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Recent studies indicate that mitochondrial pathways of apoptosis are potential
chemotherapeutic target for the treatment of esophageal cancer. Azoxystrobin (AZOX),
a methoxyacrylate derived from the naturally occurring strobilurins, is a known fungicide
acting as a ubiquinol oxidation (Qo) inhibitor of mitochondrial respiratory complex lII.
In this study, the effects of AZOX on human esophageal squamous cell carcinoma
KYSE-150 cells were examined and the underlying mechanisms were investigated.
AZOX exhibited inhibitory effects on the proliferation of KYSE-150 cells with inhibitory
concentration 50% (ICs5q) of 2.42 wg/ml by 48 h treatment. Flow cytometry assessment
revealed that the inhibitory effect of AZOX on KYSE-150 cell proliferation occurred with
cell cycle arrest at S phase and increased cell apoptosis in time-dependent and dose-
dependent manners. Cleaved poly ADP ribose polymerase (PARP), caspase-3 and
caspase-9 were increased significantly by AZOX. It is worth noted that the Bcl-2/Bax
ratios were decreased because of the down-regulated Bcl-2 and up-regulated Bax
expression level. Meanwhile, the cytochrome c¢ release was increased by AZOX in
KYSE-150 cells. AZOX-induced cytochrome ¢ expression and caspase-3 activation
was significantly blocked by Bax Channel Blocker. Intragastric administration of AZOX
effectively decreased the tumor size generated by subcutaneous inoculation of KYSE-
150 cells in nude mice. Consistently, decreased Bcl-2 expression, increased cytochrome
¢ and PARP level, and activated caspase-3 and caspase-9 were observed in the tumor
samples. These results indicate that AZOX can effectively induce esophageal cancer
cell apoptosis through the mitochondrial pathways of apoptosis, suggesting AZOX or its
derivatives may be developed as potential chemotherapeutic agents for the treatment
of esophageal cancer.

Keywords: azoxystrobin, human esophageal squamous cell carcinoma, apoptosis, mitochondrial pathway,
anti-tumor
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INTRODUCTION

Azoxystrobin (AZOX) is a methoxyacrylates derived from the
naturally occurring strobilurins (Abdelraheem et al., 2015) and
commonly used as a systemic fungicide in agriculture. It exerts
its fungicidal activity by inhibiting the ubiquinol oxidation (Qo)
center of fungal respiration complex III through cytochrome
pathway (Bartlett et al., 2002). Chronic AZOX treatment was
reported to reduce the body weight of the mice and inhibit de
novo lipogenesis in HepG2 cells through AMP-activated protein
kinase (AMPK) signaling (Gao et al., 2014).

Mitochondrial respiration is a complex of metabolic reactions
to provide the universal energy adenosine triphosphate (ATP)
in the cells via oxygen consumption process, which has recently
emerged as one of the strategies in cancer therapies (Jose
and Rossignol, 2013; Viale et al, 2015). Based on current
understanding and evidence, mitochondrial functions is essential
for tumor initiation, growth, invasion and metastasis (Enns
and Ladiges, 2012; Amoedo et al,, 2014; Tan et al., 2014). The
mitochondrial complex-III inhibitor, mahanine, could effectively
suppress cell proliferation by inducing GO/G1 phase arrest
in human glioblastoma multiforme cells (Bhattacharya et al.,
2014). Recently, an Food and Drug Administration (FDA)
approved anthelmintic drug, pyrvinium was demonstrated to
induce lymphoma T-cell apoptosis in mitochondrial respiration-
dependent manner (Xiao et al.,, 2016). Moreover, inhibition of
mitochondrial respiration by As;Os; showed a great potential
to enhance drug-induced apoptosis in human leukemia cells
(Pelicano et al., 2003). These findings raise the possibility that
mitochondrial respiration pathway can be a therapeutic target to
explore drugs for cancer treatment.

Recent studies revealed that enhanced mitochondrial
respiration may be involved in the radioresistance of esophageal
adenocarcinoma (EAC) by in vitro studies with consistent
observations in EAC patients (Lynam-Lennon et al., 2014).
Considering the close correlations between mitochondrial
respiration and tumor cell growth, we hypothesize that AZOX is
a potential candidate for esophageal cancer drug exploration.

