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Abstract 

The epidemiologic literature estimating the indirect or secondary effects of the COVID-19 

pandemic on pregnant people and gestation continues to grow. Our assessment of this 

scholarship, however, leads us to suspect that the methods most commonly used may lead 

researchers to spurious inferences. This suspicion arises because the methods do not account for 

temporal patterning in perinatal outcomes when deriving counterfactuals, or estimates of the 

outcomes had the pandemic not occurred. We illustrate the problem in two ways. First, using 

monthly data from US birth certificates, we describe temporal patterning in five commonly used 

perinatal outcomes. Notably, for all but one outcome, temporal patterns appear more complex 

than much of the emerging literature assumes. Second, using data from France, we show that 

using counterfactuals that ignore this complexity produces spurious results. We recommend that 

subsequent investigations on COVID-19 and other perturbations use widely available time-series 

methods to derive counterfactuals that account for strong temporal patterning in perinatal 

outcomes. 
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The epidemiologic literature includes several reports counterintuitive declines in preterm 

birth during the early months of the COVID-19 pandemic (1–4).
 
These short-term improvements 

in perinatal and maternal health offer an opportunity to better understand preterm birth and 

identify new prevention strategies. Sorting out how changes in clinical care, disruption of social 

ties (5), widened economic inequality (6), and changes in environmental, occupational, and 

infectious exposures (7) affected preterm birth would seem an important, albeit difficult, research 

program for epidemiology. We believe that such a research program should start with careful 

assessment of the current literature reporting changes in perinatal outcomes early in the 

pandemic. Based on our assessment of that scholarship (8, 9), we are concerned that the study 

designs most commonly used have a significant limitation. The limitation stems from what we 

view as a suboptimal choice of counterfactuals, or outcomes that would be expected had the 

COVID-19 pandemic not occurred. We elaborate on this study design challenge for estimating 

COVID-19 “effects” especially on perinatal outcomes, illustrate how use of naïve 

counterfactuals produces spurious results, and recommend alternative methods that, while not 

novel, appear largely unused by perinatal epidemiologists.  

 

The Challenge 

Describing the pandemic’s effect on maternal and perinatal outcomes requires 

“counterfactuals” or estimates of the outcomes had the pandemic not occurred. Investigators 

often assume that the mean of an outcome’s pre-pandemic values is its expected value and, 

therefore, serves as its intra-pandemic counterfactual. However, this assumption does not apply 

if the outcome in pre-pandemic cohorts exhibits patterns over time. Such patterns, or ORIG
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“autocorrelation,” imply that the expected value of measurements is not their mean, but instead 

an extrapolation from the history. 

Autocorrelation in birth rates can arise from exogenous forces such as culture or climate 

that induce patterns (e.g., seasonality) in behavior and biology or by factors that are endogenous 

to the system. Autocorrelation can confound tests like ours because “programmed” high or low 

rates in the perinatal outcome can coincide with, for example, the onset of an epidemic. 

Figure 1 plots the monthly rate of preterm birth in the US from January 2014 to 

December 2019 (represented by closed circles). Visual inspection of the time series suggests 

several key features. First, the overall series appears to be trending upward, which aligns with 

reports that preterm birth rates have risen 7% since 2014 (10). Second the series appears to be 

highly seasonal, meaning that peaks and troughs occur roughly at the same time each year (11–

13). In addition to seasonality, there may be other types of autocorrelation not easily detected by 

visual inspection. These may include the tendency to remain elevated or depressed, or to 

oscillate, after high or low values.  

 

The Temptation 

 A naïve approach, used in many papers assessing the impact of the pandemic on perinatal 

outcomes and summarized in two meta-analyses (8, 9), ignores autocorrelation and makes 

questionable counterfactual approximations. This work often focuses on a clinically-defined 

population and compares outcomes observed immediately prior to the pandemic to those 

observed after (14–17). Such an approach does not consider well-documented patterns of 

seasonality and trend in perinatal outcomes described above (11–13). ORIG
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 Much more common in the pandemic-perinatal literature is the use of what we call the 

“stacked calendar” approach (2–4, 18–21). This approach adjusts for patterns in the data by 

comparing the outcomes of a given period to the outcomes of the same period but in a prior year 

or years (e.g., comparing March of 2020 to Marches of 2015-2019). For example, an analysis of 

preterm birth and stay-at-home orders in Tennessee compared births occurring between March 

22 to April 30, 2020 to births occurring between the same time period but aggregated over 2015-

2019 (18). A similar approach using data from California compared preterm birth rates occurring 

between April and July 2020 to the same period four years prior (e.g., 2016-2019) (19). These 

approaches adjust for seasonality by capturing month-of-year effects and often control for 

individual-level sociodemographic factors (e.g., race/ethnicity, maternal age) that are believed to 

induce seasonality in perinatal outcomes.  The “stacked calendar” approach, however, does not 

account for other types of autocorrelation, including upward or downward longer-term trends 

and the tendency for high or low values in one month to persist into subsequent months. This 

omission is particularly important for an outcome like preterm birth, which as described above, 

has been increasing in the US since 2014. 

