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Abstract

Background: Genome-wide single-nucleotide polymorphism (SNP) arrays containing hundreds of thousands of
SNPs from the human genome have proven useful for studying important human genome questions. Data quality
of SNP arrays plays a key role in the accuracy and precision of downstream data analyses. However, good indices
for assessing data quality of SNP arrays have not yet been developed.

Results: We developed new quality indices to measure the quality of SNP arrays and/or DNA samples and
investigated their statistical properties. The indices quantify a departure of estimated individual-level allele
frequencies (AFs) from expected frequencies via standardized distances. The proposed quality indices followed
lognormal distributions in several large genomic studies that we empirically evaluated. AF reference data and
quality index reference data for different SNP array platforms were established based on samples from various
reference populations. Furthermore, a confidence interval method based on the underlying empirical distributions
of quality indices was developed to identify poor-quality SNP arrays and/or DNA samples. Analyses of authentic
biological data and simulated data show that this new method is sensitive and specific for the detection of poor-
quality SNP arrays and/or DNA samples.

Conclusions: This study introduces new quality indices, establishes references for AFs and quality indices, and
develops a detection method for poor-quality SNP arrays and/or DNA samples. We have developed a new
computer program that utilizes these methods called SNP Array Quality Control (SAQC). SAQC software is written
in R and R-GUI and was developed as a user-friendly tool for the visualization and evaluation of data quality of
genome-wide SNP arrays. The program is available online (http://www.stat.sinica.edu.tw/hsinchou/genetics/quality/
SAQC.htm).

Background
Single-nucleotide polymorphisms (SNPs), the most
abundant genetic markers in the human genome, have
been widely used in genetic and genomic research such
as studies of disease gene mapping [1-6], medical and
clinical diagnostics [7-9], forensic tests [10-12], genome
structure of linkage disequilibrium and recombination
[13-18], chromosomal aberrations [19-24], and genetic
diversity [25-27]. Modern high-throughput and high-
resolution SNP array genotyping techniques, such as the
Affymetrix GeneChip (Affymetrix Inc., Santa Clara, CA,
USA) [28,29] and Illumina BeadChip (Illumina Inc., San
Diego, CA, USA) [30-32], provide genotype and fluores-
cence intensity data on hundreds of thousands of SNPs
for each study sample. Many genomic studies are using

such SNP genotyping techniques to find marker-trait
association via genome-wide association studies [4,6,33]
and to identify disease-related chromosomal aberrations
via allelic-imbalance analyses [34-39], loss-of-heterozyg-
osity analyses [24,35,40-43], and copy-number analyses
[23,24,41,44,45].
Data quality of SNP arrays plays a key role in the

accuracy and precision of downstream data analyses. An
analysis of contaminated data from poor-quality SNP
arrays or genotyping experiments may suggest false-
positive and/or false-negative results. Differentiating
between reliable and poor-quality SNP arrays is critical
to performing downstream statistical data analyses.
Quality control of SNP arrays is closely related to a
quality assessment of the genotype call of a SNP. Some
genotyping algorithms provide SNP-based quality
metrics, such as a discrimination signal [46] and confi-
dence scores [47-50]. These metrics mainly focus on a
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reliability assessment of the genotyping call for indivi-
dual SNPs rather than an assessment of the overall qual-
ity of the SNP arrays. The empirical distributions of
most of these metrics were not investigated. Therefore,
threshold values for poor quality are often assigned
heuristically and not according to a statistical rule. Pub-
lished reports of systematic analyses to evaluate the data
quality of SNP arrays are not available, and good indices
that measure the data quality of SNP arrays still await
development. Currently, the most broadly used quality
measurement of SNP arrays is the genotype call rate
(GCR) [51]. GCR, which is the proportion of SNPs
whose genotypes can be called on a SNP array, provides
a convenient measure for quantification of SNP array
quality. GCR is informative and feasible, but this quality
metric may be sensitive to the parameters used in geno-
typing algorithms. For example, “forced call” which
leads to a GCR of 100% for a SNP array can always be
attained if the least-stringent criterion is used [50].
This study aims to provide a reliable method and

related software for the visualization and assessment of
the data quality of SNP arrays. We developed new quality
indices, derived their empirical distributions, and devel-
oped a confidence interval method to identify potentially
poor-quality data caused by poor-quality SNP arrays and/
or DNA samples. Visualization tools including quality
index heatmap plot, quality index polygon plot, AF plot,
and genotype call rate plot are integrated into user-
friendly software for SNP Array Quality Control (SAQC).