In this study, we determined the in vitro and in vivo
anticancer effects of AZOX on representative esophageal
squamous carcinoma cell line KYSE-150 (Shimada et al., 1992)
with an emphasized investigation on the mitochondrial apoptosis
pathway.

MATERIALS AND METHODS

Cell Culture

The esophageal cancer cell lines KYSE-150, KYSE-70, and
KYSE-450 were gifted by Dr. Johnny C.O. Tang of Hong
Kong Polytechnic University (Hong Kong). KYSE-150 cell
were cultured in Roswell Park Memorial Institute (RPMI)
1640 supplemented with 2% fetal bovine serum (FBS) while
KYSE-70 and KYSE-450 cell lines were grown in RPMI 1640
supplemented with 10% FBS (Shimada et al., 1992). HCT116,
SW480, Huh-7, HepG2, and MIHA cell lines were purchased
from American Type Culture Collection (ATCC, Manassas,

United States). Cells were cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM) supplemented with 10% FBS according with
the instruction. All the culture medium was supplemented
with 100 units/ml penicillin and 100 pg/ml streptomycin
(Thermo Fisher Scientific Inc., MA, United States). Cells were
maintained in a humidified atmosphere containing 5% CO;
at 37°C.

Chemicals and Reagents

AZOX (illustrated in Figure 1A) was purchased from Sigma-
Aldrich (MO, United States) and dissolved in dimethyl
sulfoxide (DMSO) (Sigma-Aldrich, MO, United States)
with stock concentration at 25 mg/ml and stored in —20°C.
Bax channel blocker was purchased from Tocris Bioscience
(Bristol, United Kingdom). Antibodies for p-actin, cleaved
caspase-3, cleaved caspase-9, cleaved caspase-8, f-actin,
Bcl-2, Bax, Bad, and cleaved-poly ADP ribose polymerase
(PARP) were purchased from Cell Signal Technology
(MA, United States). The reagents for mitochondrial protein
extraction were purchased from Merck Millipore (MA, United
States).

MTT Assay

The effects of AZOX on cell proliferation and viability of
different cell lines were assessed by 3-(4,5-dimethylthiazol-2-
y1)-2,5-diphenyltetrazolium bromide (MTT) assay. MTT powder
was purchased from Sigma-Aldrich (MO, United States). Briefly,
cells with a density of 3000 cells/well was seeded in 96-well plates
24 h prior to AZOX treatment. Then the medium was removed
and cells were exposed to different concentration of AZOX for
another 48 h followed by MTT assay. Independent experiments
were performed in triplicate.

Cell Cycle Analysis

The cell cycle phase distribution was determined by
fluorescence-activated cell sorting (FACS) analysis of cellular
DNA content. KYSE-150 cells were treated with AZOX in
different dosages and time points. Then cells were dissociated
with 0.05% trypsin-ethylenediaminetetraacetic acid (EDTA)
(Thermo Fisher Scientific Inc., MA, United States), washed with
cold phosphate-buffered saline (PBS), and fixed in 70% ethanol
at 4°C overnight. The fixed cells were washed twice with PBS
and stained with propidium iodide (PI) working buffer (PI
50 pg/ml, RNase 2.5 pug/ml) in the dark at room temperature for
1 h. The stained cells were assessed by flow cytometry (Beckman
Coulter, CA, United States) and analyzed with ModFit 4.0
software.

Cell Apoptosis Analysis

The pro-apoptosis effect of AZOX on KYSE-150 was
accessed with FITC Annexin V Apoptosis Detection Kit
(BD Biosciences, San Jose, CA, United States) following the
standard protocol. Briefly, cells were treated with AZOX with
different concentration or time points, and dissociated into single
cells with 0.05% trypsin. After washing twice with PBS, cells were
stained with annexin V/PI for 20 min at room temperature in
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the dark and then detected by flow cytometry (Beckman Coulter,
United States). The percentage of apoptosis cells were expressed
as: (a) early apoptosis cancer cells (annexin +ve; PI —ve), (b) late
apoptosis cancer cells (annexin +ve; PI 4ve) (Paul et al., 2013).