 

The Alternative 

One way to devise counterfactuals that account for autocorrelation is to use time series 

methods widely applied in engineering and in the natural and social sciences to systematically 

detect and mathematically model temporal patterning (22, 23). Patterns detected by these 

methods include seasonality and other cycles as well as linear trends. Other detected shapes 

include “plateaus” or the tendency for a high or low value to persist for several or more cohorts 

and to then drop abruptly back to previous levels, or “spike and decay” patterns, which describe 
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a high or low value followed by similarly high or low, but declining, values (24, 25). After such 

estimation of a counterfactual value, the researcher can implement an Interrupted Time Series 

(ITS) study design in which the COVID-19 pandemic serves as the interruption of interest. ITS 

methods are well-described in the epidemiologic literature (26–28). 

One of the many approaches to accounting for autocorrelation in time series data is to use 

an ARIMA model. These models, developed by Box and Jenkins, can have three components: 

the Autoregressive, or AR term, which captures the tendency for high or low values to be 

remembered into the subsequent time periods; the Integrated, or I term, which characterizes non-

stationarity (e.g., secular trend, strong seasonality); and the Moving Average, or MA term, which 

is similar to an AR term in that it captures “memory” of a high or low value but disappears much 

more quickly than an AR and is often characterized as an “echo.” Use of the AR, I, and MA 

components to parsimoniously describe autocorrelation in the perinatal outcome removes the 

threat of confounding due to predictably “scheduled” patterns.    

Using monthly data from US birth certificates from January 2014 to December 2019, we 

evaluated five perinatal outcomes of interest to assess presence of autocorrelation. These 

outcomes include monthly birth counts, rate of preterm birth (<37 weeks gestational age), rate of 

extreme preterm birth (<28 weeks gestational age), rate of cesarean delivery, and the sex ratio at 

birth. Box-Jenkins methods detected autocorrelation in all five series (Table 1). We detected 

strong seasonality in all five series, and all series except for sex ratio at birth contained additional 

patterning other than a seasonal component (e.g., other than an AR or I at lag 12 months). Note 

that our calculation of rates for this exercise uses births as the denominator, rather than 

conceptions, which yields time series that are sensitive to both seasonal changes in conceptions ORIG
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as well as changes in the risk among conception cohorts. Alternatively, one could estimate 

autocorrelation in conception cohort patterns as well. 

Using these patterns, the researcher can derive statistically expected, or “counterfactual”, 

values for the months during the COVID-19 pandemic. The open circles of Figure 1 show 

expected monthly preterm birth rates for all 12 months of 2020 based on monthly preterm birth 

rates from January 2014 to December 2019. The researcher could then determine whether the 

difference between the observed and expected values for the hypothesized months during the 

COVID-19 pandemic differ detectably from 0. Whereas we use software from Scientific 

Computing Associates Corp (River Forest, IL), the ARIMA routines are also available in other 

standard packages (e.g., R [Vienna, Austria], SAS [Cary, NC], Stata [College Station, TX]).  

 

Real-world example of spurious results: COVID-19 lockdown and extreme preterm birth 

in France 

We provide one example which compares the stacked calendar approach to a time-series 

approach. We examine the continuous outcome of the weekly rate of extreme preterm birth 

(ePTB; <28 weeks gestational age) in France, a country which imposed a strict nationwide 

lockdown from the 17
th

 of March and lifted on the 10
th

 of May, in response to the COVID-19 

pandemic (29). We focus on ePTB because early reports from Denmark and Ireland found that 

reductions in preterm birth were concentrated among this population (2, 3). 

Using the stacked calendar approach, we compared the rate of ePTB during the lockdown 

period in 2020 to the same eight weeks in the previous year—that is, Spring 2019. Results 

indicate a reduced odds of ePTB during the lockdown period (adjusted Odds Ratio [OR]= 0.84; 

95% CI: 0.71 - 0.99). By contrast, when we employ a time-series approach, we identified more 
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nuanced patterns in ePTB before the lockdown period. After controlling for these patterns, the 

lockdown results differ substantially from the stacked calendar approach in that we do not reject 

the null for ePTB (OR = 0.98; 0.82 - 1.17). 