Methods
DNA samples and SNP data used in the analyses
Samples used in our analyses were from three genomic
projects, the Taiwan Han Chinese Cell and Genome
Bank [52], the International HapMap Project [13-16],
and the Taiwan Young-Onset Hypertension Study [5].
The first project provides 367 and 448 Han Chinese
samples from the Taiwan (TWN) population genotyped
using the Affymetrix Human Mapping 100K Set and
500K Set, respectively. Bayesian Robust Linear Model
with Mahalanobis Distance Classifier (BRLMM) was
used for genotype call analysis [53]. The second project
was based on 90 African samples from 30 trios (YRI),
90 European samples from 30 trios (CEU), and 90 inde-
pendent Asian samples (45 Han Chinese individuals in
Beijing [CHB] and 45 Japanese individuals in Tokyo
[JPT]). All 270 samples were genotyped using the Affy-
metrix Human Mapping 100K Set and 500K Set, where
Dynamic Model Mapping Analysis [47] and BRLMM
were used for genotype call analysis of the Affymetrix
Human Mapping 100K Set and 500K Set, respectively.
The genotype and hybridization intensity data are pub-
licly available (http://hapmap.ncbi.nlm.nih.gov/). The
third project provides 175 and 192 hypertensive patients

and 175 and 198 normotensive controls from the TWN
population genotyped using the Affymetrix Human
Mapping 100K Set and 500K Set, respectively. BRLMM
was used for genotype call analysis. We obtained
informed consent from all TWN individuals whose sam-
ples were used in this study, and this study was
approved by the Academia Sinica review board. Based
on individual-level AFs in the first two genomic pro-
jects, quality indices were calculated for different SNP
arrays (Xba and Hind of the Affymetrix 100K Set and
Sty and Nsp of the Affymetrix 500K Set) based on sam-
ples in various reference populations (the Taiwanese
population; ethnic-specific populations; and a combina-
tion of African, Asian, and European populations). DNA
samples of individuals recruited in the third project
were mixed to form four DNA pools with 56, 198, 52
and 192 individuals. Quality indices were calculated for
different SNP arrays based on each DNA pool.

Indices for quantifying SNP array and DNA quality
We introduce the procedures for our new quality index
calculations, where individual-level allele frequency (AF)
is the key element in the estimation procedures. In con-
trast to population-level AF which represents a within-
population relative frequency of alleles in a population,
individual-level AF represents a within-individual relative
frequency of alleles in an individual. We measure SNP
array quality by quantifying a departure of estimated
individual-level AFs from expected AFs via standardized
distances. Let {Gn,m, n = 1,...,N,m = 1,...,M} denote the
genotype and {ln,m,n = 1,...,N,m = 1,...,M} denote the
individual-level AF of the mth SNP of the nth array in a
genotyping experiment of oligonucleotide SNP arrays
such as Affymetrix GeneChip (Affymetrix Inc., Santa
Clara, CA, USA) and Illumina BeadChip (Illumina Inc.,
San Diego, CA, USA). Genotypes can be obtained using
genotyping calling algorithms [47,49,50,53]. Individual-
level AFs can be estimated by calculating adjusted hybri-
dization intensities with the aid of the coefficient of pre-
ferential amplification/hybridization (CPA) [54].
To quantify SNP array quality, we first calculated the

SNP-level quality index and then calculated the average
of the quality indices of the SNPs to obtain an array-level
quality index. Two SNP-level quality indices, genotype-
based quality index and nearest-mean-based quality
index, were developed. Both indices are standardized dis-
tances. Where the mth SNP with genotype Gm is AA, Aa,
or aa, the genotype-specific mean and standard deviation
of individual-level AFs were calculated as follows:

μ̂Gm =

∑N
n=1 λn,m · I[Gn,m = Gm]∑N

n=1 I[Gn,m = Gm]
and σ̂ 2

Gm
=

∑N
n=1 {(λn,m − μ̂Gm ) · I[Gn,m = Gm]}2

∑N
n=1 I[Gn,m = Gm]

,

and I[E] is an indicator taking a value of 1 if event E
holds; otherwise, the value is 0.
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AF references were established as a collection of geno-
type-specific mean and standard deviation of individual-
level AFs. The genotype and individual-level AF data
used to construct AF references can come from samples
of the current study or from independent reference
samples described in the Results. Genotype-based stan-
dardized distance of an individual-level AF was defined
as follows:

q1,n,m =
(

λn,m − μ̂Gn,m

σ̂Gn,m

)2

.

In some situations, genotype information may be inac-
curate. For example, genotypes of SNPs involved in
regions of copy number change or chromosomal aberra-
tions may not truly reflect the underlying combination
of alleles. Therefore, we developed another index, near-
est-mean-based index, without incorporating the geno-
types from other genotype calling methods. This
property also makes our methods more self-contained.
The AF mean and standard deviation of the genotype
closest to the observed individual-level AF ln,m were
calculated as follows:

μ̂m = arg min
μ̂Gm

{|λn,m − μ̂Gm |, Gm ∈ {AA, Aa, aa}} and σ̂ 2
m =

∑N
n=1 {(λn,m − μ̂m)}2

N
.

The non-genotype-based (nearest-mean-based) stan-
dardized distance of an individual-level AF was calcu-
lated as follows:

q2,n,m =
(

λn,m − μ̂m

σ̂m

)2

.

