
Expression signature distinguishing two
tumour transcriptome classes associated
with progression-free survival among rare
histological types of epithelial ovarian cancer
Chen Wang1, Boris J Winterhoff2, Kimberly R Kalli3, Matthew S Block3, Sebastian M Armasu1,
Melissa C Larson1, Hsiao-Wang Chen4, Gary L Keeney5, Lynn C Hartmann3, Viji Shridhar6,
Gottfried E Konecny4, Ellen L Goode1,8 and Brooke L Fridley*,7,8

1Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA; 2Department of Obstetrics, Gynecology and
Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA; 3Department of Medical Oncology, Mayo Clinic,
Rochester, MN 55905, USA; 4Department of Medicine, University of California, Los Angeles, CA 90095, USA; 5Department of
Anatomic Pathology, Mayo Clinic, Rochester, MN 55905, USA; 6Department of Experimental Pathology, Mayo Clinic, Rochester,
MN 55905, USA and 7Department of Biostatistics, Kansas University Medical Center, Kansas City, KS 66160, USA

Background: The mechanisms of recurrence have been under-studied in rare histologies of invasive epithelial ovarian cancer
(EOC) (endometrioid, clear cell, mucinous, and low-grade serous). We hypothesised the existence of an expression signature
predictive of outcome in the rarer histologies.

Methods: In split discovery and validation analysis of 131 Mayo Clinic EOC cases, we used clustering to determine clinically
relevant transcriptome classes using microarray gene expression measurements. The signature was validated in 967 EOC tumours
(91 rare histological subtypes) with recurrence information.

Results: We found two validated transcriptome classes associated with progression-free survival (PFS) in the Mayo Clinic EOC
cases (P¼ 8.24� 10� 3). This signature was further validated in the public expression data sets involving the rare EOC histologies,
where these two classes were also predictive of PFS (P¼ 1.43� 10� 3). In contrast, the signatures were not predictive of PFS in the
high-grade serous EOC cases. Moreover, genes upregulated in Class-1 (with better outcome) were showed enrichment in steroid
hormone biosynthesis (false discovery rate, FDR¼ 0.005%) and WNT signalling pathway (FDR¼ 1.46%); genes upregulated in
Class-2 were enriched in cell cycle (FDR¼ 0.86%) and toll-like receptor pathways (FDR¼ 2.37%).

Conclusions: These findings provide important biological insights into the rarer EOC histologies that may aid in the development
of targeted treatment options for the rarer histologies.

With an estimated 21 290 new cases in 2015 (Siegel et al, 2015),
epithelial ovarian cancer (EOC) is a heterogeneous disease from
morphological and molecular perspectives (Kobel et al, 2008;

Cancer Genome Atlas Research Network, 2011). As the most
common histologic type representing B70% of EOC cases, high-
grade serous carcinoma (HGSC) has been extensively studied in
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terms of its molecular profile and genomic landscape in many
prognostic studies. For other less common histological types
(endometrioid carcinoma (EC), clear cell carcinoma (CCC),
mucinous carcinoma (MC), and low-grade serous carcinoma
(LGSC)), prognostic studies to understand disease mechanism and
find corresponding treatment options are lacking.

Among previous studies investigating rare histological types of
EOC, very few focused on molecular associations with patients’
prognosis, partially due to relatively small number of cases. In fact,
only one published Australian expression array study incorporated
LGSC and EC tumours to assess outcome (Tothill et al, 2008), but
did not include CCC and MC. Differences between HGSC
and other histologies has also been observed at genomic and
epigenomic levels (Huang et al, 2012; Cicek et al, 2013), and several
inherited susceptibility regions of EOC specific to HGSC (Pharoah
et al, 2013; Shen et al, 2013). Compared with HGSC studies with
several validated outcome-associated signatures (Cancer Genome
Atlas Research Network, 2011; Verhaak et al, 2013; Riester et al,
2014), there is a strong need to better understand the transcrip-
tome of rare histological types from a disease outcome perspective.

