a spectral analysis of the transfer functions from ln Δpin to
lnDpEIF;

LIF
is conducted.

From the the definitions of pEIF(t) and pLIF(t) it follows:

d
dt

lnp0ðtÞ ¼ �h0 ð3:16Þ

d
dt

lnDpEIF;
LIF

ðtÞ ¼ d
dt

lnpEIF;
LIF

ðtÞ � d
dt

lnp0 ðtÞ ð3:17Þ

and hence by Eqs 3.14 and 3.15

d
dt

lnDpEIF;
LIF

ðtÞ ¼ KEIF;0;
LIF;0

DhðtÞ þ d
dt

lnDpinðtÞ ð3:18Þ

where

KEIF;0 ≔� Kc0 þ K � 1

KLIF;0 ≔� Kc0 � 1
ð3:19Þ

Upon Laplace transforming Eq 3.18 the probability modulation transfer functions TEIF(s) and
TLIF(s) may be expressed as (see methods section 2.4 for the derivation):

TEIF;
LIF

ðsÞ≔LflnDpEIF;LIFðtÞgðsÞ
LflnDpinðtÞgðsÞ

¼ s� h0

s� h0 � KEIF;0;
LIF;0

� h0

ð3:20Þ

Fig 3 shows the Bode plots of TEIF;LIF (s). As expected, when transduced to ln ΔpEIF, the distor-
tion of ln Δpin is continuously decreased when V0 ! VT. This is because the higher the baseline
V0, the lower the phase shift (for f≳ 6Hz) and the closer the amplitude gain gets to unity. In
case of the LIF neuron however the amplitude gain is virtually unaffected by V0, whereas the
phase shift even increases slightly for V0 ! VT.

Importantly, for both measures, phase shift and amplitude gain, performance of the LIF
neuron is at most as good as performance of the EIF neuron and corresponds to EIF perfor-
mance in case of low voltage baselines V0. This is to be expected, since both neuron models
become identical in this voltage regime. Conversely, when V0 is close to VT (i.e. when the spik-
ing nonlinearity kicks in) EIF performance continuously improves unlike the LIF neuron.

Recalling our discussion at the end of the previous chapter, moreover, one expects an
increased voltage baseline to become maximally effective in the high conductance regime,
where K is high as well. A comparison between Figs 3 and 4 shows that this is indeed the case.
Although overall performance is better in the low conductance regime, its dependence on V0 is
weaker in the EIF case, both for the phase shift and amplitude gain. Because the high-conduc-
tance regime is a necessary byproduct of diffusive noise (due to the large fraction of open syn-
aptic ion channels), our theory thus shows how its deteriorating effects may be overcome by an
increased voltage baseline.

To examine the extend to which these theoretical results from small signal analysis hold
true in practice, we will now have a look at numerical simulations of both types of neurons and
for various settings of V0 and the probability fluctuation ratio rΔp.
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3.3 Performance of the Simulated EIF- and LIF-Neurons for
Approximating Predefined ISI Distributions for Various Voltage
Baselines and Values of the Probability Fluctuation Ratio
In this section we evaluate the capability of the EIF and LIF neuron to perform random sam-
pling of predefined ISI distributions pin(t) during high conductance states. Evaluation is done
based on numerical simulations of the two types of neurons, subject to log-modulation func-
tions defined by sums of sinusoids (see methods). First, the neuron’s approximation

Fig 3. Bode Plots of the EIF and LIF Neuron for Various Different Baseline Voltages V0 in the High Conductance Regime (gL = 5�30nS, K� 53.4). Top
row: Phase shift of TEIF(s) (left) and TLIF(s) (right) as a function of frequency, for baseline voltages V0 2 [−65mV, VT − 1mV] (colors). For the EIF neuron, the
curve for V0 = VT − 1mV is drawn as dashed, black line and replotted on the right for comparison. Bottom row: Amplitude gain jTEIF(s)j (left) and jTLIF(s)j (right)
for baseline voltages V0 2 [−65mV, . . ., VT − 1mV]. For the EIF neuron, the curve for V0 = VT − 1mV is drawn as dashed, black line and replotted in the right plot
for comparison.

doi:10.1371/journal.pone.0132906.g003
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performances for broadband log-modulation using specific instances of V0, h0 and rΔp are
shown. Then the corresponding summary results are given for sweeps across V0 and rΔp.

In order to approximate pin(t) by the EIF neuron’s spike output, input current I�(t) was
computed according to Eq 3.13 (where, in case of the LIF neuron,�ðK � 1Þh0 þ d

dt
lnpinðtÞ was

substituted by h0 þ d
dt
lnpinðtÞ). For the sake of simplicity we used a simple escape-rate model

for stochastic spike-generation, by setting the hazard filter kernelK equal toK(t) = δ(t).
Fig 5 shows an example ISI distribution produced by broadband modulation. As predicted

by our theory, there is a better overall match between pEIF and pin when compared to the LIF
neuron.

Does this finding also hold for a larger range of values for V0 and rΔp? To answer that ques-
tion V0 was swept across 20 equidistant values between −65mV and VT − 1mV = −51.4mV

Fig 4. Bode Plots of the EIF and LIF Neuron for Various Different Baseline Voltages V0 in the Low Conductance Regime (gL = 30nS, K� 10.7). See
Fig 3 for legend.

doi:10.1371/journal.pone.0132906.g004
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(corresponding to a sweep of h0 between 0.1Hz and 7.2Hz). Likewise rΔp was swept across 20
equidistant values between 0.05 and 0.8.

For each such combination of V0 and rΔp, the L1norm(ln Δpin, ln ΔpEIF;LIF) performance mea-
sure was evaluated. Note that the sweep covered fairly large values of rΔp, where results from
small signal analysis are not guaranteed to hold. Figs 6 and 7 show the corresponding results
for low- and high-frequency modulation respectively. As expected, performance is generally
better for high frequencies, both for the EIF and LIF neuron.