Western Blot Analysis

KYSE-150 cells treated with AZOX for different concentration
or different time course. Whole cell lysates were obtained
by suspending the cells with pre-cold RIPA lysis buffer
(50 mM Tris-HCI, 0.1% SDS, 150 mM NaCl, 2 mM EDTA,
50 mM NaF, 0.5% sodium deoxycholate, 1% NP-40, pH = 7.4)
for 30 min on ice, followed by centrifugation at 14,000 rpm for
10 min at 4°C. To detect the expression level of Bax, Bcl-2, and
Bad, mitochondria fractions were extracted. Briefly, cells were
collected and washed with ice-cold PBS, centrifuged at 600 x g
for 5 min. The cell pellets were resuspended and homogenized
in 1x cytosol extraction buffer mix. After centrifugation steps,
the supernatant was isolated as cytosolic fraction. The cell pellets
were then dissolved in mitochondria extraction buffer mix and
vortex for 10 s to obtain the mitochondrial fraction. Western blot
analysis was conducted as described previously (Lin et al., 2015).
Protein concentration was detected using Pierce BCA protein
assay kit (Thermo Fisher Scientific Inc, MA, United States),
subjected to 10% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) and transferred to polyvinylidene
difluoride membranes. After blocking with 5% bovine serum
albumin in PBS-Tween 20 buffer (PBST) for 1 h at room
temperature, the membranes were incubated with the primary
antibodies overnight at 4°C. After three-time washing with PBST,
the membranes were re-incubated with corresponding secondary
antibodies for 1 h at room temperature and then subjected to
electrochemiluminescence immunoassay.

Xenograft Studies

Male BALB/c nude mice (6-week-old) were purchased from
the Laboratory Animal Services Centre, The Chinese University
of Hong Kong. The mice were bred in barrier facilities with
12 h light/dark cycle environment and free access to food and
water ad libitum. Each mouse was inoculated subcutaneously
on the flank of the mice with 2 x 10° KYSE-150 cells
in 100 wl PBS. Once tumor size reached about 80 mm?,
the mice were divided randomly into two groups with six
mice per group: AZOX group received AZOX (40 mg/kg/day)
dissolved in 0.5% carboxymethylcellulose sodium solution by
intragastric administration, while vehicle group received daily
0.5% carboxymethylcellulose sodium solution by intragastric
administration. Tumor volume was measured with calipers and
calculated by width? x length x 0.4 as previously described
(Chen et al, 2015). General health and body weight were
also monitored every 2 days. The mice were anesthetized
with 7% chloral hydrate and sacrificed 14 days later, and
the tumor xenografts were dissected, weighed and fixed in
4% Paraformaldehyde (PFA) for further examination. All
experimental protocols were approved by The Animal Ethics
Committees of Hong Kong Baptist University, and in accordance
with “Institutional Guidelines and Animal Ordinance” from

Department of Health, Hong Kong Special Administrative
Region.

Statistical Analysis

The data was evaluated as means + standard error of the mean
(SEM). Statistical differences between individual groups were
evaluated using Student’s ¢-test or one-way analysis of variance
(ANOVA). All experiments were performed at least three
times independently. GraphPad Prism 6.0 software (GraphPad
Software Inc., San Diego, CA, United States) was used for the
calculations, and p < 0.05 was considered statistically significant.

RESULTS

AZOX Inhibited KYSE-150 Cell

Proliferation

The effect of increasing AZOX concentrations in cancer cells was
examined by MTT assay. The results showed that the cytotoxicity
of AZOX on cancer cells are cell-type dependent after 48 h
treatment. As shown in Figure 1B, in esophageal cancer cell lines,
the inhibitory concentration 50% (ICsg) values were calculated
to be 2.42, 40.76, and 44.88 pg/ml for KYSE-150, KYSE-450,
and KYSE-70, respectively. In contrast, KYSE-520 cell line did
not show any effect after AZOX treatment (data not shown).
In hepatocellular carcinoma cancer cell lines, AZOX did not
alter the Hep3B cell proliferation but could decrease HuH-7
and HepG2 cell viability with ICs¢ values of 10.86 pg/ml and
22.52 pg/ml, respectively (Figure 1C). It is worth noted that
AZOX inhibit MIHA cell growth with ICs of 68.87 jg/ml. In
parallel experiments on colon cancer cell lines, HCT116 cell were
more sensitive to AZOX with ICsy at 8 pg/ml than SW480 cell
(ICs0, 45.44 pg/ml) (Figure 1D).

