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Despite much research, the role of the medial temporal lobes (MTL) in category learning is unclear. Two unstructured cat-

egorization experiments explored conditions that might recruit MTL category learning and memory systems—namely,

whether the stimulus display includes one or two stimuli, and whether category membership depends on configural prop-

erties of the stimulus features. The results supported three conclusions. First, in agreement with prior research, learning

with single stimulus displays depended on striatal-mediated procedural learning. Second, and most important, learning

with pair displays was mediated by MTL declarative memory systems. Third, the use of stimuli in which category member-

ship depends on configural properties of the stimulus features made MTL learning slightly more likely. Overall, the results

suggested that the MTL are most likely to mediate learning when the participant must decide which of two configural stimuli

belongs to a selected category.

A variety of different neural networks support human learning,
which allows us to acquire a rich repertoire of skills and knowledge
to survive and prosper. Declarative memory is recruited when
learning facts, and procedural memory is recruited when learning
new motor skills. Much previous research has focused on identify-
ing specialized brain circuits for specific types of learning. In the
case of category learning, the influential work of Knowlton et al.
(1996) triggered an avalanche of evidence pointing toward a criti-
cal role for the striatum (for reviews, see e.g., Ashby et al. 1998;
Ashby and Ennis 2006; Seger and Miller 2010). For example, virtu-
ally all studies that have tested patients with striatal dysfunction
have reported category-learning deficitis.

In contrast, it has beenmuchmore difficult to understand the
role of themedial temporal lobes (MTL) in category learning. Some
studies have reported impaired category-learning performance in
patients with amnesia (Knowlton et al. 1994; Kolodny 1994;
Zaki et al. 2003; Hopkins et al. 2004; Barense et al. 2005;
Graham et al. 2006; Swainson et al. 2006), but many others have
reported intact performance (e.g., Leng and Parkin 1988;
Janowsky et al. 1989; Knowlton and Squire 1993; Kolodny 1994;
Squire and Knowlton 1995; Filoteo et al. 2001; Bayley et al.
2005). Furthermore, even in tasks that initially seem ideally suited
to MTL-mediated learning, such as unstructured categorization,
the evidence favors the striatum over theMTL. In unstructured cat-
egorization tasks, the stimuli are visually distinct and assigned to
each contrasting category randomly, and thus there is no rule- or
similarity-based strategy for determining category membership.1

The only successful strategy in unstructured categorization tasks
seems to be some form of paired-associate learning. Even so,
when the stimuli are presented one-at-a-time and learning de-
pends on trial-by-trial feedback, evidence suggests that learning
is procedural and more basal-ganglia dependent than MTL depen-
dent (Seger and Cincotta 2005; Seger et al. 2010; Lopez-Paniagua

and Seger 2011; Crossley et al. 2012).2 One obvious hypothesis is
that the conscious recollection of specific stimuli used in the exper-
iment is MTL dependent, but the trial-and-error learning of arbi-
trary stimulus-response associations depends more on the basal
ganglia.

On the other hand, there are at least four different experimen-
tal features that have been reported to recruit MTL learning and
memory systems. One is to create categories that include distinct
exceptions. In particular, in tasks in which the categories have
some coherent structure, but in which they also include a small
number of distinct exceptions, evidence suggests that the learning
of the exceptions recruits MTL systems (e.g., Davis et al. 2012). A
second design feature that seems to make MTL learning and mem-
ory more likely is to use observational training, rather than more
traditional feedback-based training. For example, Shohamy et al.
(2004) reported that patients with Parkinson’s disease (PD), who
have striatal dysfunction, are impaired in feedback-based learning,
but not in observational learning. Two other features that seem to
recruit MTL systems are the focus of this article—namely, whether
the stimulus display includes one or two stimuli, and whether cat-
egory membership depends on configural properties of the stimu-
lus features. Our results suggest that the MTL are most likely to

1By rule, we mean an instruction that can be described by a Boolean expression
that produces a response to every stimulus (e.g., “if the stimulus is large respond
A; otherwise respond B”).
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mediate learning when the participant must decide which of two
configural stimuli belongs to a selected category.