Fig 5. EIF/LIF Performance of Approximating a Predefined ISI Distribution. Top: Log-modulation functions ln Δpin(t), ln ΔpEIF(t) and lnΔpLIF(t). Red trace
gives the ideal, target log-modulation function ln Δpin(t) (broadband signal consisting of a superposition of 60 sinusoids with random phase, unit amplitude
and frequencies taken equidistantly from [10, 200]Hz. Baseline voltage was set to V0 = −51.4mV, corresponding to a baseline hazard of h0 = 7.2Hz.
Probability fluctuation ratio was set to rΔp = 0.44). Blue and orange traces are the actual log-modulation functions ln ΔpEIF(t) and lnΔpLIF(t) of the EIF and LIF
neuron respectively, obtained by numerical integration (see methods). Bottom: ISI distributions pin(t), pEIF(t) and pLIF(t) corresponding to the modulation
functions in the upper plot.

doi:10.1371/journal.pone.0132906.g005
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Fig 6. Summary Results of Sweeping V0 and rΔp for Low-Frequency Log-Probability Modulation. a) EIF neuron: Shown is a color-coded contour plot of
L1norm(ln Δpin, ln ΔpEIF) for various combinations of the probability fluctuation ratio rΔp (x-axis) and the baseline voltage V0 (y-axis). The curves are example
log-probability modulation functions ln Δpin (red) and ln ΔpEIF (blue). The modulations lnΔpLIF of the LIF neuron are also shown for comparison (orange).
Values of rΔp and V0 of each example are indicated by blue arrows. b) LIF neuron: Color-coded surface plot of L1norm(ln Δpin, lnΔpLIF), color code as in (a).

doi:10.1371/journal.pone.0132906.g006
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Fig 7. Summary Results of Sweeping V0 and rΔp for High-Frequency Log-Probability Modulation. The same plots as in Fig 6, but for high-frequency
modulation.

doi:10.1371/journal.pone.0132906.g007
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In the former case however, there is a dependence of L1norm(ln Δpin, ln ΔpEIF) on baseline
voltage, such that performance increases with increasing V0, both for low- and high-frequency
modulations. It is only for large values of rΔp that this effect is attenuated, or even reversed if, in
addition, V0 stays close to the firing threshold. This sharp decrease in performance (which is
most obvious in Fig 7) is rooted in the deterministic membrane potential trajectory of the EIF
neuron which, for high values of rΔp, deviates more strongly from the ideal trajectory, as it
would manifest itself if EIF dynamics would follow exactly the hazard equation of the ideal ISI
sampler. Therefore, there is an inherent danger of erroneously crossing the threshold when sit-
uated close to it, which causes strong positive feedback to kick in. Such feedback may then eas-
ily amplify any deviation from the ideal trajectory (see e.g. Fig 7, for V0 = −51.4mV, rΔp = 0.64,
t� 0.065s). Although such a phenomenon cannot be considered an artifact, it is clearly caused
by the mechanics of the EIF neuron.

In case of the LIF neuron, erroneous threshold crossings may also occur for high V0 and rΔp,
but LIF behavior on the remaining parameter space is more stereotypical compared to the EIF
neuron: There is virtually no influence of baseline voltage on performance, as the latter hardly
changes across the (rΔp, ln ΔpLIF)-plane, particularly for high-frequency modulations. For low-
frequency modulations, there is even a slight decrease in performance when V0 ! VT. Most
importantly however, there is no point on the plane where the LIF neuron performs better
than the EIF neuron: Both are identical for low V0 (when the spiking nonlinearity has no influ-
ence on the membrane potential), but whereas EIF performance increases with increasing V0,
LIF performance stays constant or even decreases.

Overall, the empirical results presented in this chapter confirm those obtained theoretically
from small signal analysis. They are also robust against even large probability modulations,
particularly for low-frequencies.

3.4 Range of Realizable ISI Distributions
Whereas in the previous sections, the range of distributions our ISI sampling model may sam-
ple from was analyzed in the frequency domain, we here estimate this range in terms of the
amplitudes of the probability modulation function. This is necessary, because the model is not
based on general ISI distributions, but rather on fluctuations around some exponential
baseline.

In the following we assume ΔpEIF;LIF(t)* lnN(μ, σ2) to be log-normally distributed for all
t, i.e. that ln ΔpEIF;LIF(t) follows some stationary gaussian process with mean μ and variance σ2.
This assumption covers many practically relevant types of probability modulation functions,
e.g. all instances of colored, gaussian noise, as they were considered in the previous section. μ is
set equal to −σ2/2, such that the mean E[Δp] = 1 (to avoid cluttered notation, the subscripts
EIF;LIF of p(t) are now dropped). At any time t, we refer by pp(t)≔ lnN(μ + ln h0 − h0 t, σ

2) to
the distribution of values of p(t) = p0(t)Δp(t), p0(t) = h0exp−h0 t. When the probability fluctua-

tion ratio is redefined as the coefficient of variation of Δp(t), that is rDp≔
ffiffiffiffiffiffiffiffiffiffi
Var½Dp	

p
E Dp½ 	 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½Dp	p
,

then, according to basic properties of the log-normal distribution, the variance σ2 may be

expressed in terms of rΔp by s2 ¼ ln r2Dp þ 1
� �

. Thus, except h0 from the baseline distribution,

rΔp remains the only parameter for determining the range of realizable ISI distributions, when
log-normal Δp(t) are considered.

Because by definition the term Δp(t) contains an implicit normalization constant (such that
p(t) is a distribution), it is not straightforward to construct a corresponding gaussian process
for lnΔp(t), without the use of future information about the process. Fortunately however, the
normalization constant is not needed in a realistic, biological setup, due to the derivative
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employed for computing the neuron’s input current (cf. Eq 3.13). Hence any stationary gauss-
ian process with μ = −σ2/2 may be considered in our scenario.