Next, an array-level quality index was introduced. Let
qx,n (r) denote the r quantile of genotype-based or near-
est-mean-based SNP-level quality indices {qx,n,m,m = 1,...,
M} for the nth array. To include tolerance for the inter-
ference of a small proportion of extreme values that
occasionally occurred at some SNPs because of
uncontrollable factors, we used a robust statistic, the
winsorized mean quality index, to summarize distances
of overall SNPs interrogated on a SNP array as follows:

Qx,n(ρ) =
1
M

⎧⎨
⎩

∑
{m:qx,n,m<qx,n(ρ)}

qx,n,m +
∑

{m:qx,n,m≥qx,n(ρ)}
qx,n(ρ)

⎫⎬
⎭ , x = 1, 2,

where the top r of standardized distances was winsor-
ized (i.e., replaced with the observation of the r quantile)
in the calculation. The proposed distance-based quality
indices quantify discrepancies between the observed and
expected individual-level AFs and tend to have a higher
value if the quality of a SNP array is poor. Quality indices
based on genotype-based standardized distance and non-
genotype-based (nearest-mean-based) standardized dis-
tance were defined as Q1 and Q2, respectively.

In addition, a confidence interval method was devel-
oped to identify poor-quality SNP arrays and/or DNA
samples. SNP arrays for which their quality indices
exceeded an upper confidence limit based on reference
samples were identified as questionable SNP arrays.
Quality index references were established as a collection
of the upper confidence limits that was obtained by cal-
culating 95%, 97.5%, and 99% quantiles of the underly-
ing empirical distributions of quality indices for different
SNP arrays based on samples in various reference popu-
lations. Reference populations and empirical distribu-
tions of quality indices are described in the Results.

Performance analysis of quality indices
To evaluate performance of the proposed quality
indices, we analyzed authentic data sets and simulated
data sets. Details of authentic data sets are presented in
the Methods. The simulation procedure was performed
as follows. Genomic data from 100 SNP arrays were
generated to mimic the real genomic patterns of chro-
mosome 19 of Affymetrix Human Mapping 100K and
500K Sets. The number of SNPs on the chromosome
was 690 and 6,396, respectively. The simulation was
replicated 1,000 times. The data generation procedure
for a SNP was performed as follows. First, at each SNP
locus, the number of SNPs with genotypes AA, Aa, and
aa on the 100 SNP arrays was generated from a multi-
nomial distribution MNL(N = 100;p̂AA, p̂Aa, p̂aa), where
the cell probabilities were population-level genotype fre-
quencies from our real data. Second, the individual-level
AF of allele A for an individual with genotype G for the
study SNP was randomly generated from a beta distri-
bution lG ~ Beta (aG, bG), where
αG = μG

(
μG(1 − μG)

/
σ 2

G − 1
)
and βG = (1 − μG)

(
μG(1 − μG)

/
σ 2

G − 1
)

were derived using a moment estimation method, and
μG and sG denote the sample mean and standard devia-
tion of individual-level AFs. The variance σ 2

G reflects a
total variation (VT,G) of individual-level AFs in a SNP
array, which is the sum of a systematic variation (Vs,G)
and an extra variation (VE,G). The systematic variation
reflects the variation of individual-level AFs from sam-
ples and arrays with good quality, and the extra varia-
tion represents the variation introduced by poor quality
of SNP arrays or DNA samples additionally. Let r = VE,

G/VT,G denote the relative extra error for different geno-
types; the larger the value, the poorer the SNP array. In
other words, AF plot shows broader bands for the larger
r and, expectedly, a poor sample/array with the larger r
should be easier to be detected. Third, to mimic practi-
cal scenarios, parameters μG and Vs,G were assigned by
empirical means and variances of individual-level AFs
from the real data. A relative experimental error of r
from 0 to 0.6 with increments of 0.025 was considered.

V̂E,G = [r
/

(1 − r)] × V̂S,G and V̂T,G = σ̂ 2
G = V̂S,G + V̂E,G
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were calculated under specified values of μ̂G, V̂S,G, and r,
and then individual-level AFs were generated from the
beta distribution. The 95%, 97.5%, and 99% quantiles of
quality index under r = 0 were derived to serve as an
upper confidence limit for identification of poor-quality
SNP arrays. For each relative experimental error r, a
proportion of SNP arrays that were identified as poor-
quality SNP arrays was calculated in each simulation
replication. An average and a standard deviation of pro-
portions of poor-quality SNP arrays in 1,000 simulations
were calculated.

Results
Empirical distributions and upper confidence limits of
quality indices
We calculated quality indices and established their
empirical distributions based on SNP array data from
the Taiwan Han Chinese Cell and Genome Bank [52]
and the International HapMap Project [13-16]. Values
of quality indices were fitted by lognormal distributions
and examined by Kolmogorov-Smirnov goodness-of-fit
tests [55]. P-values of all goodness-of-fit tests were
>0.05 for SNP arrays and study populations, demon-
strating that the quality index was well modeled by log-
normal distributions (Additional file 1).
We compared quality indices among different ethnic

groups. In addition to a pairwise comparison of histo-
grams for quality indices from different ethnic groups,
we also formally compared the distributions of quality
indices from different ethnic groups by testing the
equalities of their means (in log scale), variances (in log
scale) and sampling distributions using two-sample Z
test, F test and Kolmogorov-Smirnov goodness-of-fit
test, respectively. We analyzed SNPs interrogated on the
Affymetrix 500K Set with all chromosomes combined.
The results showed that, with very few exceptions (high-
lighted in red), there were no significant differences in
means, variances and distributions of quality indices
across ethnic groups in general (Figure 1).
We also evaluated the effect of laboratory on quality