AZOX Induced KYSE-150 Cell Cycle

Arrest in the S Phase

To test whether AZOX can disturb cell cycle distribution, the
effect of AZOX was tested in KYSE-150 cells by PI staining,
followed by FACS analysis. Cell treated with DMSO were used as
control. As shown in Figures 2A,B, the cells treated with AZOX
(15 pg/ml) resulted in an apparent increase in the proportion of
S phase at 36 h after the exposure. Further, KYSE-150 cells were
treated with AZOX at concentration of 5, 10, and 15 pg/ml. FACS
analysis were performed 36 h after the treatment. Significant
difference of S phase cell proportion was observed at the dose of
10 pg/ml, and more effective at 15 pg/ml.

AZOX Induced KYSE-150 Cell Apoptosis

Apoptosis is a known cell process linked with mitochondrial
respiration (Pelicano et al., 2003). To test the pro-apoptosis effect
of AZOX, KYSE-150 cells were treated with AZOX at different
time points or with different concentrations. After staining
with annexin V/PI, the cells were subjected to quantitative
analysis of the apoptotic cell percentage. The result indicated
that AZOX could induce cell apoptosis time dependently and
dose dependently (Figures 3A,B). The shorted effective time was
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FIGURE 1 | AZOX decreased the viability of cancer cells. (A) Chemical structure of AZOX. (B) MTT assay of esophageal cancer cell lines (KYSE-150,
KYSE-450, and KYSE-70) treated with increasing concentration of AZOX for 48 h. (C) MTT assay of liver cancer cell lines (Huh-7 and HepG2) and non-tumorigenic
normal human hepatocyte cell line (MIHA) treated with increasing concentration of AZOX for 48 h. (D) MTT assay of colon cancer cell lines (HCT116 and SW480)
treated with increasing concentration of AZOX for 48 h. The ICsq values were calculated using GraphPad Prism 6.0 software.

24 h and the minimal effective concentration was 10 pg/ml.
Treatment of 15 pg/ml AZOX for 36 h can induce approximate
10% cell apoptosis.

AZOX Induced Cell Apoptosis of
KYSE-150 via Mitochondrial Pathway

To investigate the underlying mechanisms of AZOX-induced
apoptosis of KYSE-150 cell, the apoptotic proteins were
measured by western blot analysis after the treatment
with AZOX at different time points or with different

concentrations. Cleavage of PARP in KYSE-150 cells, the
indicator of cell apoptosis, was increased by AZOX both
time-dependently and dose-dependently (Figure 4A). Since
PARP is the critical substrate of caspase family proteins, we
next detected whether AZOX would further affect the activities
of caspase-3 and caspase-9. As shown in Figure 4A, the
cleavage of caspase-3 and caspase-9, showed time-dependent
and dose-dependent increases, indicating that AZOX induced
KYSE-150 cell apoptosis via activating the caspase-3 and
caspase-9. Interestingly, the expression of cleaved caspase-
8 was significantly increased by AZOX in KYSE-150 cells
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(Supplementary Figure 1A). Furthermore, we explored the
effect of AZOX on the apoptosis-related proteins in intrinsic
mitochondrial pathway. The pro-survival protein Bcl-2 showed
slightly decrease by AZOX with a corresponding increased
level of Bax (Figure 4A). As a result, the ratio of Bcl-2 to
Bax (Bcl-2/Bax) was significantly decreased in KYSE-150
cells after 36 h exposure to AZOX with the concentration
of 10 and 20 pg/ml (Figure 4B). Non-phosphorylated Bad,
however, was not significantly affected by AZOX in vitro
(Figure 4A). Cytochrome ¢ released from the mitochondria
has been proposed to be a potential event which would trigger
caspase-3, 7/9-dependent cell apoptosis (Jiang and Wang, 20005

Li et al., 2000). In our results, the expression of cytochrome c,
unsurprisingly, was increased after AZOX treatment in a time-
dependent and dose-dependent manner (Figure 4A). In parallel
studies, Bax channel blocker could effectively block AZOX-
induced cytochrome ¢ expression and caspase-3 activation
(Figure 4C).