In this study, we characterised associations between expression
profiling of 131 EC, CCC, MC, and LGSC EOC cases and
progression-free survival (PFS). We hypothesised the existence of
expression signature predictive of PFS that is shared across EOC of
rare histological types, motivated by several studies showing that
different cancer types could share similar transcriptome features
with therapeutic potential (Cancer Genome Atlas Research
Network, 2012; Martinez et al, 2014). We performed a semi-
supervised gene expression clustering analysis and revealed two
underlying transcriptome classes in the rare EOC histological
types, which were associated with differential outcome in both
univariate and multivariate analysis. In addition, we conducted
validation analyses in public data sets that contained expression
measurements on the rare histological types, confirming existence
of the two discovered transcriptome classes and significant PFS
association. Noticeably, resulting classes were consistently predictive
of PFS in rare histological tumours but not in HGSC tumours for the
Mayo Clinic and public data sets (for example, ‘Class-1’ cases had
better outcome compared with ‘Class-2’ cases). Through pathway
enrichment analysis, we also found that ‘Class-1’ tumours have more
active metabolic activities producing steroid hormones and also more
enriched with WNT signalling pathway, while the ‘Class-2’ tumours
are associated with the upregulation of cell cycle signalling pathway
and toll-like receptor (TLR) signalling pathway.

MATERIALS AND METHODS

Mayo Clinic study participants and expression profiling. Eligi-
ble cases (n¼ 131) were women aged 20 years or above who were
ascertained between 1992 and 2009 at the Mayo Clinic with
pathologically confirmed rarer histological types of invasive EOC
(73 EC, 39 CCC, 14 MC, and 5 LGSC). Initial clinical diagnoses
were confirmed by a gynaecologic pathologist (GLK), who verified
histology and tumour grade and reviewed each tissue to ensure
70% tumour content prior to RNA extraction. Progression and
vital status were obtained from the Mayo Clinic Tumor Registry,
electronic medical records, and active patient contact. All cases
provided informed consent for use of their tissues and medical
records in research; all protocols were approved by the Mayo
Clinic Institutional Review Board. Additional details on study
participants have been described elsewhere (Cicek et al, 2013).

PFS time was defined as time from the date of diagnosis to the
date that second-line therapy was initiated for a clinically-
actionable tumour recurrence, accounting for date of study entry
(left truncation). Clinical characteristics examined as covariates

included histology (EC, CCC, MC, LGSC), stage (I, II, III/IV),
grade (low, high), surgical debulking status (no macroscopic
disease, others), age (o50, 50–59, 60–69, 70–79, 80þ ), body
mass index at diagnosis, pre-surgical CA125, and ascites (yes, no).
Cox regression was used to estimate hazard ratios and 95%
confidence intervals, including multivariate stepwise variable
selection. Univariate analysis of clinical features revealed that
histology, grade, stage, and surgical debulking status significantly
associated with PFS with P-value o0.05. Following stepwise
variable selection for the multivariate analysis, only stage and
surgical debulking status remained significantly associated with
PFS. Clinical characteristics, along with univariate and multivariate
associations with PFS are shown in Table 1.

RNA from fresh frozen tumours of each patient was extracted
and assessed using Agilent Whole Human Genome 4� 44 K
Expression Arrays as previously described (Goode et al, 2013;
Konecny et al, 2014). Batch effects were corrected to adjust Cy5,
Cy3 labelling difference observed among experimental batches,
using ‘ComBat’, an empirical Bayesian approach (Johnson et al,
2007). TCGA-based HGSC transcriptome subtypes were assigned
to each tumour as described previously (Konecny et al, 2014).

Semi-supervised expression clustering. For Mayo Clinic internal
discovery set (n¼ 66), a semi-supervised clustering technique
implemented in R ‘Superpc’ package (Bair and Tibshirani, 2004)
was applied to normalised log-ratio expression (Supplementary
Figure 1A). The ‘semi-supervised’ aspect of the analysis determined
a reduced set of features (gene probe sets), expression levels of
which were associated with PFS. Using the internal discovery set,
Cox models were fit to each of the features separately to examine
the association between expression level and PFS. The features
were then ranked based on their strength of association with PFS,
and the top expression probes were selected for subsequent
clustering analysis using principal component analysis. The
optimal number of expression probes was selected to be 960 using
a 10-fold cross-validation procedure.