Fig 8 shows example pp(t) resulting from the log-normal model. As expected, pp(t) becomes
broader for increasing values of rΔp, i.e. there is a corresponding increase in size of the set of
realizable ISI distributions p(t). The mean and standard deviation of pp(t) however decrease
monotonically with t, indicating a reduced range of p(t)-values for long ISIs. This behavior is a
consequence of the product p(t) = p0(t)Δp(t): Although Δp(t) is stationary, the exponentially
decreasing factor p0(t) renders the mean and standard deviation of pp(t) to approach zero expo-
nentially fast. For the same reason, distributions pp(t) which correspond to different hazard
baselines h0 are discriminated only by some scaling factor, with no other qualitative differences
in shape, modes etc.

4 Discussion

4.1 Summary
Using the exponential integrate and fire (EIF) neuron, we have explicitly shown in this paper
how the nonlinear sodium current, that is triggered when the membrane potential is situated
close to the firing threshold, may facilitate the neuron’s ability to perform random sampling
based on interspike-intervals (ISIs). This was shown theoretically, by deriving approximately
from the EIF voltage equation the differential equation for the ideal firing hazard, which we
termed the ‘hazard equation of the ideal ISI-sampler’ (Eqs 3.14 and 2.4 respectively).

The solution to this approximating equation assumes a particularly simple form, which line-
arly relates the differentiated logarithm of the ISI density to the convolved and integrated input
current (Eq 3.13). This way, the neuron may be regarded as a probability transducer, which
receives as input a current-encoded ISI distribution and returns ISI samples from an approxi-
mating distribution at the output. Approximation quality depends strongly on the spectral
composition of the input distribution: Whereas high-frequency components are displayed dis-
tortionless at the output, low-frequencies are distorted in terms of phase-shift and amplitude
gain. In the high conductance regime however, both measures can be improved on, by increas-
ing the neuron’s membrane potential baseline towards firing threshold. This effect was derived
theoretically and confirmed empirically by concomitant simulations.

Because high conductance, along with a noisy membrane potential balanced close to the fir-
ing threshold, is a defining feature of UP-states [28; 30], our results thus demonstrate a clear
benefit of UP-states for ISI-based random sampling. We have also shown that improved proba-
bility transduction may be attributed directly to the nonlinear sodium current, that distinguishes
the EIF from the ordinary leaky integrate and fire (LIF) neuron, because LIF performance never
surpassed performance of the EIF neuron in any analytic or simulated scenario.

Finally, because the described effects hold true for multiplicatively modulated exponential
distributions at the input of the EIF probability transducer, there is a restriction imposed on
the range of ISI distributions the neuron may possibly sample from and we have estimated this
range analytically.

4.2 Plausibility of the Proposed Model
It may be argued that the range of realizable ISI distributions is too limited for ISI sampling to
play a role in neural processing. However, it is possible that during UP states the computa-
tional procedures needed, e.g. by the cortex, are restricted to the set of realizable ISI distribu-
tions. Moreover, the quasi-exponential envelope of this set (Fig 8) might be a reflection of
sampling from log(ISI) rather than ISI-distributions [25], such that sampling is possible from
a more flexible range of log(ISI) distributions, that manifest itself in comparably stereotyped
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Fig 8. Range of Realizable Values of p(t) as a Function of Time. Shown are the color-coded distributions pp(t) of values p(t) for different probability
fluctuation ratios rΔp (rows) and hazard baselines h0 (columns). For any fixed time t, pp(t) gives the distribution of values of the ISI distribution p(t). Blue lines
give the baseline ISI distributions p0(t) = h0 exp(h0 t) that are induced in the absence of probability modulation (rΔp = 0).

doi:10.1371/journal.pone.0132906.g008
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ISI distributions. Interestingly, quasi-exponential ISI distributions are quite common in the
cortex (see e.g. [36; 37; 38]) and there is evidence that this might indeed be a reflection of such
log(ISI)-coding [16; 20]. In particular, they were shown to be most prominent during high-
conductance states in a detailed Hodgkin-Huxley type model neuron [39]. ISI distributions
may also become more stereotyped (i.e. quasi-exponential) through the averaging of nonsta-
tionary distributions; Suppose, as in section 3.4 for example, a probability modulation function
Δp(t) fluctuating around 1. If these modulations are not influenced in any way by their
induced spikes (i.e. if the resulting spike train is not renewal), then the (momentary) ISI distri-
bution p(t) = p0(t)Δp(t), p0(t) = h0 exp(−h0 t) will be slightly different after each such spike,
due to the fluctuations of Δp(t). Reflecting a situation typically encountered in experiments,
the ISI distribution as it is measured from a complete train of spikes will thus be given as the
stereotyped average distribution p0(t) and hence be exponential (blue lines in Fig 8).

Another objection against our model is based on the fact that the neuronal simulations of
section 3.3 could have been arranged to produce even exact results with zero L1-norm error.
For that, a distribution representing input current I(t) can be computed from the user-defined
ISI distribution p(t) via the sequence p(t)! h(t)! V(t)! I(t) (corresponding to the sequence
of insertions into Eqs (2.2)! (2.3)! (2.7)! (2.5)). Although such a procedure is feasible
even for the LIF neuron [40; 25], compared to Eq 3.13 it yields a tremendously more compli-
cated expression for the relationship between I(t) and p(t). In particular, the transition p(t)!
h(t) requires computation of the survivor function for which, in a realistic scenario, the set of

neurons providing I(t) must explicitly represent the running integral
R t

0
pðt0Þdt0, e.g. by means

of some chemical accumulation variable. This requirement remains, even if the necessary com-
putations are thought to happen as a combination of synaptic inputs and local information
processing inside the sampling neuron. In contrast, the approach put forward in this paper nat-
urally circumvents this problem; In case of escape noise, that is forK(t) = δ(t), the total input
current I(t) directly encodes the momentary value of d

dt
lnpðtÞ (ref. Eq 3.13). Even for general

filter kernelsK(t) however, computation of d
dt
lnpðtÞ just requires a static, linear filter applied to

the total current and not some highly nonlinear processing applied to an accumulation variable
with reset mechanism.