AZOX Inhibited the In Vivo Tumor Growth

The in vivo anti-cancer effect of AZOX was assessed in tumor
xenografted mouse model. KYSE-150 cells were injected on
the flank of the mice subcutaneously to reach about the size
of 80 mm?®, then the mice received 40 mg/kg/day AZOX
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FIGURE 5 | AZOX inhibited the in vivo tumor growth in nude mice. Nude mice transplanted with KYSE-150 xenografted tumors were intragastric administrated
with vehicle or AZOX 40 mg/kg/day for 13 days. (A) The growth curves of tumor volume between the control group (n = 6) and AZOX group (n = 6). (B) Comparison
of the mice body weight between control and AZOX group. The weight of the nude mice was weighted and recorded every day from the 1st day of AZOX treatment.
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the mice were weighted and photographed. (D) Representative hematoxylin and eosin (H&E) staining of the xenografted tumors of control and AZOX group. The
tumors were dehydrated, fixed, and sectioned, and then stained with H&E to identify the proliferation of the cancer cells.

or carboxymethylcellulose sodium solution for 14 consecutive
days. The mice body weight and tumor volume were recorded
every day. AZOX treatment significantly retarded tumor growth
in nude mice as shown in Figure 5A (p = 0.003) and
Figure 5C. Accordingly, compared to the control group, mice
body weight in AZOX group was significantly decreased
(p = 0.0125; Figure 5B). Hematoxylin and eosin staining
indicated that AZOX can decrease the cell proliferation compared
to control group (Figure 5D). To further confirm our in vitro
results, we detected the expression of related proteins in
tumor tissues. The results showed that cleaved PARP was
increased along with the cleavage of caspase-3, caspase-9

(Figure 6A), and caspase-8 (Supplementary Figure 1B), which
was in accordance with the in vitro findings. Moreover, Bcl-
2/Bax ratio was significantly suppressed (Figure 6B) along
with the increased cytochrome c release from the mitochondria
(Figure 6A).

DISCUSSION

Esophageal cancer is one of the eight most common cancers and
the sixth leading cause of global cancer mortality (Li et al., 2015),
with a rising incidence worldwide. According to the histological
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extraction followed by western blot analysis to detect the expression of
cleaved PARP, Bcl-2, Bax, Bad, cytochrome ¢, and the cleaved caspases.

(B) Statistical charts of the western blot results. All data are represented as
means + SEM of three independent experiments (*p < 0.05 and **p < 0.01).

subtypes, esophageal cancer can be mainly divided into
adenocarcinoma and squamous cell carcinoma. Adenocarcinoma
is the dominant form in Europe while the squamous cell
carcinoma is more prevalent in Asia especially in China (Cook
et al, 2009; Rubenstein and Chen, 2014). Current clinical
treatments for esophageal cancer include surgical resection,
chemotherapy and radiation therapy (Smith et al., 1998; Gaur
etal., 2014). However, patients with esophageal cancer still exhibit
low 5-year survival rate (no more than 20%) and poor prognosis
(Siegel et al., 2012). Seeing that the survival rate of ESCC patients
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FIGURE 7 | AZOX induces KYSE-150 cell apoptosis via mitochondrial
pathway by suppressing Bcl-2/Bax.

remains very dismal by current chemotherapy (Ozawa et al,
2015), it is still pivotal to discover novel therapeutic compounds.