As implemented in the R ‘Superpc’ package, clustering was done
by projecting a probe-by-sample expression data matrix of the
selected probes in the first principal component direction, using
singular value decomposition. To achieve a discrete group
assignment, the median of the first principal component projection
was used as a cutoff (Bair and Tibshirani, 2004). On the basis of the
predictive projection generated using the discovery set, we further
predicted transcriptome class memberships using centroid-based
similarity score, as described in following section.

Expression centroid-based class similarity score. Based on
derived class-predictive probes from semi-supervised clustering,
we summarised expression centroid for Class-1 and Class-2 as the
averaged expression vector for assigned samples in Mayo Clinic
discovery set. Similar to breast cancer studies using an expression
centroid to determine transcriptome class (Tibshirani et al, 2002;
Parker et al, 2009), we defined a class similarity score as the
Pearson’s correlation coefficient between expression centroid and
corresponding signature gene expression of one test sample. For
simplicity, we defined a differential correlation score for each
tumour sample as DiffCorr1vs2¼Pearson’s Correlation(sample,
centroid1)–Pearson’s Correlation(sample, centroid2). Therefore, a
tumour sample with DiffCorr1vs240 will be assigned as ‘Class-1’
membership, and o0 to ‘Class-2’.

For Mayo Clinic validation samples (N¼ 65) having the same
Agilent 4� 44 k platform with discovery set, probe-level expres-
sions were used to compute DiffCorr1vs2 and predict class
memberships, according to probe-level centroids (Supplementary
Table 1). For public data sets with expression measurements from
different microarray platforms, gene-level expressions were used,
with the overlapped genes between given sample and gene-level
centroids (Supplementary Table 2).
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Other validation data sets. Several validation sets were also used
(Bonome et al, 2008; Tothill et al, 2008; Crijns et al, 2009; Denkert
et al, 2009; Mok et al, 2009; Cancer Genome Atlas Research
Network, 2011; Mateescu et al, 2011; Bentink et al, 2012; Ferriss
et al, 2012; Pils et al, 2012; Yoshihara et al, 2012; Karlan et al,
2014). One Mayo Clinic HGSC data set consisted of additional 372
HGSC cases, in which 174 cases from a previous study for EOC
patients in the Mayo Clinic (Konecny et al, 2014). Fifteen public
expression data sets were retrieved from a curated ovarian cancer
transcriptome database (Ganzfried et al, 2013), with organised
clinical information, such as survival/progression time, histology,
grade, stage, and debulking status. From the database, two clinical
annotations ‘summarygrade’ (low-grade/high-grade) and ‘histolo-
gical_type’ were used to determine expression samples of rare
histological types. With a note, we used ‘grade’ 1 and ‘histologi-
cal_type’ to determine LGSC samples according to previous studies
(Ayhan et al, 2009; Vang et al, 2009). Expression samples of
tumours with undetermined or other histological type (e.g.,
borderline) were excluded. Where multiple probe sets mapped a
gene, the probe set with the highest mean across all data sets of the
sample platform was utilised (Miller et al, 2011).

After using ‘Combat’ analysis to eliminate per-study batch
effects across 15 data sets with at least 50 eligible samples, total
2460 EOC expression samples were used in the analysis, including
78 EC, 70 LGSC, 27 MC, 24 CCC, and 2261 HGSC. Out of 199 rare
histological cases across 9 public data sets, 91 samples had

recurrence information, and 57 samples had PFS, stage, and
debulking information for univariate and multivariate associations,
respectively. Out of 2261 HGSC cases across fifteen public data
sets, 967 had recurrence information, and 595 samples had PFS,
stage, and debulking information for univariate and multivariate
associations, respectively. Information on the 15 studies included
in the validation and summary of the clinical covariates are
summarised in Supplementary Tables 3 and 4.