On the other hand, it is questionable whether escape noise is a realistic model of noise in
biological neurons. In fact, measurements in cortex during slow wave sleep, where UP/DOWN
state transitions are prominent, show that during UP states diffusive noise is present [5; 8] and
a crucial factor for spiking variability [5; 10]. Although for the LIF neuron diffusive noise,
which is generated by barrages of balanced excitatory and inhibitory synaptic inputs [27], can
be approximated to a good degree by escape noise [35], an analogous model for the EIF neuron
with a voltage baseline close to threshold is still missing. However, as we have shown in section
3.1, the EIF approximation of the ideal ISI-sampler is still valid for general convolution kernels
K(t). Hence, should the logarithm of the hazard, caused by diffusive noise in the EIF neuron,
be expressible as a convolution betweenK(t) and V(t) (ref. Eq 2.7), our theory remains valid,
even for diffusive noise. To establish this requirement, the methods presented in [41] could
prove useful. In this context it is also interesting to note that the EIF sampling model provides
a clear reasoning why measurements during cortical UP-states have revealed simultaneous
occurrence of a high subthreshold voltage baseline, high conductance and high noise levels [8;
10]. Whereas previous explanations attributed this phenomenon to stochastic resonance [27],
it is the obtaining of a better approximation of the ideal ISI-sampler, together with the need of
a noise source for random firing, that our theory postulates.

With respect to our scenario of voltage baselines close to threshold, one could argue that
under sustained depolarizations, neurons tend to increase their threshold, thereby leaving the
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range where sodium currents could possibly exert an influence on subthreshold processing.
Indeed, such a threshold shift has been observed in experiments and can be explained by the
sodium inactivation variable from the Hodgkin-Huxley formalism [42]. Because the EIF model
is derived from the more detailed Hodgkin-Huxley model by assuming constant inactivation
(see [43], chapter 5), this effect appears to be a potential threat to our theory. Experimental
data shows however that the shift in threshold is substantially smaller than its causing depolari-
zation (see [42], Fig 2A). This may also explain the apparent consensus in the literature that
(high-conductance) UP-states lead to closer proximity of the baseline membrane potential to
threshold [39; 8; 44].

Another objection against the proposed EIF sampling model is its neglect of spike-frequency
adaptation. In fact, coupling the EIF dynamics Eq 2.5 with the following equation describing
adaptation yields the AdEx model [31], which was found able to reproduce a large range of
electrophysiological firing patterns, such as adaptation, bursting, fast and regular spiking:

tw
dwðtÞ
dt

¼ aðVðtÞ � ELÞ � wðtÞ ð4:1Þ

where w is an adaptation current that is subtracted from the right hand side of Eq 2.5 and thus
tends to hyperpolarize the membrane and consequently to decrease the firing rate of the neu-
ron. a is an subthreshold adaptation parameter, which models the dependence of w on mem-
brane voltage V. In addition to Eq 4.1, adaptation dynamics are governed by the instantaneous
increase of w by an amount b, each time the neuron fires a spike (Fig 9, top). This rather
phenomenological model of adaptation (which subtracts a state-dependent current from the
neuron’s input) was found able to match with great accuracy the spike times and voltage evolu-
tion of a detailed Hodgkin-Huxley (HH) type model neuron, that contained a biophysically
plausible muscarinic potassium current as mechanism for adaptation [31; 45]. Importantly
however, the impact of adaptation fluctuations, that is, w(t) subtracted by its average, on the
ability of the AdEx to reproduce such spiking patterns was found to be weakest during high
conductance states [31]. Thus, even in presence of adaptation, it may be possible to sample
from ‘user-defined’ input distributions that are state-independent of the sampling neuron. This
relative unimportance of adaptation dynamics during UP-states is also in line with the appar-
ent independence between two small, subsequent ISIs in mouse somatosensory neurons (see
[32], Fig 3A), since dependence between subsequent ISIs is plausibly mediated by spike-fre-
quency adaptation [46; 47].

On the other hand, adaptation may even be incorporated as a computational feature by our
ISI sampling scheme: Suppose the adaptation dynamics Eq 4.1 were independent of voltage
fluctuations, such that w is turned into a leaky integrator. That is, w is governed only by the
output spike train, voltage baseline V0 and adaptation parameters a and b, whereas voltage
fluctuations due to ΔV(t) are neglected (Fig 9,top). This assumption is plausible in our consid-
ered scenario, because of the small voltage fluctuations the ISI sampling model is based on (cf.
assumption (a) in section 3.1). In this case, if we define xi ≔ (ISIi, wi) as a state vector, consist-
ing of an ISI-label ISIi (given by the i-th spike in a train) and wi (the value of w immediately
before the ith spike), then the sequence of ISIs put out by the AdEx neuron corresponds to a
sequence of samples from a Markov chain (Fig 9, middle and bottom). As before, external
input to the Markov chain is provided by I(t), note however that here the total input current of
the neuron is given by I(t) − w(t). For the future, we have plans to further explore the computa-
tional implications imposed by this biologically more realistic setup.
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4.3 Computational Interpretations of ISI-Based Random Sampling
During UP-States
Random sampling also fits seamlessly into the long standing hypothesis of oscillating UP and
DOWN states as a means of memory consolidation during slow wave sleep. For example, based
on the wake-sleep algorithm [48] (WSA, the notion of ‘sleep’ here is different from actual sleep
as in slow-wave sleep) Destexhe and Sejnowski pushed forward a qualitative version of such a
theory, that utilizes self-generated, idealized top-down inputs for learning the feedforward con-
nections of an internal object recognition model [12; 13]. Learning such a recognition model is a
crucial subroutine of theWSA, whose actual goal however is to learn a generative model, that is