indices by controlling the population effect. We com-
pared distributions of quality indices for the samples
from two closely-related ethnic groups. The first group
was Han Chinese residing in Taiwan and referred as
TWN samples in this study (n = 448), and the second
group was Han Chinese residing in Beijing and referred
as CHB samples in the International HapMap Project (n
= 45). These two groups of samples were genotyped in
different laboratories. Kolmogorov-Smirnov goodness-
of-fit test was employed to test the equality of quality
indices for the two distributions. The p-value was 0.573,
which suggested that genotyping done in different
laboratories did not have a significant effect of the dis-
tribution of quality indices. The 95%, 97.5%, and 99%

upper confidence limits of quality indices for different
SNP arrays based on samples in various reference popu-
lations including the Taiwanese, African, Asian, and
European populations (i.e., population-specific confi-
dence limits) and the samples in all reference popula-
tions (i.e., combined-population confidence limits) were
calculated and then provided in SAQC software. The
confidence limits provided thresholds for identifying
poor-quality SNP arrays and/or DNA samples using the
proposed confidence interval method.

Quality evaluation of real SNP arrays and DNA samples
Eight experimentally designed bad-quality SNP assays
were used to validate our new quality index calculations
(Samples 1 - 8 in Figure 2). Samples 1 - 4 were indivi-
dual DNA with good quality from the Taiwan Han Chi-
nese Cell and Genome Bank [52] and genotyped using
arrays beyond expiration date (expired arrays); Samples
5 - 8 were pooled DNA of multiple individuals from the
Taiwan Young-Onset Hypertension Study [5] and geno-
typed using arrays prior to expiration date (unexpired
arrays). All the eight samples were genotyped with the
Affymetrix Human Mapping 500K Set (Nsp and Sty
arrays), and the quality index Q2 was calculated for the
Nsp array and Sty array and the “Merge” array which
contains all SNPs on the Nsp array and Sty array. For
the TWN population, the 95%, 97.5%, and 99% quantiles
of the quality index in the reference samples are, respec-
tively, 1.144, 1.246, and 1.385 for Nsp arrays; 1.133,
1.233, and 1.367 for Sty arrays; and 1.056, 1.129, and
1.224 for Merge arrays. A SNP array with a low quality
index (good quality) is presented in green, and a SNP
array with a high quality index (poor quality) is pre-
sented in white in the quality index heatmap plot. As
shown in Figure 2, when the 95% quantile was applied,
Samples 1 - 8 showed poor performance for both SNP
arrays and were categorized as “poor quality”. The per-
formance of Samples 5 - 8 was worse than that of Sam-
ples 1 - 4. The same analysis method was applied to 448
unselected individuals, which were recruited by the Tai-
wan Han Chinese Cell and Genome Bank [52] and gen-
otyped using unexpired arrays. The majority of the
samples had low quality indices for both SNP arrays and
was categorized as “good quality"; four representative
samples (Samples 9 - 12) were shown in Figure 2 for
illustration. Only few samples had high quality index for
at least one SNP array and were categorized as “poor
quality"; four of them (Samples 13 - 16) were shown in
Figure 2 for illustration.
Furthermore, we picked up the first sample in each

category, i.e., Samples 1, 5, 9 and 13, for exemplifying
the problems that could be identified by our method.
The four samples were further examined using AF plots
(Additional file 2). Deviation from a typical AF profile

Yang et al. BMC Bioinformatics 2011, 12:100
http://www.biomedcentral.com/1471-2105/12/100

Page 4 of 14



(i.e., three AF bands) was observed in poor-quality SNP
arrays with high quality indices. Sample 1 was genotyped
using expired arrays and, as expected, showed high qual-
ity indices in Nsp and/or Sty array (QINsp = 1.521, QISty
= 1.001, and QIMerge = 1.259) (Additional file 2, Supple-
mental Figure S2 (A1) and (A2)). A SNP array assay with
a set of bad-quality arrays would behave like this. Sample
5 was derived from a DNA pool of 56 TWN individuals
with hypertension, and the AF of a SNP reflected popula-
tion-level AF. As expected, the AFs of this sample were
deviated from the upper- and lower-bound of individual-
level AFs across the genome, which resulted in extremely
high quality indices (QINsp = 4.305, QISty = 4.577, and
QIMerge = 4.433) and thus very poor quality (Additional
file 2, Supplemental Figure S2 (B1) and (B2)). Samples
with server DNA contamination would show similar AF
profiles like that in this subgroup. Sample 9 had low
quality indices for the Nsp, Sty, and Merge arrays (QINsp

= 0.733, QISty = 0.776, and QIMerge = 0.753), signifying an
accurate hybridization, thereby suggesting good quality
of both the DNA sample and SNP arrays. This was typi-
cally observed for individual genotyping experiment in
this study (Additional file 2, Supplemental Figure S2 (C1)
and (C2)). Sample 13 showed poor quality in the Nsp
array but good quality in the Sty array (QINsp = 1.446,
QISty = 0.647, and QIMerge = 1.024), indicating that the
unsatisfactory quality of this sample was caused by the
Nsp array assay or genotyping error rather than the origi-
nal DNA sample (Additional file 2, Supplemental Figure
S2 (D1) and (D2)). If the error was caused by poor-qual-
ity DNA, inadequate performance should have been
found in both the Nsp and Sty arrays.