RESULTS

Among the 131 Mayo Clinic invasive EOC patients studied, 37
(28.2%) experienced recurrent disease (Table 1). The internal
discovery (n¼ 66) and validation (n¼ 65) sets were split randomly
with a balance distribution in clinical characteristics
(Supplementary Table 5, Supplementary Figure 1A). Two tran-
scriptome classes were derived from the discovery set only
(n¼ 66), referred as Class-1 and Class-2. In the discovery set,
cases in the Class-1 were associated with longer PFS and fewer
recurrence events as compared with the Class-2 (Figure 1A and
Table 1). Using a cross-validation procedure, 960 expression probe
sets mappable to 705 genes were determined to be used in semi-
supervised clustering and predictive of derived tumour classes
(Supplementary Tables 1 and 2, Supplementary Figure 1B and C).

Table 1. Clinical characteristics and association with PFS for 131 Mayo Clinic EOC patients with endometrioid, clear cell,
mucinous, or low-grade serous tumours

N (%) or
median (range)

Univariate
HRa (95%CI)

Univariate
P-value

Multivariate
HRb (95%CI)

Multivariate
P-value

Progression status at last follow-up
No progression 94 (71.8%) NA NA
Progression 37 (28.2%)

Length of follow-up, months 102.7 (0.4, 198.7) NA NA

Age at diagnosis Per category trend HR 0.06
o50 27 (20.6%)
50–59 45 (34.6%)
60–69 34 (26.0%) 1.35 (0.99, 1.83)
70–79 15 (11.5%)
80þ 10 (7.6%)

Age at diagnosis 58 (21.0, 88.0) 1.03 (1.00, 1.06) 0.06

Body mass index (kg m�2) 28.4 (18.1, 53.3) 1.03 (0.97, 1.09) 0.36

Log10 pre-surgery CA125 2.27 (1.06, 4.57) 0.99 (0.54, 1.82) 0.98

Stage
I 61 (46.6%) REF REF
II 18 (13.7%) 3.63 (1.05, 12.59) 0.0418 2.62 (0.72, 9.52) 0.1424
III/IV 52 (39.7%) 9.38 (3.59, 24.52) o.0001 7.50 (2.78, 20.26) o.0001

Grade
Low 29 (22.1%) REF
High 102 (77.9%) 2.88 (0.88, 9.40) 0.0792

Debulking
Optimal; no macroscopic disease 94 (71.8%) REF REF
Others 37 (28.2%) 3.69 (1.90, 7.18) 0.0001 2.21 (1.10, 4.44) 0.0255

Ascites
Yes 44 (41.5%) REF 0.24
No 62 (58.5%) 0.62 (0.28, 1.37)
Unknown 25

Histology
Endometrioid 73 (55.7%) REF 0.3394
Clear cell 39 (29.8%) 1.61(0.82, 3.17)
Mucinous 14 (10.7%) 0.00(0.00,—)
Low-grade serous 5 (3.8%) 2.98(0.67, 12.93)

Abbreviations: CI¼ confidence interval; EOC¼ epithelial ovarian cancer; HR¼ hazards ratio; NA¼ not applicable; PFS¼progression-free survival; REF¼ reference group.
aUnadjusted univariate hazard ratios from Cox proportional hazards regression analysis; bold indicates Po0.05; progression status as of August 28, 2015; length of follow-up calculated among
94 patients without progression; body mass index HR represents risk per-unit increase; HRs for pre-surgery CA125 based on log10(pre-surgery CA125).
bMultivariate hazard ratios from Cox proportional hazards regression analysis using significant variables selected from univariate analysis and stepwise model selection.
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For classifying unseen samples in internal and public validation
sets, we assigned the class membership with more resembled
expression centroid (seen in Materials and methods section).

In the Mayo Clinic validation set, Class-1 membership showed
an independent contribution to predict better PFS, shown as
Figure 1B and Table 2, with univariate analysis P¼ 8.2� 10� 3 and
multivariate analysis P¼ 2.8� 10� 2 after adjusting for stage and
debulking status. In public validation sets for samples with PFS
information (n¼ 91), the Class-1 membership was associated with
better prognosis in univariate analysis (P¼ 1.4� 10� 3), shown as
Figure 2, and still marginally significant association with multi-
variate analysis (P¼ 6.8� 10� 2, n¼ 57). Univariate and multi-
variate analysis details were shown in Table 2. When examining
clinical characteristics with predicted classes in internal validation
set and public combined validation set, we found several consistent
relationships with discovered two classes (Supplementary Table 3):
Class-1 tumours were significantly enriched for patients with low-
grade, early stage diseases, and had a lower proportion of patients
with histology of CCC, and higher proportion of MC.