Additional exploration provides some insight into the discrepant findings. One large 

positive outlier in the week beginning April 9, 2019, which lies outside the 99% confidence 

interval for the weekly ePTB rate over the entire series (30), drives the divergence between the 

stacked calendar counterfactual and the observed pandemic values. By contrast, the time-series 

approach does not heavily weight this Spring 2019 outlier when arriving at forecasts of the 

counterfactuals for the pandemic period. We attribute this Spring 2019 outlier, as well as the 

inability of the stacked calendar approach to account for more nuanced patterning in ePTB, as 

inducing a spurious inference that ePTB fell during the first lockdown period in France. 

 

Conclusion 

Perinatal outcomes show strong patterning over time. Evaluating an “interruption” like 

the COVID-19 pandemic requires generating counterfactuals that take these patterns into 

account. While the literature includes prior applications of ITS for public health research (e.g., 

Bernal et al. 2017) (26), nearly all the perinatal epidemiology literature on the secondary effects 

of COVID-19 (i.e., >90% of articles in a recent meta-analysis) fails to fully control for time-

dependent autocorrelation and/or does not consider the possibility (7). The temptation to ignore 

such patterns may lead future researchers to use suboptimal study designs that yield spurious 

results. This circumstance would not move the field forward in that it would not be reproducible 

with the use of more appropriate study designs and could result in policies or clinical guidance 

that would be based on erroneous inferences. 
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Although the simple execution and interpretation of “stacked calendar” methods appeals 

to researchers, there are two reasons why derivation of counterfactuals using ITS seems more 

appropriate. First, ITS uses the full information of the dataset in providing a more stable 

reference group and minimizes random error if, as in the stacked calendar example from France, 

one outlier occurs during the time (i.e., weeks in March/April 2019) used as a “narrow” 

reference. Second, accounting for autocorrelation corrects for “confounding” by calendar time in 

the presence of temporal patterns—whether they arise due to biologic causes, changes in 

surveillance, or other non-stochastic reasons. Whereas ITS practitioners have considerable 

flexibility in their approach for deriving counterfactuals in the presence of autocorrelation, there 

are several requirements. For example, ITS studies that employ Box-Jenkins methods provide 

adequate study power with at least 50 evenly spaced time units before the interruption and 

require consistent data collection over these units (31). As it relates to the COVID-19 pandemic, 

monthly birth data starting in January 2015 (i.e., 62 monthly values from January 2015 to 

February 2020) would meet this requirement.  

Identification of COVID-19 effects on population health outcomes has its own unique 

challenges (e.g., disentangling what is meant by “exposure” to the pandemic; see Dmitris and 

Platt 2021) (32) which remain salient regardless of study design used—ITS or otherwise. 

Nevertheless, we hope this discussion helps researchers address a common challenge related to 

the derivation of counterfactuals in autocorrelated time series data that are especially common in 

perinatal outcomes research. 
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Table 1. Time-series results predicting monthly values of selected birth outcomes in the US from January 2014 to December 2019 as a 

function of autocorrelation. 

 
Parameter and Lag (in months) Births Preterm birth Extreme preterm 

birth 

Cesarean 

delivery 

Sex ratio at birth 

Coef. SE Coef. SE Coef. SE Coef. SE Coef. SE 

Constant     0.1077 0.0055 0.0062 0.0001 0.3159 0.0025 1.0473 0.0011 

Autoregressive term           

1   0.4278 0.1150       

3 0.5865 0.1110     0.3196 0.1312   

12   0.8595 0.0726 0.7105 0.0713 0.7343 0.0981 0.5499 0.1036 

Integrated term           

12 (yes)
a
 (yes)

a
         

Moving average term           

2 -0.3308 0.1318         

9         -0.3105 0.1392 -0.4364 0.1454     

Abbreviations: Coef, coefficient; SE, standard error. 
aThe series exhibited strong autocorrelation at lag 12 months, which required removal of seasonal cycles by taking the 12th difference (i.e., values at month t − 

12 subtracted from values at month t) to render the series mean stationary. 

 

 

 

 

 

 

 

 

 

 

 

 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T



 16 

Figure 1. Monthly rate of preterm birth (per 100 live births) in the US. Solid circles plot observed rates from January 2014 to 

December 2019. Open circles plot forecasted rates from January 2020 to December 2020 based on time-series modeling of seasonality 

and other forms of autocorrelation. Januarys are demarcated with vertical lines. 
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