Fig 9. ISI Sequences of the AdEx Neuron Correspond to Sequences of Random Samples from aMarkov Chain. Top: Illustration of the spike-triggered
dynamics of adaptation currentw (Eq 4.1), when voltage fluctuations ΔV(t) can be neglected. Each spike, sequenced by i, leads to an immediate increase of
w by some fixed amount b. Between spikes, the dynamics ofw are governed by a leaky integrator.wi is the value ofw immediately before the spike, i.e.
before the addition of b. ISIi is the ISI label of the i-th spike. Middle: Combining ISIi andwi yields a state vector xi ≔ (ISIi,wi) that follows Markov dynamics.
Shown is a Bayesian network representation of the resulting Markov chain. Input to the chain is given by an input current I(t) provided by the neuron’s
presynaptic partners. Bottom: Detailed Bayesian network when xi is expanded into its components ISIi andwi. The dependencies shown as arrows are due to
Eq 3.13 and the leaky integrator dynamics governingw(t) (Eq 4.1).

doi:10.1371/journal.pone.0132906.g009
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a model of the probability distribution of data inputs [48]. The latter model is termed ‘genera-
tive’, because it is used by theWSA to generate samples from the distribution the model repre-
sents, i.e. fantasized top-down sensory inputs that can be interpreted as memories and which are
used for updating the recognition model during the so called sleep phase of the algorithm.

One interpretation of the alternating sequence of UP and DOWN states during slow wave
sleep could be the mimicking of such a sleep phase of theWSA. That is, during UP states, ISI
samples are drawn from the generative model and their values are stored by the sampling neuron.
During the subsequent DOWN state, these values are then used by the neuron to update the
parameters that control the density of the recognition model. Based on these updated parameters,
a new set of samples is drawn in the next UP state and the procedure repeats, thereby mimicking
a version of stochastic gradient ascent [49], as it is used by some formulations of theWSA [48]. If
each neuron represents one dimension of some high-dimensional generative model, synaptic
connections are necessary to mutually influence the sampling process performed by each neuron.
Such influencing by exchanging sampled values is crucial for sampling in high-dimensional
spaces and is a hallmark of MCMC-sampling methods such as Gibbs-sampling [22; 24]. The pre-
sented computational theory also explains the experimentally observed synchrony of UP/
DOWN state transitions across cortical neurons [4; 8; 50; 44]. During an UP state, each neuron
must be guaranteed to have its sampling based on the same high-dimensional distribution, such
that procedures like Gibbs-sampling become feasible. This is achieved by restricting the windows
of opportunity for parameter updates to synchronous DOWN states. In this context, it is also
interesting to note that recent experiments have indicated ongoing cortical activity during UP
states to be functionally protected from thalamic inputs [44]. For the same reason this is exactly
what is to be expected, if the goal of the UP-state is indeed to performMCMC sampling from an
unperturbed (prior) generative distribution that is represented in the sensory deprived cortex.

Similarly, a related interpretation of synchronous UP/DOWN state transitions is based on
the EM-algorithm [51]. In this case, UP states would correspond to expectation (E) steps, dur-
ing which sampling-based inferences about hidden variables in the generative model are con-
ducted. As with the WSA, the subsequent maximization (M) steps would then be confined to
updates of the parameters.

4.4 Model Predictions
As indicated in the section 4.2, our model hinges on the validity of Eq 2.7 for describing the
dependency between membrane voltage and firing hazard. In particular, Eq 2.7 predicts the
spiking determinism parameter to be equal to ΔT, the slope factor of the EIF model. In this con-
text, it is interesting to note that there is indeed evidence for an exponential escape-rate model
to be a good empirical descriptor of the hazard near firing threshold (in case of an EIF neuron
stimulated by diffusive noise) [41]. Also, a quite remarkable congruence between the spiking
determinism parameter and ΔT has been reported in the literature. More specifically, reported
values for ΔT are from the set {0.5, 1.4, 3, 3.48}mV [52; 31; 53], whereas reported values for the
spiking determinism parameter are {0.5, 3, 4}mV [54; 55].

Therefore, if Eq 2.7 turns out indeed to be a sensible model, e.g. for cortical neurons during
UP states in vivo, then our theory could be tested further, for example by repeatedly injecting
traces of current into a cortical neuron and examining the resulting ISI distribution. More spe-
cifically, triggered by each spike of the neuron, a current profile computed from Eq 3.13 could
be injected and the ISI distribution be compared to the predicted one according to Eq 3.14.

In contrast, if in experiments the proposed dependency between membrane voltage and
hazard turns out not to be a good description, then this aspect serves as a means to falsify the
whole theory relating ISI sampling to EIF processing near threshold.

Random Sampling with ISIs of the Exponential Integrate and Fire Neuron

PLOS ONE | DOI:10.1371/journal.pone.0132906 July 23, 2015 23 / 26



Acknowledgments
We thank Tilo Schwalger and the anonymous reviewers for their careful review and corrections
of the manuscript. This work was supported by the Swiss National Science Foundation (SNF)
(Project No: SNF 32003B_155950).

Author Contributions
Conceived and designed the experiments: AS KS. Performed the experiments: AS. Analyzed
the data: AS. Contributed reagents/materials/analysis tools: AS. Wrote the paper: AS KS.

References
1. Wilson CJ, Groves PM. Spontaneous firing patterns of identified spiny neurons in the rat neostriatum.