Results of simulation studies
We defined detection rate as a proportion of poor-qual-
ity SNP arrays detected by the proposed confidence

Figure 1 Comparison of the distributions of quality indices from the different ethnic groups based on the Affymetrix Human Mapping
500K Set. The subfigures in the diagonal show the names of ethnic groups (CEU, YRI, CHB, JPT, HapMap Asian, TWN, and TWN + HapMap). The
subfigures in the lower diagonal part show the histograms and fitted curves of quality index Q2 for any two given ethnic groups. In each
subfigure, distributions of quality indices from two ethnic groups are superimposed, with the purple bar and curve corresponding to the ethnic
group named on the above, and the green bar and curve corresponding to the ethnic group named on the right. The subfigures in the upper
diagonal part show the p-values for testing equality of means (in log scale), variances (in log scale) and sampling distributions for any two given
ethnic groups, Pmean, Pvar and PKS. The names of the two ethnic groups compared are shown in the upper-left corner in each subfigure. P-values
smaller than 0.05 are indicated in red.
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interval method according to a 95%, 97.5%, or 99%
quantile of quality index. We calculated the mean and
standard deviation of detection rates of 1,000 simula-
tions at a relative experimental error (r) of 0-0.6 at
increments 0.025. Results of the Affymetrix 100K and
Affymetrix 500K Sets based on the TWN population are
shown in Figure 3 and Figure 4.
First, the effect of the relative experimental error (r) is

discussed. The false detection rates (i.e., detection rate
at r = 0) were small, and true detection rates (i.e., detec-
tion rate at r > 0) increased as the relative experimental
error r increased. The average detection rates followed
S-shaped curves when plotted average detection rate
versus r (Figure 3 and Figure 4). The precision of detec-
tion rates was assessed using the standard deviation of
detection rates (Figure 3 and Figure 4). Second, the per-
formance of two quality indices (Q1 and Q2) was com-
pared. We found that the two indices have similar
detection rates and precision in our simulation (Figure 3

and Figure 4). The impact of ethnic populations (TWN,
CHB + JPT, and Combined) on the average detection
rates and precision of detection rates was evaluated. The
patterns of detection rates were quite similar in different
ethnic populations although the simulation data were
generated from genomic distributions of various popula-
tions (Additional file 3, Figure 3 and Figure 4). Fourth,
the impact of the SNP genotyping platform (Affymetrix
100K and 500K Sets) was also assessed. In general, the
Affymetrix 500K Set with a higher marker density (Fig-
ure 4) had a higher detection rate than the Affymetrix
100K Set (Figure 3). For the Affymetrix 100K Set,
almost 100% of poor-quality SNP arrays were identified
successfully when r was >0.35; and for the Affymetrix
500K Set, almost 100% of poor-quality SNP arrays were
identified successfully when r was >0.15 (Figure 3 and
Figure 4).
Fifth, the impact of winsorization thresholds (r) was

also evaluated. In general, average detection rates

Figure 2 Quality index heatmap plot for SNP arrays of different quality and pooled DNA. This figure shows quality index Q2 for Nsp
arrays, Sty arrays, and merged Nsp and Sty arrays for 16 DNA samples. The first four samples and the second four samples were genotyped
using unexpired arrays. The third four samples were genotyped with expired arrays. The last four samples were DNA pools constructed by 56,
198, 52 and 192 individuals and genotyped using unexpired arrays, respectively. The magnitude of the quality index is presented using a
heatmap plot for which a color spectrum from dark green to white represents the magnitude range. The levels of the quality index (μ, μ + s, μ
+ 2s, μ + 3s, μ + 4s, μ + 5s and μ + 6s) are given, where μ and s denote the sample mean and standard deviation, respectively, of the
quality index for the normal reference samples. Moreover, the upper limits of the quality index for arrays Nsp (N), Sty (S), and Merge (M) are also
given in the key. For the 16 DNA samples, if the values of the quality indices of arrays Nsp, Sty and Merge are greater than these upper limits,
arrays are presented in light-blue shaded views, respectively.
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presented similar S-shaped curves, whereas standard
deviations of detection rates presented similar unimodal
curves (Figure 3 and Figure 4). Quality indices with a
lower winsorization threshold had higher true detection
rates at r > 0 but were penalized by a slightly higher
false detection rate and standard deviation of detection
rate at r = 0 (Figure 3 and Figure 4).