In addition, when TCGA expression signatures of four
molecular subtypes of HGSC EOC was applied to these samples,
Class-1 tumours had higher proportion of patients with the
TCGA-defined ‘Differentiated’ molecular subtype and lower
proportion of ‘Immunoreactive’ subtype (Cancer Genome Atlas
Research Network, 2011; Verhaak et al, 2013). In order to examine
the relationship between expression classes and stromal contam-
ination, we also evaluated association between class membership vs

tumour content, which were evaluated by a gynaecologic
pathologist (GLK), and found no significant association
(P¼ 0.14, Supplementary Table 3).

To investigate whether transcriptome classes from rarer
histology samples predict PFS in HGSC, we also assigned Class-
1/Class-2 memberships in Mayo HGSC data set and across 15
public data sets (Dressman et al, 2007; Wu et al, 2007; Bonome
et al, 2008; Tothill et al, 2008; Crijns et al, 2009; Denkert et al,
2009; Mok et al, 2009; Yoshihara et al, 2010; Cancer Genome Atlas
Research Network, 2011; Mateescu et al, 2011; Bentink et al, 2012;
Ferriss et al, 2012; Pils et al, 2012; Yoshihara et al, 2012; Karlan
et al, 2014). In Mayo HGSC data set (n¼ 372), the class
membership resulted from the expression signature was not
associated with PFS (P¼ 0.17) (Figure 3A). In 15 public data sets
involving HGSC cases (n¼ 967), Class-1/-2 membership was
significant (P¼ 1.9� 10� 2) in univariate PFS association
(Figure 3B and C) but not significant in multivariate association
(P¼ 0.15) when adjusting for stage and debulking status (details
seen in Table 3).

To identify pathways differentially enriched between two
transcriptome classes in entire Mayo rare histology cohort, we
first chose differentially expressed genes based on statistical
confidence and substantial fold changes (false discovery rate
(FDR) o1% and absolute log2 fold-change40.5), resulting to 965
and 713 genes upregulated in Class-1 and Class-2, respectively
(Supplementary Figure 2 and Supplementary Table 6). Then, we
performed KEGG pathway enrichment analysis of these genes
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Table 2. Univariate and multivariate PFS associations in the Mayo Clinic and public data sets of endometrioid, clear cell,
mucinous, or low-grade serous EOC patients

The Mayo Clinic data set (n¼131) Public rarer histological samples (n¼91)

Discovery set (n¼66) Validation set (n¼65) Public validation set (n¼91)

HR 95% CI P-value HR 95% CI P-value HR 95% CI P-value

Univariate analysis
Class-1 vs Class-2 0.05 (0.01–0.24) 1.2�10�4 0.07 (0.01–0.49) 8.2� 10� 3 0.38 (0.21–0.69) 1.4� 10� 3

Multivariate analysis n¼66 n¼65 n¼57
Class-1 vs Class-2 0.09 (0.02–0.42) 2.4�10�3 0.08 (0.009–0.77) 2.8� 10� 2 0.48 (0.22–1.05) 6.8� 10� 2

Stage (I vs III and IV) 0.15 (0.02–0.95) 4.4�10�2 0.35 (0.093–1.34) 0.12 1.5� 10� 8 (4.96�10�9–
4.43�10�8)

o2�10�16

Stage (II vs III and IV) 0.35 (0.11–1.17) 0.09 0.80 (0.23–2.78) 0.73 1.41 (0.42–4.74) 0.58

Debulking statusa 1.10 (0.42–2.90) 0.84 3.44 (1.35–8.76) 9.4�10�3 3.29 (1.76–6.16) 2.0� 10� 4

