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A B S T R A C T   

Cervical cancer is one of the most common malignancies in women, with a poor survival rate. Thus, there is a 
need to define effective combination strategies to improve therapy. In this study, we report that dsRNA poly(I:C) 
up-regulated the expression of IFNβ and apoptosis-associated genes in cervical cancer cells, activating both 
intrinsic and extrinsic apoptotic pathways, and eventually inducing cell death. Similarly, proteasome inhibitors 
also effectively induced cervical cancer cell apoptosis, probably through prevention of p53 degradation, inhib-
iting NF-κB signal activation and decreasing BCL-2 expression. Importantly, the combination of poly(I:C) with 
proteasome inhibitors enhanced caspase-8 and caspase-9 activation, and synergistically induced cervical cancer 
cell apoptosis. Both activated p38 signals and increased ROS levels, and their combination extended these effects. 
Collectively, we show that the activation of multiple pro-apoptotic pathways by poly(I:C) and proteasome in-
hibitors underpin a synergistic effect on inducing cervical cancer cell death, suggesting a potential therapeutic 
combination with clinical relevance.   

Introduction 

Cervical cancer is one of the most common gynecological malig-
nancies. There are approximately 600,000 new cases and over 340,000 
deaths from cervical cancer worldwide in 2020 [44]. Moreover, the 
onset age of cervical cancer is becoming lower [11]. Multiple factors are 
associated with cervical cancer development, including persistent 
infection with high-risk human papillomavirus (HPV) [10]. Currently, 
traditional chemotherapy and targeted therapy usually associate with 
drug resistance and side effects, which greatly undermines their effi-
ciency. Therefore, new strategies in cervical cancer therapy are greatly 
needed. poly(I:C), double-stranded RNA (dsRNA) is able to activate 
multiple biological events, including broad-spectrum antiviral responses 
and immune modulation [1, 12]. poly(I:C) induces downstream 
signaling cascades by engaging Toll-like receptors (TLR3) and/or the 
intracellular RIG-Like receptor (RLR) family members, RIG-I and MDA5 
[32]. Induction of type I interferon (IFN) and the expression of various 
IFN-stimulated genes (ISG) is thought to be a major mechanism that 
mediates poly(I:C) biological functions [4, 8]. Recent studies have 

demonstrated that poly(I:C) can directly trigger cell apoptosis in colon, 
lung and cervical cancer [8, 45, 48]. In addition, poly(I:C) has the po-
tential to help overcome the resistance of malignant cells to radio-
therapy and chemotherapy [28, 34, 41]. Currently, an increasing 
number of clinical trials of poly(I:C) combined with various treatments, 
such as vaccines, adjuvants and monoclonal antibodies are undergoing. 

Proteasome inhibitors have been approved by the USA Food and 
Drug Administration (FDA) and the European Medicines Agency (EMA) 
for treating recurrent (refractory) multiple myeloma and mantle cell 
lymphoma [23, 30, 40]. Due to their success in hematological malig-
nancies, proteasome inhibitors have been extensively studied for the 
treatment of various solid tumors including lung, colon, pancreas, breast 
and head and neck cancer [9, 23, 38]. Proteasome inhibitors can be 
combined with other drugs to induce cancer cell death [20, 43]. In 
cervical cancer, proteasome inhibitor Delanzomib sensitizes cells to 
doxorubicin-induced apoptosis [14]. Moreover, bortezomib combined 
with an HDAC inhibitor shows a synergistic effect on HPV-positive 
cervical cancer cells [21]. In this study, we report that proteasome in-
hibitors combined with poly(I:C) synergistically activate intrinsic and 
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extrinsic apoptotic pathways and effectively promote cervical cancer 
cell death. This study suggests a potential application of poly(I:C) and 
proteasome inhibitors in cervical cancer therapy. 