SAQC software
SAQC software with R-GUI interfaces (Figure 5 and
Figure 6) is available online (http://www.stat.sinica.edu.
tw/hsinchou/genetics/quality/SAQC.htm). The test
examples are also provided, and the examples can be
run conveniently by simply clicking the button “Run”
once SAQC software has been initialized. SAQC soft-
ware consists of two components: (1) main functions
(Figure 5), and (2) interactive visualization (Figure 6).
The main functions provide statistical analyses of gen-
otype and hybridization intensity data or AF data and
produce both graphical and numerical results of qual-
ity indices. The interactive visualization provides an
interactive mode to display the results of quality
indices. The functions are illustrated in detail as
follows:

Component 1 - Main functions
(1) Input/output path: Users select the input data
format, where either genotypes and hybridization
intensity data or AF data can be selected. Data will
be automatically loaded by searching data files in the
specified input directory. Numerical outputs and
graphical outputs will be saved in the specified out-
put directory.
(2) Data format: We provide CPA, AF, and QI refer-
ence databases for HapMap Asian (CHB + JPT),
African (YRI), European (CEU), Taiwanese (TWN),
and combined populations (TWN + CHB + JPT +
YRI + CEU). Databases for the Affymetrix 100K/
500K are provided, and databases for the Affymetrix
Array 6.0 and Illumina 550K BeadChip are being
constructed. Users can decide to analyze one array
(e.g., Xba or Hind array of the Affymetrix 100K Set)
or two arrays (e.g., both Xba and Hind array of the
Affymetrix 100K Set).
(3) Statistical analysis: SAQC software provides utili-
ties including CPA calculation, AF estimation, AF
reference calculation, QI calculation, and identifica-
tion of poor-quality arrays. Users can select to con-
struct their own CPA and AF references or to use

Figure 3 Detection rate of quality indices in the simulation study based on the Affymetrix 100K SNP arrays. Averages and standard
deviations of detection rates of the genotype-based and nearest-mean-based quality indices {Q1(r), Q2(r), r = 95%, 97.5%, 99%} for a relative
experimental error r of 0-60%. The data were generated from the TWN population.
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the references provided by the SAQC databases. In
addition, users can also select 95%, 97.5%, or 99%
for the upper quantile of the quality index when
identifying poor-quality arrays.
(4) Graphical output: SAQC software provides differ-
ent types of plots including intensity-based and gen-
otype-based AF plots, QI heatmap plots, QI polygon
plots, and GCR plots.
(5) Numerical output: SAQC software provides the
following numerical outputs including: data descrip-
tion, CPA estimate, AF estimate, QI estimate, and
poor-quality SNP array. In addition, a file that shows
a sample list and GCR for each SNP array, and a log
file that shows the progress of program execution
and error/warning messages are included.

Component 2 - Interactive visualization
(1) Input/output path: Users can specify the input
and output directories. Quality index data will be
automatically loaded by searching data files in the
specified input directory. Graphical outputs will be
saved in the specified output directory.
(2) Plot parameters: Users first select to display a QI
heatmap plot (as in Additional file 4, Supplemental
Figure S4 (A)) and/or QI polygon plot (as in

Additional file 4, Supplemental Figure S4 (B)) and
then choose suitable graphic settings for the plots.
Users can either apply the parameters established
from the SAQC databases of different ethnic popula-
tions and SNP array platforms, or they can also pro-
vide their own references.

Discussion
The sampling distribution of quality indices is important
to systematically identify poor-quality SNPs and SNP
arrays. Although other quality indices for single SNPs
have been proposed [46-50], their sampling distributions
were seldom investigated. In this report, we proposed
new quality indices and tested them. We derived sam-
pling distributions for the quality indices through
empirical studies of several large genomic projects. We
found that the proposed quality indices follow lognor-
mal distributions. A similar conclusion was also reached
in our simulation study. For example, for Q2, only a
small proportion, 2.2% for the Affymetrix 100K Set and
4.0% for the Affymetrix 500K Set, of the Kolmogorov-
Smirnov goodness-of-fit tests rejected the null hypoth-
esis “quality indices follow lognormal distributions”
(P-value < 0.05) at a relative experimental error r = 0,

Figure 4 Detection rate of quality indices in the simulation study based on the Affymetrix 500K SNP arrays. Averages and standard
deviations of detection rates of the genotype-based and nearest-mean-based quality indices {Q1(r), Q2(r), r = 95%, 97.5%, 99%} for a relative
experimental error r of 0-60%. The data were generated from the TWN population.
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meaning that the proposed quality indices can be well
modeled by lognormal distributions.
The proposed quality indices were compared with

other indices. In addition to the winsorized mean, other
robust metrics, such as the median and trimmed mean,

can be used to calculate an array-level quality index. We
thus compared the performance of the winsorized mean
and median in simulation studies (compare Additional
file 3 with Additional file 5). The results showed that
the median statistic also was effective at evaluating SNP

Figure 5 Interface of main functions of new SAQC software to assess data quality of SNP arrays. The main functions of SAQC software
contain five items: input/output path, data format, statistical analysis, graphical output and numerical output.
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array quality. The winsorized mean statistic did, how-
ever, have a consistently higher true detection rate than
did the median statistic, especially when r was <0.4 for
the Affymetrix 100K Set and <0.175 for the Affymetrix
500K Set (compare Additional file 3 with Additional

file 5). Moreover, we also compared the proposed qual-
ity indices with the commonly used index GCR. In gen-
eral, SNP arrays with a low GCR often have poor
quality indices. For example, for the Affymetrix 500K
Set in our study, absolute-value correlation coefficients