Brain Research. 1981; 220:67–80. doi: 10.1016/0006-8993(81)90211-0 PMID: 6168334

2. Steriade M, Nunez A, Amzica F. A Novel Slow (< 1 Hz) Oscillation of Neocortical Neurons in vivo: Depo-
larizing and Hyperpolarizing Components. The Journal of Neuroscience. 1993; 13(8):3252–3265.
PMID: 8340806

3. Sanchez-Vives MV, McCormick DA. Cellular and network mechanisms of rhythmic recurrent activity in
neocortex. Nature Neuroscience. 2000 October; 3(10):1027–1034. doi: 10.1038/79848 PMID:
11017176

4. Cossart R, Aronov D, Yuste R. Attractor dynamics of network UP states in the neocortex. Nature. 2003
May; 423:283–288. doi: 10.1038/nature01614 PMID: 12748641

5. Shu Y, Hasenstaub A, McCormick DA. Turning on and off recurrent balanced cortical activity. Natue.
2003; 423:288–293. doi: 10.1038/nature01616

6. Milojkovic BA, Radojicic MS, Antic SD. A Strict Correlation between Dendritic and Somatic Plateau
Depolarizations in the Rat Prefrontal Cortex Pyramidal Neurons. The Journal of Neuroscience. 2005;
25(15):3940–3951. doi: 10.1523/JNEUROSCI.5314-04.2005 PMID: 15829646

7. Holcman D, Tsodyks M. The Emergence of Up and Down States in Cortical Networks. PLoS Computa-
tional Biology. 2006; 2(3):0174–0181. doi: 10.1371/journal.pcbi.0020023

8. Haider B, Duque A, Hasenstaub A, McCormick DA. Neocortical Network Activity In Vivo Is Generated
through a Dynamic Balance of Excitation and Inhibition. The Journal of Neuroscience. 2006; 26:4535–
4545. doi: 10.1523/JNEUROSCI.5297-05.2006 PMID: 16641233

9. Waters J, Helmchen F. Background Synaptic Activity Is Sparse in Neocortex. The Journal of Neurosci-
ence. 2006 August; 26(32):8267–8277. doi: 10.1523/JNEUROSCI.2152-06.2006 PMID: 16899721

10. Haider B, McCormick DA. Rapid Neocortical Dynamics: Cellular and Network Mechanisms. Neuron.
2009 April; 62:171–189. doi: 10.1016/j.neuron.2009.04.008 PMID: 19409263

11. Durstewitz D, Seamans JK, Sejnowski TJ. Neurocomputational models of working memory. Nature
Neuroscience. 2000; 3:1184–1191. doi: 10.1038/81460 PMID: 11127836

12. Sejnowski TJ, Destexhe A. Why do we sleep? Brain Research. 2000; 886:208–223.

13. Destexhe A, Sejnowski TJ. Thalamocortical Assemblies. Oxford University Press; 2001.

14. Chance FS, Abbott LF, Reyes AD. Gain Modulation from Background Synaptic Input. Neuron. 2002;
35:773–782. doi: 10.1016/S0896-6273(02)00820-6 PMID: 12194875

15. Boustani SE, Yger P, Frégnac Y, Destexhe A. Stable Learning in Stochastic Network States. The Jour-
nal of Neuroscience. 2012 January; 32(1):194–214. doi: 10.1523/JNEUROSCI.2496-11.2012 PMID:
22219282

16. Reich DS, Mechler F, Purpura KP, Victor JD. Interspike Intervals, Receptive Fields and Information
Encoding in Primary Visual Cortex. Journal of Neuroscience. 2000 March; 20(5):1964–1974. PMID:
10684897

17. Fairhall AL, Lewen GD, Bialek W, de Ruyter van Steveninck RR. Efficiency and Ambiguity in an Adap-
tive Neural Code. Nature. 2001 August; 412:787–792. doi: 10.1038/35090500 PMID: 11518957

18. Lundstrom BN, Fairhall AL. Decoding Stimulus Variance from a Distributional Neural Code of Interspike
Intervals. Journal of Neuroscience. 2006 August; 26(35):9030–9037. doi: 10.1523/JNEUROSCI.0225-
06.2006 PMID: 16943561

19. Maimon G, Assad JA. Beyond Poisson: Increased Spike-Time Regularity across Primate Parietal Cor-
tex. Neuron. 2009 May; 62:426–440. doi: 10.1016/j.neuron.2009.03.021 PMID: 19447097

Random Sampling with ISIs of the Exponential Integrate and Fire Neuron

PLOS ONE | DOI:10.1371/journal.pone.0132906 July 23, 2015 24 / 26

http://dx.doi.org/10.1016/0006-8993(81)90211-0
http://www.ncbi.nlm.nih.gov/pubmed/6168334
http://www.ncbi.nlm.nih.gov/pubmed/8340806
http://dx.doi.org/10.1038/79848
http://www.ncbi.nlm.nih.gov/pubmed/11017176
http://dx.doi.org/10.1038/nature01614
http://www.ncbi.nlm.nih.gov/pubmed/12748641
http://dx.doi.org/10.1038/nature01616
http://dx.doi.org/10.1523/JNEUROSCI.5314-04.2005
http://www.ncbi.nlm.nih.gov/pubmed/15829646
http://dx.doi.org/10.1371/journal.pcbi.0020023
http://dx.doi.org/10.1523/JNEUROSCI.5297-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16641233
http://dx.doi.org/10.1523/JNEUROSCI.2152-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16899721
http://dx.doi.org/10.1016/j.neuron.2009.04.008
http://www.ncbi.nlm.nih.gov/pubmed/19409263
http://dx.doi.org/10.1038/81460
http://www.ncbi.nlm.nih.gov/pubmed/11127836
http://dx.doi.org/10.1016/S0896-6273(02)00820-6
http://www.ncbi.nlm.nih.gov/pubmed/12194875
http://dx.doi.org/10.1523/JNEUROSCI.2496-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22219282
http://www.ncbi.nlm.nih.gov/pubmed/10684897
http://dx.doi.org/10.1038/35090500
http://www.ncbi.nlm.nih.gov/pubmed/11518957
http://dx.doi.org/10.1523/JNEUROSCI.0225-06.2006
http://dx.doi.org/10.1523/JNEUROSCI.0225-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16943561
http://dx.doi.org/10.1016/j.neuron.2009.03.021
http://www.ncbi.nlm.nih.gov/pubmed/19447097


20. Shih JY, Atencio CA, Schreiner CE. Improved Stimulus Representation by Short Interspike Intervals in
Primary Auditory Cortex. Journal of Neurophysiology. 2011 February; 105:1908–1917. doi: 10.1152/jn.
01055.2010 PMID: 21307320

21. Fourcaud-Trocmé N, Hansel D, van Vreeswijk C, Brunel N. How Spike Generation Mechanisms Deter-
mine the Neuronal Response to Fluctuating Inputs. The Journal of Neuroscience. 2003 December; 23
(37):11628–11640. PMID: 14684865

22. MacKay DJC. Information Theory, Inference and Learning Algorithms. Cambridge: Cambridge Univer-
sity Press; 2003.

23. Geman S, Geman D. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of
Images. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1984; 6:721–741. doi: 10.
1109/TPAMI.1984.4767596 PMID: 22499653

24. Dauwels J, Korl S, Löliger HA; IEEE. Particle Methods as Message Passing. IEEE International Sym-
posium on Information Theory. 2006 July;p. 2052–2056.