Materials and methods 

Cell culture and reagents 

Cervical cancer HeLa (HPV-18+), SiHa (HPV-16+) and C33A (HPV-) 
cell lines, lung cancer A549 cell line and colon cancer HCT116 cell line 
were cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Gibco) 
supplemented with 10% (v/v) Fetal Bovine Serum (FBS) serum (ABW) 
and 2 mmol/ L-glutamine, 50 U/mL penicillin, 50 mg/mL streptomycin, 
at 37 ◦C in an incubator containing 5% CO2. MG132, Bortezomib and 
Lxazomib were products of MCE, Sorafenib, IMD-0354 and CUDC-907 
were purchased from Selleckchem. 

poly (I:C) transfection 

For poly(I:C) transfection, 2 × 105 cervical cancer cells were seeded 
in 24-well plate and cultured to 80% confluence. Lipofectamine™ 3000 
(Invitrogen) was used for transfection of poly(I:C) (Sigma-Aldrich Co. 
Ltd.) at a ratio of 2 μL of Lipofectamine™ 3000 to 1 μg poly(I:C). The 
treatment of 2 μL/ml Lipofectamine 3000 has no obvious cytotoxicity to 
cervical cancer cells compared to the control 0 μL/ml Lipfectamin 3000. 
Transfection mixture was prepared in pre-warmed Opti-MEM medium 
to make a total volume of 100 μL per ml culture volume. After incuba-
tion for 20 min at room temperature the mixtures were gently pipetted 
onto the cells in normal growth medium and gently mixed. 

Western blotting 

The whole cell protein was lysed with SDS sample buffer consisting 
of 4% SDS (sodium dodecylsulfate), 20% glycerol and 50 mM Tris.HCl 
(PH6.8), proteins were separated by SDS-PAGE, nitrocellulose mem-
branes proteins were incubated overnight at 4 ◦C with specific primary 
antibodies. Caspase-8, caspase-9, PARP, p-IκBα(Ser32/36), p38 and p- 
p38(Thr180/Tyr182) were products of Cell Signaling; IκBα were bought 
from Santa Cruz Biotechnology; BCL-2 was bought from Dako; p53, 
MX1, ISG15, ISG54, BAK and TRAIL antibodies were purchased from 
Solarbio. Anti-rabbit and anti-mouse secondary antibodies and β-actin 
were bought from Servicebio. Protein bands were visualized with the 
Odyssey system (Pierce, Waltham, MA, USA). 

Quantitative real-time PCR (qPCR) 

Total RNA was obtained using Eastep TM Super Total RNA Extrac-
tion Kit (Promega), cDNA was obtained using cDNA Synthesis SuperMix 
(Novoprotein). qPCR was performed on ABI-7500 using SYBR-Green 
qPCR Master Mix (MCE) following the manufacturer’s instructions. 
qPCR primers used in this study refer to previous publications [7, 27]. 
Relative gene expression was calculated based on the threshold cycle 
(Ct) values and normalization of internal control expression using the 
2− ΔΔCt method [22]. The housekeeping gene 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or β-actin was 
used as an internal control in this study. Experiments were performed in 
triplicate and repeated three times. 

Flow cytometry 

Cell death was determined by flow cytometry. Briefly, cervical can-
cer cells were cultured in 24-well plate. Following by poly(I:C) trans-
fection with Lipofectamine for 24 hours or/and inhibitors treatment for 
48 hours at various concentrations as described, cells were released from 
the well by trypsin. Cells were washed and finally resuspended with PBS. 
Cells were stained with propidium iodide (PI) (50 µg/ml) at 4 ◦C in the 

dark. Percentages of cells death (PI-positive cells) were determined by 
flow cytometry (BD Biosciences). Intracellular ROS were measured 
using the oxidation-sensitive fluorescent probe DCFH-DA following the 
manufacturer’s instructions. The protocol was performed according to 
the Reactive Oxygen Species Assay Kit (Beyotime, Shanghai, China). 
Briefly, after treating with poly(I:C) and/or proteasome inhibitor at the 
described time, cervical cancer cells were collected and incubated with 
DCFH-DA at 37̊C for 20 min. The cells were then washed three times 
with no-serum culture medium and analyzed using flow cytometry. The 
ROS level was expressed as mean fluorescence intensity (MFI) and 
normalized to the control, namely untreated cells by poly(I:C) and 
proteasome inhibitors. Assays were performed in duplicate and repeated 
at least two times. 

Statistical analysis 

Significance of the different treatments was assessed using the Stu-
dent’s t-test or two-way ANOVA analysis. Differences were considered 
statistically significance at a P-value of <0.05. 