Figure 6 Interface of interactive visualization of new SAQC software to assess data quality of SNP arrays. The interactive visualization
contains two items: input/output path and plot parameters.
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for the quality index Q2 and GCR in the merged Nsp
and Sty arrays were 0.8264, 0.6732, 0.7951, and 0.8727
for the YRI, CEU, CHB, and JPT populations, respec-
tively (data not shown). Nevertheless, the proposed
indices can work in concert with plots of AFs and qual-
ity indices to provide complementary information for a
GCR index to identify poor-quality SNP arrays and/or
DNA samples that cannot be detected by GCR.
A confounding factor, chromosome aneuploidy,

should be considered when drawing conclusions from
an analysis of the proposed quality indices. A high value
for the quality index may be caused by a poor-quality
SNP array (true positive) or may be a reflection of DNA
samples with chromosomal aneuploidy (false positive).
An artifactual high-quality index may result from chro-
mosomal aberrations of the test samples that deviated
from the normal references that were used to establish
SAQC databases. In fact, changes in the chromosomal
structure of DNA samples can be indicative of impor-
tant biological processes rather than of poor-quality
SNP arrays with high experimental noise. One simulated
example of a poor-quality SNP array is the triploid can-
cer patient with high quality indices of Hind, Xba and
merged arrays (QIHind = 4.393, QIXba = 7.541, and
QIMerge = 5.922) (Additional file 6), where r = 95% was
considered. SAQC software overcomes this potential
confounding issue by providing intensity-based AF plots.
High quality indices that are due to polyploidy or aneu-
ploidy can be easily identified via an intensity-based AF
plot (Additional file 6). In addition, SAQC software can
be used jointly with our recently developed analysis tool,
ALOHA software [39], to identify regions of chromoso-
mal aberrations, such as allelic imbalance, loss of het-
erozygosity and copy number changes. Although our
quality index is not designed for directly detecting copy
number alterations, it can be used to select the best
ones (i.e., samples with good quality indices) from a set
of samples to be used as references to compute absolute
copy numbers.
For ethnic populations and laboratory effect, our ana-

lyses suggest that the effects of the ethnic population and
laboratory are not significant (see Figure 1). Thus, the
results will only be changed mildly for wrongly assigned
population. SAQC software provides population-specific
and combined-population databases of AFs and quality
indices for identifying poor-quality SNP arrays and/or
DNA samples. Use of the reference from the same popu-
lation as the study group is recommended. If the desired
population is not available in SAQC, users can use the
reference from the combined population; alternatively,
users can build or provide the references for their own
population and their own laboratory using SAQC (see
the SAQC software section).

The analysis of Sample 5 in Figure 2 illustrates that
it is possible to use our proposed method to discern
the origin of a bad hybridization signals is the DNA
sample or the array for samples. However, the conclu-
sion solely relies on the discordance between the two
arrays for the same sample (e.g., Xba and Hind of the
Affymetrix 100K Set and Sty and Nsp of the Affyme-
trix 500K Set), so this application can not be applied
to the case of a single array system (e.g., Affymetrix
Array 6.0 or Illumina 550K) if no experimental repli-
cates available.
In addition to the Affymetrix Human Mapping 100K

and 500K Sets, the new SAQC software can be extended
to handle SNP arrays with a higher marker density. Cur-
rently, we are establishing CPA, AF, and QI reference
databases for the Affymetrix Array 6.0 and Illumina
550K BeadChip. Completion of this task will further
enhance the applications of our methods and SAQC
software.

Conclusions
Quality control of SNP arrays plays an important role
in downstream data analyses. As a result of our analy-
sis, we have proposed new quality indices and have
established their empirical distributions for different
SNP array platforms and ethnic populations. We have
also developed a detector to assist in identifying poor-
quality SNP arrays and/or DNA samples based on
empirical distributions of quality indices; this method
has been evaluated by analyses of authentic data and
simulated data. In addition, the newly developed
SAQC software provides an easy-to-use analysis plat-
form for SNP array quality control. In conclusion, an
integrated analysis of quality indices (the quality index
heatmap plot and quality index polygon plot), AF data
(intensity-based AF plot and genotype-based AF plot),
and GCR data (GCR plot) is helpful for determining
the quality of genome-wide SNP arrays and thereby
enhances the reliability of this sophisticated data
analysis.