25. Steimer A, Douglas R. Spike-Based Probabilistic Inference in Analog Graphical Models Using Inter-
spike-Interval Coding. Neural Computation. 2013; 25:2303–2354. doi: 10.1162/NECO_a_00477 PMID:
23663144

26. Cox DR, Lewis PA. The Statistical Analysis of Series of Events. London: Methuen; 1966.

27. Gerstner W, Kistler W. Spiking Neuron Models. Cambridge University Press; 2002.

28. Steriade M, Timofeev I, Grenier F. Natural Waking and Sleep States: A View From Inside Neocortical
Neurons. Journal of Neurophysiology. 2001; 85(5):1969–1985. PMID: 11353014

29. Destexhe A, Rudolph M, Paré D. The High-Conductance State of Neocortical Neurons in vivo. Nature
Reviews Neuroscience. 2003; 4:739–751. doi: 10.1038/nrn1198 PMID: 12951566

30. Rudolph M, Pelletier JG, Paré D, Destexhe A. Characterization of Synaptic Conductances and Integra-
tive Properties During Electrically Induced EEG-Activated States in Neocortical Neurons In Vivo. Jour-
nal of Neurophysiology. 2005; 94:2805–2821. doi: 10.1152/jn.01313.2004 PMID: 16014785

31. Brette R, Gerstner W. Adaptive Exponential Integrate-and-Fire Model as an Effective Description of
Neuronal Activity. Journal of Neurophysiology. 2005; 94(5):3637–3642. doi: 10.1152/jn.00686.2005
PMID: 16014787

32. Fanselow EE, Connors BW. The Roles of Somatostatin-Expressing (GIN) and Fast-Spiking Inhibitory
Interneurons in UP-DOWN States of Mouse Neocortex. Journal of Neurophysiology. 2010; 104:596–
606. doi: 10.1152/jn.00206.2010 PMID: 20538767

33. Wilson CJ, Kawaguchi Y. The Origins of Two-State Spontaneous Membrane Potential Fluctuations of
Neostriatal Spiny Neurons. The Journal of Neuroscience. 1996 April; 16(17):2397–2410. PMID:
8601819

34. Compte A, Sanchez-Vives MV, McCormick DA, Wang XJ. Cellular and Network Mechanisms of Slow
Oscillatory Activity (1 Hz) andWave Propagations in a Cortical Network Model. Journal of Neurophysi-
ology. 2003; 89:2707–2725. doi: 10.1152/jn.00845.2002 PMID: 12612051

35. Plesser HE, Gerstner W. Noise in Integrate-and-Fire Neurons: From Stochastic Input to Escape Rates.
Neural Computation. 2000; 12(2):367–384. doi: 10.1162/089976600300015835 PMID: 10636947

36. Softky WR, Koch C. The Highly Irregular Firing of Cortical Cells Is Inconsistent with Temporal Integra-
tion of Random EPSPs. The Journal of Neuroscience. 1993; 13(1):334–350. PMID: 8423479

37. Shadlen M, NewsomeW. The Variable Discharge of Cortical Neurons: Implications for Connectivity,
Computation, and Information Coding. Journal of Neuroscience. 1998; 18:3870–3896. PMID: 9570816

38. Compte A, Constantinidis C, Tegnér J, Raghavachari S, Chafee MV, Goldman-Rakic PS, et al. Tempo-
rally Irregular Mnemonic Persistent Activity in Prefrontal Neurons of Monkeys During a Delayed
Response Task. Journal of Neurophysiology. 2003 May; 90:3441–3454. doi: 10.1152/jn.00949.2002
PMID: 12773500

39. Rudolph M, Destexhe A. The Discharge Variability of Neocortical Neurons During High-Conductance
States. Neuroscience. 2003; 119:855–873. doi: 10.1016/S0306-4522(03)00164-7 PMID: 12809706

40. Steimer A. Neurally Inspired Models of Belief-Propagation in Arbitrary Graphical Models. ETH Zürich;
2012.

41. Mensi S, Naud R, Gerstner W. From Stochastic Nonlinear Integrate-and-Fire to Generalized Linear
Models. In: Shawe-Taylor J, Zemel RS, Bartlett PL, Pereira F, Weinberger KQ, editors. Advances in
Neural Information Processing Systems 24. Curran Associates, Inc.; 2011. p. 1377–1385.

42. Azouz R, Gray CM. Adaptive Coincidence Detection and Dynamic Gain Control in Visual Cortical Neu-
rons In Vivo. Neuron. 2003; 37:513–523. doi: 10.1016/S0896-6273(02)01186-8 PMID: 12575957