Results 

poly(I:C) induces cervical cancer cell apoptosis 

In order to define improved therapies for cervical cancer, we first 
investigated the effects of poly(I:C) on cervical cancer cell death. As 
shown in Fig 1, poly(I:C) effectively induced cell death in a dose- 
dependent pattern in cervical cancer HeLa, SiHa and C33A cell lines 
(Fig. 1A-C), at comparable levels to that induced in lung cancer A549 
cells (Fig. 1D). Interestingly, poly(I:C) was not effective at inducing 
death in colon cancer HCT116 cells, even at high concentrations 
(Fig. 1E). The nature of the induced cell death was further investigated 
by measuring caspase activation. We found that poly(I:C) not only 
activated caspase-8 but also caspase-9 (Fig. 1F). Moreover, this was 
accompanied with a cleavage of PARP. These results together suggest 
poly(I:C) can induce cervical cancer cell death through activation of 
both mitochondrial- and death receptor-mediated apoptotic pathways. 
We also found that poly(I:C) stimulation up-regulated the expression of 
IFNβ and other apoptosis-associated genes, such as ISG15, ISG54, TRAIL, 
TNFα, OAS1, MX1, PUMA and BAK, in a time- and concentration- 
dependent model (Fig. 2 and Supplementary Fig. 1). In contrast, poly 
(I:C) had no effect on the expression of anti-apoptotic protein BCL-2 
(Fig. 2 and supplementary Fig. 2). The induction of ISGs expression 
was further confirmed at the protein level by WB (Supplementary 
Fig. 2). These results show that poly(I:C) induces cervical cancer cell 
death by activation of the intrinsic and extrinsic apoptotic pathways, 
with upregulation of IFNβ signaling. 

Proteasome inhibitors induce cervical cancer cell apoptosis 

The success of proteasome inhibitors in hematological malignancies 
therapy makes them an attractive candidate to treat solid tumors. We 
therefore investigated the efficiency of proteasome inhibitors in cervical 
cancer, including MG132, bortezomib and lxazomib. As shown in Fig. 3, 
these inhibitors effectively induced cell death in HeLa and SiHa (Fig. 3A- 
F). Surprisingly, proteasome inhibitors had no effect on A549 but killed 
HCT116 (Fig. 3G-H), opposite to what was found with poly(I:C). We next 
investigated the possible mechanisms of proteasome inhibitor-induced 
cervical cancer cell apoptosis. We found MG132 promoted p53 protein 
accumulation (Fig. 4), consistent with previous results [37, 38]. More-
over, MG132 increased phosphorylation of IκBα, a natural inhibitor of 
NF-κB, suggesting a blockage on NF-κB pathway activation (Fig. 4A). 
MG132 also significantly inhibited BCL-2 expression, suggesting an 
unbalance of pro- and anti-apoptotic signals. In contrast, in A549 lung 
cancer cells, MG132 had no effect on BCL-2 expression and a very little 
effect on p-IκBα, and this was the opposite in HeLa cells (Fig 4B). MG132 
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also activated caspase-8 and caspase-9 (Fig. 4A), which is consistent 
with the induction of multiple pro-apoptotic pathways and cervical 
cancer cell death. 

poly(I:C) synergizes with proteasome inhibitors to induce apoptosis 

The effects of poly(I:C) and proteasome inhibitors on cervical cancer 
cells led us to investigate the combined effects of both compounds. We 
found that poly(I:C) enhanced the efficacy of proteasome inhibitors to 
induce apoptosis in HeLa, and demonstrated a synergistic effect (Fig. 5A- 
B and Table S1). In contrast, the combination of poly(I:C) with Sor-
afenib, a RAF kinase inhibitor, and IMD-0354, an IKKβ/NF-κB pathway 
inhibitor, had inhibitory effects(Fig. 5C-D). poly(I:C) had a modest effect 
on the ability of CUDC907, a PI3K and HDAC inhibitor, to induce cell 
death (Fig. 5E). We compared this to the effects of the combination of 

poly(I:C) with proteasome inhibitors on other cancer cells and found 
that poly(I:C) only slightly increased the induction of cell death by 
MG132 in HTC116 (Supplementary Fig. 3A). The combination reduced 
apoptosis in A549, showing an antagonistic effect (Supplementary 
Fig. 3B). Consistently, this combination enhanced caspase-8 and 
caspase-9 activation and promoted PARP cleavage in HeLa, while 
inhibited caspases activation in A549 (Supplementary Fig. 3C-D). 