Availability and requirements
The SAQC software and test examples can be down-
loaded from the SAQC website: http://www.stat.sinica.
edu.tw/hsinchou/genetics/quality/SAQC.htm.
Project name: SNP array quality control project
Project home page: http://www.stat.sinica.edu.tw/

hsinchou/genetics/quality/SAQC.htm
Operating system: MS Windows®

Programming language: Language R and R-GUI
Other requirements: No
Any restrictions to use by non-academics: On

request and citation
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Additional material

Additional file 1: Figure S1–Lognormal distribution of quality index
based on the Affymetrix Human Mapping 100K and 500K Sets.
Kolmogorov-Smirnov goodness-of-fit tests were used to examine
lognormal distributions of the quality index Q2 for all study samples.
Here, each figure consists of 24 panels. The first 23 panels show a
distribution of the quality index for each chromosome, and the twenty-
fourth panel presents a whole-genome distribution. In each panel, a
histogram (gray bar), theoretical lognormal curve (purple line), and fitted
curve (green line) for the quality index are shown, and the number
shown in parentheses is the P-value of the Kolmogorov-Smirnov
goodness-of-fit test. Three red dashed reference lines show the 95%,
97.5%, and 99% quantile. Samples with aneuploidy, amplification, or very
long contiguous homozygous stretches were removed. For the
Affymetrix Human Mapping 100K Set, we have (A1) 57 CEU founders,
(A2) 58 YRI founders, (A3) 43 CHB samples, (A4) 43 JPT samples, (A5) 86
HapMap Asian samples (43 CHB and 43 JPT), (A6) 360 TWN samples, and
(A7) 561 study samples (360 TWN samples and 201 HapMap samples).
For the Affymetrix Human Mapping 500K Set, we have (B1) 55 CEU
founders, (B2) 59 YRI founders, (B3) 43 CHB samples, (B4) 44 JPT samples,
(B5) 87 HapMap Asian samples (43 CHB and 44 JPT), (B6) 442 TWN
samples, and (B7) 643 study samples (442 TWN samples and 201
HapMap samples).

Additional file 2: Figure S2–Individual-level AF plots of four
samples based on the Affymetrix Human Mapping 500K Set. AF
plots of four samples: (A1) and (A2) are results of Nsp and Sty arrays for
sample SC100011 (Sample 1); (B1) and (B2) are results of Nsp and Sty
arrays for sample SC100854 (Sample 5); (C1) and (C2) are results of Nsp
and Sty arrays for sample SC100444 (Sample 9) genotyped with expired
SNP arrays; and (D1) and (D2) are results of Nsp and Sty arrays for
pooled DNA samples (Sample 13). The panels display AFs for each of the
23 chromosomes. The horizontal axis is the physical position (unit = 1
Mb), and the vertical axis is the AF. Each SNP is denoted by a blue point,
and the gap in each subplot represents the centromeric gap. The
distribution of AFs was estimated using a smoothed density function and
is shown as a pink curve.

Additional file 3: Figure S3–Detection rates of winsorized mean-
based quality indices in the simulation study. Averages and standard
deviations of detection rates of the genotype-based index (Q1) and
nearest-mean-based quality index (Q2) {Q1(r), Q2(r), r = 95%, 97.5%, 99%}
for a relative experimental error r of 0-60% with increments of 0.025. (A)
HapMap Asian (CHB + JPT) population and Affymetrix 100K SNP array. (B)
HapMap Asian (CHB + JPT) population and Affymetrix 500K SNP array. (C)
The combined population (TWN + CHB + JPT + YRI + CEU) and
Affymetrix 100K SNP array. (D) The combined population (TWN + CHB +
JPT + YRI + CEU) and Affymetrix 500K SNP array.

Additional file 4: Figure S4–Two interactive plots provided by SAQC
software. (A) Interactive QI heatmap plot. (B) Interactive QI polygon plot.

Additional file 5: Figure S5–Detection rates of median-based quality
indices in the simulation study. Averages and standard deviations of
detection rates of the genotype-based index (Q1) and nearest-mean-
based quality index (Q2) {Q1(r), Q2(r), r = 95%, 97.5%, 99%} for a relative
experimental error r of 0-60% with increments of 0.025. (A) HapMap
Asian (CHB + JPT) population and Affymetrix 100K SNP array. (B) HapMap
Asian (CHB + JPT) population and Affymetrix 500K SNP array. (C) The
combined population (TWN + CHB + JPT + YRI + CEU) and Affymetrix
100K SNP array. (D) The combined population (TWN + CHB + JPT + YRI
+ CEU) and Affymetrix 500K SNP array.

Additional file 6: Figure S6–Individual-level AF plot of a triploid
cancer patient. Individual-level AF data of a cancer patient were generated
by a simulation procedure and then displayed in an AF plot. The panels
display AFs for each of the 23 chromosomes. The horizontal axis indicates
the physical position (unit = 1 Mb), and the vertical axis shows the AF. Each
SNP is denoted by a blue point, and the gap in each subplot represents the
centromeric gap. The distribution of AFs was estimated using a smoothed
density function and is shown as a pink curve.

List of abbreviations used
AF: allele frequency; BRLMM: Bayesian Robust Linear Model with
Mahalanobis Distance Classifier; CEU: CEPH Utah residents; CHB: Han Chinese
in Beijing; CPA: coefficient of preferential amplification/hybridization; GCR:
genotype call rate; JPT: Japanese in Tokyo; QI: quality index; SAQC: SNP Array
Quality Control; SNP: single-nucleotide polymorphism; TWN: Han Chinese in
Taiwan; YRI: Yoruba in Ibadan.
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