43. Gerstner W, Kistler W, Naud R, Paninski L. Neuronal Dynamics. Cambridge University Press; 2014.

Random Sampling with ISIs of the Exponential Integrate and Fire Neuron

PLOS ONE | DOI:10.1371/journal.pone.0132906 July 23, 2015 25 / 26

http://dx.doi.org/10.1152/jn.01055.2010
http://dx.doi.org/10.1152/jn.01055.2010
http://www.ncbi.nlm.nih.gov/pubmed/21307320
http://www.ncbi.nlm.nih.gov/pubmed/14684865
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://www.ncbi.nlm.nih.gov/pubmed/22499653
http://dx.doi.org/10.1162/NECO_a_00477
http://www.ncbi.nlm.nih.gov/pubmed/23663144
http://www.ncbi.nlm.nih.gov/pubmed/11353014
http://dx.doi.org/10.1038/nrn1198
http://www.ncbi.nlm.nih.gov/pubmed/12951566
http://dx.doi.org/10.1152/jn.01313.2004
http://www.ncbi.nlm.nih.gov/pubmed/16014785
http://dx.doi.org/10.1152/jn.00686.2005
http://www.ncbi.nlm.nih.gov/pubmed/16014787
http://dx.doi.org/10.1152/jn.00206.2010
http://www.ncbi.nlm.nih.gov/pubmed/20538767
http://www.ncbi.nlm.nih.gov/pubmed/8601819
http://dx.doi.org/10.1152/jn.00845.2002
http://www.ncbi.nlm.nih.gov/pubmed/12612051
http://dx.doi.org/10.1162/089976600300015835
http://www.ncbi.nlm.nih.gov/pubmed/10636947
http://www.ncbi.nlm.nih.gov/pubmed/8423479
http://www.ncbi.nlm.nih.gov/pubmed/9570816
http://dx.doi.org/10.1152/jn.00949.2002
http://www.ncbi.nlm.nih.gov/pubmed/12773500
http://dx.doi.org/10.1016/S0306-4522(03)00164-7
http://www.ncbi.nlm.nih.gov/pubmed/12809706
http://dx.doi.org/10.1016/S0896-6273(02)01186-8
http://www.ncbi.nlm.nih.gov/pubmed/12575957


44. Watson BO, MacLean JN, Yuste R. UP States Protect Ongoing Cortical Activity from Thalamic Inputs.
PLoS one. 2008; 3(12):1–16. doi: 10.1371/journal.pone.0003971

45. Barranca VJ, Johnson DC, Moyher JL, Sauppe JP, Shkarayev MS, KovačičG, et al. Dynamics of the
Exponential Integrate-and-Fire Model with Slow Currents and Adaptation. Journal of Computational
Neuroscience. 2014; 37(161). doi: 10.1007/s10827-013-0494-0 PMID: 24443127

46. Nawrot MP, Boucsein C, Rodriguez-Molina V, Aertsen A, Grün S, Rotter S. Serial interval statistics of
spontaneous activity in cortical neurons in vivo and in vitro. Neurocomputing. 2007; 70:1717–1722. doi:
10.1016/j.neucom.2006.10.101

47. Nawrot MP, Boucsein C, Rodriguez-Molina V, Riehle A, Aertsen A, Rotter S. Measurement of variability
dynamics in cortical spike trains. Journal of Neuroscience Methods. 2008; 169(374–390). doi: 10.1016/
j.jneumeth.2007.10.013 PMID: 18155774

48. Dayan P. ’Helmholtz Machines andWake-Sleep Learning’. In: Arbib MA, editor. Handbook of Brain
Theory and Neural Networks. 2nd ed. MIT Press; 2002. p. 522–525.

49. Bottou L. Online Algorithms and Stochastic Approximations. In: Saad D, editor. Online Learning and
Neural Networks. Cambridge, UK: Cambridge University Press; 1998. Revised, oct 2012. Available
from: http://leon.bottou.org/papers/bottou-98x.

50. Destexhe A, Hughes SW, Rudolph M, Crunelli V. Are corticothalamic ‘up’ states fragments of wakeful-
ness? Trends in Neurosciences. 2007; 30(7):334–342.

51. Bishop CM. Pattern Recognition and Machine Learning. Springer Science+Business Media; 2006.

52. Badel L, Gerstner W, Richardson M. Dependence of the spike-triggered average voltage on membrane
response properties. Neurocomputing. 2007; 69:1062–1065. doi: 10.1016/j.neucom.2005.12.046

53. Fourcaud-Trocmé N, Brunel N. Dynamics of the Instantaneous Firing Rate in Response to Changes in
Input Statistics. Journal of Computational Neuroscience. 2005; 18:311–321. doi: 10.1007/s10827-005-
0337-8 PMID: 15830167

54. Pfister JP, Dayan P, Lengyel M. Synapses with Short-Term Plasticity are Optimal Estimators of Presyn-
aptic Membrane Potentials. Nature Neuroscience. 2010 October; 13(10):1271–1275. doi: 10.1038/nn.
2640 PMID: 20852625

55. Jolivet R, Rauch A, Lüscher HR, Gerstner W. Predicting spike timing of neocortical pyramidal neurons
by simple threshold models. Journal of Computational Neuroscience. 2006; 21:35–49. doi: 10.1007/
s10827-006-7074-5 PMID: 16633938

Random Sampling with ISIs of the Exponential Integrate and Fire Neuron

PLOS ONE | DOI:10.1371/journal.pone.0132906 July 23, 2015 26 / 26

http://dx.doi.org/10.1371/journal.pone.0003971
http://dx.doi.org/10.1007/s10827-013-0494-0
http://www.ncbi.nlm.nih.gov/pubmed/24443127
http://dx.doi.org/10.1016/j.neucom.2006.10.101
http://dx.doi.org/10.1016/j.jneumeth.2007.10.013
http://dx.doi.org/10.1016/j.jneumeth.2007.10.013
http://www.ncbi.nlm.nih.gov/pubmed/18155774
http://leon.bottou.org/papers/bottou-98x
http://dx.doi.org/10.1016/j.neucom.2005.12.046
http://dx.doi.org/10.1007/s10827-005-0337-8
http://dx.doi.org/10.1007/s10827-005-0337-8
http://www.ncbi.nlm.nih.gov/pubmed/15830167
http://dx.doi.org/10.1038/nn.2640
http://dx.doi.org/10.1038/nn.2640
http://www.ncbi.nlm.nih.gov/pubmed/20852625
http://dx.doi.org/10.1007/s10827-006-7074-5
http://dx.doi.org/10.1007/s10827-006-7074-5
http://www.ncbi.nlm.nih.gov/pubmed/16633938