Activation of the p38 and reactive oxygen species (ROS) production 
are important factors in inducing cancer cell apoptosis [4, 17, 49]. We 
found that both poly(I:C) and proteasome inhibitors can activate the p38 
signaling pathway (Fig. 6A). Of note, the combination significantly 
extended the duration of p38 pathway activation (Fig. 6A). In addition, 
we also observed that the intracellular levels of ROS were significantly 
increased by the combination (Fig. 6B-C). Taken together, these results 
demonstrated poly(I:C) can synergize with proteasome inhibitor to 

Fig. 1. poly(I:C) induces cervical cancer cell apoptosis Induc-
tion of (A) HeLa, (B) SiHa, (C) C33A, (D) A549 and (E) HCT116 
cell death measured by PI Staining. Cells were transfected with 
poly(I:C) at various concentrations for 24 hours. Graphics show 
mean percentages of PI positive (dead) cells; error bars repre-
sent standard deviation (SD). Experiments were performed in 
duplicates and repeated at least 3 times; (F) Representative 
Western blots showing Caspase-8, caspase-9 and PARP protein 
expression in lysates of HeLa cells treated with 1 μg/ml poly(I: 
C) at different time points. β-actin was used as a loading con-
trol. Statistical significance was determined using the Student 
t-test. Statistical significance vs control is indicated by 
*p<0.05, **p<0.01, and *** p<0.001. Nonsignificant results 
are denoted by ns.   

Fig. 2. poly(I:C) activates pro-apoptotic signals in cervical cancer cells mRNA expression of IFNβ, ISG15, ISG54, TNFα, TRAIL, OAS1, MX1 and BCL2, as measured by 
qRT-PCR in HeLa cells stimulated with 1 µg/ml poly(I:C) at various time points. The expression of target genes was normalized to internal control GAPDH. Data were 
expressed relative to control (no poly(I:C) stimulation), error bars represent SD. Experiments were performed in triplicates and repeated at least 3 times. 
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induce cervical cancer cells apoptosis and suggest a potential mecha-
nism based on p38/ROS induction. 

Discussion 

Although HPV vaccination has greatly reduced the incidence of 
cervical cancer [3, 42], cervical cancer remains an important health 
problem in women, particularly due to the lack of effective treatments in 
almost half of the cases [31]. In the present study, we report a potential 
new combination treatment using poly(I:C) and proteasome inhibitors. 
Each of the drugs on their own induced cell death in cervical cancer cell 
lines. poly(I:C) significantly increased the expression of 
apoptosis-associated genes including IFNβ, OAS1, MX1, ISG15, ISG54, 
TNFα, PUMA and TRAIL, together with the cleavage of caspases and 
PARP. This suggests that poly(I:C) induces apoptosis simultaneously 
through different pathways in these cells. In contrast, poly(I:C) had less 
effect on the colon cancer HCT116 cell line which is consistent with 
previous report [45]. This could probably be because cervical cancer 
cells are HPV-positive and therefore sensitive to poly(I:C), an effective 
inducer of type I IFNs, while HCT116 is not a virus-infection-mediated 
cancer cell type and thus less sensitive to poly(I:C)-induced apoptosis. 

We also found that proteasome inhibitors are very effective in 
inducing cervical cancer cell apoptosis. MG132 inhibited NF-κB acti-
vation, prevented p53 degradation and inhibited BCL-2 expression while 
activating caspases-8 and -9 [9, 38]. This may collectively contribute to 
its effects in cervical cancer cells, since activation of the NF-κB signaling 
pathway and high levels of BCL-2 expression are normally related to 
cancer cell survival and drug resistance [18, 47]. The pro-apoptotic 
protein p53 is often inactivated in cancer cells, and although the ma-
jority of cervical cancer cells have a wild-type p53 gene, the protein 
levels are strongly decreased due to HPV E6 protein [25, 26, 37]. Pro-
teasome inhibitors could thus restore wild-type p53 protein levels in 
these cells by countering the E6 effect through a blockage in p53 