AZOX, a methoxyacrylate derived from the naturally
occurring strobilurins, is commonly used as a fungicide in
agriculture with low toxic side effects to mammals (Gao
et al, 2014). Recent studies found that AZOX can inhibit
mitochondrial respiration in metabolic cells and complex III
activity in rat liver mitochondria, regulating whole-body glucose
and lipid homeostasis in the development of obesity-related type
2 diabetes (Gao et al., 2014). In this study, we demonstrated the
broad anti-tumor properties of AZOX in a wide variety of human
cancer cell lines including esophageal, liver, and colon cancer
cells. In human esophageal squamous cell carcinoma KYSE-150
cells, AZOX caused a time-dependent and dose-dependent
cancer cell growth inhibition, which appears to be due to
its ability to induce S-phase arrest. It is known that infinite
proliferation of the tumor cells is closely associated with the cell
cycle regulation (Nurse, 2000), and our results are in concordance
with the previous findings that an increase of cell number in the S
phase can effectively inhibit KYSE-150 cell proliferation (Li et al.,
2015).

Apoptosis is a process of programmed cell death, generally
characterized by distinct morphological characteristics and
energy-dependent biochemical mechanisms (Elmore, 2007). The
induction of apoptosis in tumor cells is known to be an important
target for the therapy and prevention of cancer (Wyllie, 1985). In
the present study, AZOX could induce KYSE-150 cell apoptosis in
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a dose- and time-dependent manner suggesting that AZOX may
effectively target cancer cells by activating apoptosis pathway.
The execution caspases are major indicators of the phase of
apoptosis. Generally, initiator caspases (caspase-8 or caspase-9)
activate the downstream effector caspase-3, subsequently cleaving
PARP and causing the morphological and biochemical changes in
apoptotic cells (Koh et al., 2005; Elmore, 2007). To investigate the
mechanisms responsible for the selectivity induction of apoptosis
by AZOX, the major components of apoptotic signaling network
were analyzed. Here in our results, the active caspase-9, caspase-8,
caspase-3, and PARP, were remarkably increased by AZOX in
KYSE-150 cells, indicating that the apoptosis pathway is one of
the anti-cancer mechanisms of AZOX.

In cancer cells, the apoptosis signaling includes intrinsic
pathway and extrinsic pathway (Khan et al.,, 2014). The intrinsic
pathway called as mitochondrial pathway is regulated by a
balance of Bcl-2 superfamily proteins (Khan et al., 2014). Bcl-2
has been reported to act in situ on mitochondria to prevent
the release of cytochrome ¢ and caspase activation (Kluck et al.,
1997). The imbalance of Bcl-2/Bax can induce the release of
cytochrome ¢ from the mitochondria, which can bind with the
Apaf-1 and pro-caspase-9 to form apoptosome (Li et al., 1997).
Asaresult, the pro-caspase-9 is transformed into cleaved caspase-
9 that can further activate other caspases such as caspase-3
to initiate cell apoptosis (Green and Reed, 1998). Due to the
inhibitory effect of AZOX on fungal mitochondrial pathway,
we take the intrinsic apoptotic pathway into first consideration
in this study. In KYSE-150 cells, the expression of Bcl-2 and
Bax was slightly decreased and increased after AZOX treatment,
respectively, resulting in the significant decrease of Bcl-2/Bax
ratio. Meanwhile, the cytosolic level of cytochrome ¢ released
from mitochondria was increased by AZOX accompanied with
the cleavage of caspase-9 and caspase-3. We also noticed that
cleaved caspase-8 was significantly increased by AZOX after
36 h treatment. Activation of caspase-8 can both directly activate
caspase-3 and affect the Bax function to initiate intrinsic pathway
(Khan et al., 2014). These results indicate that the intrinsic
apoptotic pathway was involved in the anticancer effect of AZOX
on KYSE-150 cell line.

To further examine the anti-tumor effects and mechanisms
of AZOX, the in vivo experiments were performed in xenograft
animal model. After the treatment of AZOX, the growth
of KYSE-150 esophageal xenografted tumors was significantly
inhibited in the nude mice. Noticeably, AZOX administration can
decrease the body weight of the nude mice compared with the
control group. The reason may be due to the reduced fatty acid
utilization induced by AZOX treatment as previously reported
(Gao et al., 2014). Disturbance of the ratio of Bcl-2/Bax and
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