Abbreviations: CI¼ confidence interval; EOC¼ epithelial ovarian cancer; HR¼ hazards ratio; PFS¼progression-free survival.
aMayo: other vs having no macroscopic disease; Public: suboptimal vs optimal.
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using DAVID online annotation tool (http://david.abcc.ncifcrf.
gov/) (Huang da et al, 2009a, b). Significantly enriched pathways
with FDR o20% are presented in Supplementary Table 7. For
upregulated genes in Class-1, the most enriched pathways included
‘hsa00140: Steroid hormone biosynthesis’ (FDR¼ 0.005%), which
may suggest differential metabolite activities producing hormones
between Class-1 and Class-2. Noticeably, Class-2 upregulated genes
were highly enriched in cell cycle activities: ‘hsa04110: Cell cycle’
(FDR¼ 0.86%), consistent with more rapid recurrence in Class-2
patients. Class-2 upregulated genes were also found enriched in
another immune-related ‘hsa04620: Toll-like receptor signalling
pathway’ (FDR¼ 2.37%). Clinical covariates and predicted mem-
bership information for all the public expression samples used in
this study (n¼ 2460) are presented in Supplementary Table 8.

DISCUSSION

Historically, EOC has been classified according to patterns of
abnormal differentiation and morphology, as serous (fallopian
tube-like), endometrioid (endometrium-like), mucinous (endocer-
vical-like), and clear cell (mesonephros-like) (Auersperg et al,
2001), with serous histology samples further classified into low-
and high-grade categories (Vang et al, 2009). In addition, some
researchers have suggested that EOC histological types could be
collapsed as two types: the so-called type-II refers to the HGSC
type arising from the fallopian tube, and all the remaining types
(i.e., EC, CCC, MC, and LGSC) belonging to type-I (Kurman et al,
2008). Meanwhile, CCC, MC, and EC tumours present with

differing clinical characteristics; CCC tumours are usually of
advanced stage, and MC tumours are often low grade and
diagnosed at an early stage. EC is a very diverse histology type by
itself, while lower grade usually associated with better outcome,
high-grade EC cases were often reported with TP53 mutations and
genome instability, resembling HGSC disease (Prat, 2012).

Despite established histological classification of EOC, huge
challenges reside in clinical practices in that very few therapeutic
options are available for treating women with EOC, and treatment
is not specific to histological type. Therefore, revealing prognostic
tumour-based molecular information is critical to understand and
potentially find treatment solutions for EOC patients. As the most
common EOC histological type, HGSC has received much research
attention including by the TCGA (Cancer Genome Atlas Research
Network, 2011), which resulted in the discovery of four expression
subtypes with different pathways activated, that are prognostic
(Konecny et al, 2014), and may lead to different potential
therapeutic targets (Liu and Matulonis, 2014; Secord et al, 2014).
Inspired by the successful example in HGSC, we investigated the
existence of prognostic tumour expression classes in collections of
rarer non-HGSC EOC.

In this expression study, we investigated the utility of using
transcriptome classes as markers to define EC, MC, CCC, and
LGSC EOC tumours with different progression risk. Our semi-
supervised clustering analysis on whole-genome gene expression
data identified two prognosis classes derived from a discovery set
and replicated in a validation set of rare histological EOC tumours
seen at the Mayo Clinic. The association with PFS of derived
classes was statistically significant even after controlling for the
covariates that contribute to PFS in multivariate models (stage and
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debulking status); as a contrast, histology was not predictive of PFS
in multivariate model as shown in Table 1, underscoring the needs
to better understand molecular mechanisms. With expression
signature derived from Mayo Clinic discovery set, we externally
validated the existence of two classes in nine public expression
data sets with rare histological samples, and confirmed Class-1
was associated with better PFS in subset of samples with PFS
information. Comparing with established clinical factors stage and
debulking status, Class-1/Class-2 membership provided additional
prognostic value, shown in Table 2. These PFS associations
were not suggested in analysis of either Mayo Clinic or
public HGSC cohorts after controlling for stage and debulking
(Table 3).

According to PFS analysis of Mayo Clinic patients, stage and
surgical debulking as established factors affecting recurrence
achieve association with high significance (debulking status:
univariate P-value¼ 0.0001). This underscores the importance of
early detection of EOC. Also, an aggressive surgical effort leading

to no remaining macroscopic disease, whenever possible, is critical
to reduce the risk of tumour progression. Tumour grade was a
factor significantly associated with PFS in univariate analysis but
lost its significance in multivariate analysis which can likely be
explained by the correlation of grade and stage (65.5% of low-grade
rare histological cancers were diagnosed at stage I, Fisher’s exact
test P¼ 3.9� 10� 2). Similarly, histology alone was predictive of
PFS, but did not provide additional prediction towards PFS beyond
stage and grade information. In contrast, our rare subtype
transcriptome memberships significantly predicted PFS outcome
after accounting for stage and grade in Mayo Clinic patients, as
well as in the public data sets.