degradation. In contrast, proteasome inhibitor MG132 had no effect on 
A549 lung cancer cells, despite these cells also having wild-type p53. 
The mechanisms of this discrepancy remain unknown, but we found 
significantly low levels of BCL-2 and p-IκBα in A549, and MG132 had no 
effect on BCL-2 expression and a very little effect on p-IκBα (Fig 4B) 
which is completely different from that in HeLa cells. A previous study 
showed that MG132 can induce A549 apoptosis but at a concentration of 
more than 10 μM or 30 μM, nonetheless such concentrations are out of 
clinical relevance. Conversely, lower concentrations of MG132 have the 
potential to promote A549 cell growth [16]. New generation protea-
some inhibitor Bortezomib has a modest effect on non-small cell lung 
cancer (NSCLC) cells, and a greater effect on wild-type p53 cells than 
p53 mutant cells [13, 19]. Collectively, proteasome inhibitors have less 
effect on lung cancer cells compared to cervical cancer cells. 

Currently, many clinical trials of dsRNA poly(I:C) combined with 
different reagents are being conducted including CpG, oligodeox-
ynucleotides(ODN) and an anti-CD40 antibody [1]. Proteasome in-
hibitors have also been studied in combination with various drugs to 
improve cancer treatments. For example, the combination of MLN2238 
(Ixazomib) with IFNα has been found to enhance melanoma cell death 
[43]; Delanzomib treatment sensitizes cervical cancer cells to 
doxorubicin-induced apoptosis [14]; the combination of Bortezomib 
and HDAC inhibitors shows a synergistic killing effect on HPV-positive 
cervical cancer cells [21]; and MG132 combined with TRAIL promotes 
human osteosarcoma cells apoptosis [20]. In this study, we reported that 
poly(I:C) combined with proteasome inhibitors increase cervical cancer 
cells apoptosis, which was better than in other combinations, such as 
with CUDC907 (PI3K and HDAC inhibitor) [6], Sorafenib (RAF signaling 
pathway inhibitor), or IMD-0354 (NF-κB signal pathway inhibitor). The 
latter even showed an antagonistic effect, although the mechanisms 
remain unknown. In addition, it is also notable that no synergy was 
observed in lung cancer cells, but, instead, an inhibitory effect was 
found. This suggests that the synergistic effects may be tissue specific 

Fig. 3. Proteasome inhibitors induce cervical cancer cell apoptosis Cell death in (A-C) HeLa, (D-F) SiHa, (G) HCT116 and (H) A549 was measured by FACS analysis of 
PI-stained cells. Cells were treated with MG132, Bortezomib or Lxazomib at described concentrations for 48 hours. Experiments were performed in duplicates and 
repeated at least 3 times; Graphics show the mean percentage of PI positive (dead) cells, error bars represent SD. Statistical significance was determined using the 
Student t-test. Statistical significance vs no treatment/control is indicated by *p<0.05, **p<0.01, and *** p<0.001. Nonsignificant results are denoted by ns. 
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and highlight the relevance of this combination in the context of cervical 
cancer treatment. 

Multiple pro-apoptotic mechanisms activated by poly(I:C) and pro-
teasome inhibitors may contribute to the observed effects on cervical 
cancer cells. Increasing p53 protein levels may be an essential one in 
tumors in which the protein is wild type. In HeLa, the HPV-encoded E6 
protein promotes the rapid degradation of p53 protein through changing 
E3 ubiquitination ligase activity [39, 46]. This can be prevented by the 
action of the proteasome inhibitor. Moreover, poly(I:C) may also pro-
mote p53 expression and activation through phosphorylation [2, 17, 
33], and the combination of both drugs may restore p53 functions [14, 
15, 21, 29]. Moreover, our results suggest that activating p38 signaling 
and inducing ROS production may also play an important role in this 
combination strategy [4, 17, 49]. Both proteasome inhibitors and poly(I: 
C) have been shown to induce apoptotic cell death through the forma-
tion of reactive oxygen species (ROS) [5, 24, 35, 36]. Importantly, the 
combination of both reagents extended the duration of p38 signal acti-
vation and further increased ROS production. Taken together, our re-
sults suggest that multiple factors activated by poly(I:C) and/or 
proteasome inhibitors may collaboratively induce cervical cancer cell 
apoptosis (Fig. 7), which provides a mechanistic explanation for a syn-
ergistic effect and suggests a potential application in clinical therapy of 
cervical cancer. 
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