Compared with previous non-HGSC EOC studies (Tothill et al,
2008), our study represents the largest and most comprehensive
collection with the greatest number of histological types and
external validations. Also, instead of combining HGSC and non-
HGSC types (Tothill et al, 2008), we performed semi-supervised
clustering only in non-HGSC types, and we investigated resulting
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class in HGSC and non-HGSC tumours separately. The advantage
of this approach is that the predominance of HGSC did not impact
clustering. The distinctly different PFS associations for Class-1/
Class-2 membership in patients with HGSC and non-HGSC
tumours suggest that they should be separately studied in the
future.

Through pathway enrichment analysis after differential expres-
sion analysis, we also highlighted different biological pathways
behind each class of tumours. Class-1 tumours were associated
with more active hormone activities, reflected by enrichment of
‘Steroid hormone biosynthesis’ pathway and ‘Metabolism of
xenobiotics by cytochrome P450’. Progesterone and oestrogen
are steroid hormones regulating normal menopause cycle, and
have been studied for potential roles in ovarian cancer aetiologies
and prognosis (Lukanova and Kaaks, 2005; Sieh et al, 2013).
Noticeably, progesterone receptor (PR) was significantly upregu-
lated (Class-1 vs -2 log2 ratio foldchange¼ 2.2, t-test FDR¼ 1.36
� 10� 11, Supplementary Table 6). The known protective effects of
progesterone may contribute to the less aggressive progression in
Class-1 tumours. This observation was also reported by the
Ovarian Tumour Tissue Analysis Consortium (Sieh et al, 2013), in
which they found an association between high immunohistochem-
istry based protein expression PR measurements and improved
disease-specific survival in EC (log-rank Po0.0001) and HGSC
(log-rank P¼ 0.0006). The other enriched pathway in ‘Class-1’
upregulated genes is WNT signalling pathway. Although frequent
mutations of pathway members were only expected for EC, WNT
pathway was found implicated in other ovarian histological types
and therefore has been studied for potential target treatments
(Arend et al, 2013, 2014).

As a contrast, genes upregulated in Class-2 were associated with
noticeably active cell cycle activities with several cell cycle regulator
genes, including cyclin E1 (Class-2 vs � 1 log2 ratio
foldchange¼ 1.0, t-test FDR¼ 3.26� 10� 7), which is a gene
found frequently amplified independent of BRCA1/2 mutations,
and associated with primary treatment resistance in HGSC
(Nakayama et al, 2010; Etemadmoghadam et al, 2013). Another
enriched pathway associated with Class-2 is TLR pathway, the
signalling pathway of which in tumour cells may result in
immunosuppression and thereby furthering tumour growth
(Muccioli and Benencia, 2014). With summarised pathway
interpretations, we can possibly name ‘Class-1’ as ‘hormone-
WNT’ class and ‘Class-2’ as ‘cyclin-TLR’ class, call for future
studies focusing on class-specific pathway aberrations, and
investigate treating rarer histological of ovarian tumours according
to discovered classes.

In conclusion, this comprehensive study revealed the existence
of two tumour transcriptome classes among EC, MC, CCC, and
LGSC EOC and found that transcriptome classes associated with
PFS. Results in Mayo Clinic cases were validated in non-HGSC
cases of public rarer histological expression samples, but not in

either Mayo Clinic HGSC or public HGSC EOC patients,
suggesting discovered classes are unique to rarer histological
EOC. Pathway enrichment analysis further showed that differen-
tially upregulated genes in Class-1 and Class-2 appeared to be
associated with distinct molecular pathways. Future work is needed
to validate current findings in even larger non-HGSC EOC
collections and to consolidate pathway mechanisms of the revealed
transcriptome classes for investigating therapeutic potentials.
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