The nature of the stimulus display
The studies that have most consistently reported learning deficits
in MTL-lesioned patients used some form of discrimination task,
rather than traditional categorization (e.g., Barense et al. 2005;
Graham et al. 2006; Swainson et al. 2006). For example, Barense
et al. (2005) displayed two stimuli on each trial—one from each
of the contrasting categories—and the participant’s task was to
identify the stimulus from the “Correct” category. MTL-lesioned
patients were impaired. In contrast, the traditional categorization
task displays one stimulus on each trial and the participant’s task
is to assign it to its correct category by pressing the appropriate re-
sponse key.

Why should it matter whether the stimulus display includes
one or two stimuli? One reason is because evidence suggests that
striatal-mediated learning is of stimulus-response associations
(Ashby et al. 2003; Featherstone and McDonald 2004; Maddox
et al. 2004b; Spiering and Ashby 2008; Horvitz 2009; Crossley
et al. 2012; Helie and Ashby 2012). In typical category-learning ex-
periments, a single stimulus is presented and the participant’s task
is to assign it to its correct category via a buttonpress—for example,
by pressing a response key labeled “A” or “B.” Under these condi-
tions, stimuli in the A category are always associated with an A re-
sponse, and stimuli in the B category are always associatedwith the
B response. But consider a pair-display task where the display on
each trial includes one exemplar from category A and one from
B, and the participant’s task is to indicate which one is from cate-
gory A. Now the response keys are labeled “left” and “right” and
stimuli from the A category could elicit either response. So learning
stimulus-response associations is insufficient for this task. And in
fact, Spiering and Ashby (2008) reported evidence that striatal-
mediated learning fails under similar conditions. For these reasons,
two-stimulus displays might be more likely to recruit MTL systems
than single-stimulus displays.

The nature of the stimulus features
Although the MTL might not be ideally suited for reinforcement
learning, they have their own unique properties. For example,
the MTL are critical for binding or conjoining separate representa-
tions in a way that preserves their configural relationship (e.g.,
Rudy and Sutherland 1989; Sutherland and Rudy 1989; Aggleton
et al. 2007; Duncan et al. 2018). In most category-learning experi-
ments, the category exemplars are simple visual objects and catego-
rization depends on feature identity, but not on the configural
relationship among the features. Thus, tasks in which category
membership depends on configural properties of the stimulus fea-
tures might also favor the MTL over the striatum.

Sanderson et al. (2006) examined both of these properties in a
water-maze study with rats in which the categories identified the
location of a submerged platform. In their single-display condi-
tion, only one stimulus was displayed on each trial, with category
A indicating the platformwas to the left and category B to the right.
In their pair-display condition, two stimuli were present on every
trial, with a category A stimulus above the platform and a category
B stimulus above open water.3 In all conditions, category member-
ship depended on the configural relationship of the stimulus
features.

Sanderson et al. (2006) reported that in the pair-display con-
dition, the learning of MTL-lesioned rats was significantly im-
paired relative to a group that received sham lesions. In contrast,
in the single-display condition, the MTL-lesioned and sham-
lesioned groups showed no difference in learning. Their inference
was that learning in the pair-display condition required processing
of the configural relationship of the figure components, which is
MTL-dependent. Although they did not perform any basal ganglia
lesions, we suspect that learning in the single-display condition
was basal-ganglia dependent, given the abundant evidence of basal
ganglia involvement in category learning.

The current experiments
Based on these considerations, our Experiment 1 crossed two types
of stimulus displays (single vs. pair) with two types of stimuli (con-
figural vs. nonconfigural). The stimuli are shown in Figure 1. The
configural stimuli were patterned after the stimuli used by
Sanderson et al. (2006). Note that each of these stimuli includes
two separate components, and that its mirror image belongs to
the contrasting category. Therefore, category membership is not
determined by stimulus features, but by their configural relation-
ship. The nonconfigural stimuli are similar to stimuli used in the
unstructured categorization experiments of Seger and Cincotta
(2005) and Crossley et al. (2012).

Note that each category includes six stimuli, and that there
is no logical rule that determines category membership, nor is
any similarity-based strategy helpful. Thus, these category are un-
structured. Although previous research suggests that feedback-
based, unstructured category learning is mediated by procedural
learning within the basal ganglia (Seger and Cincotta 2005; Seger
et al. 2010; Lopez-Paniagua and Seger 2011; Crossley et al. 2012),
it is important to note that all of these previous studies used single
stimulus displays and nonconfigural stimuli.

The two stimulus displays are illustrated in Figure 2. The
Single conditions replicated the standard category learning display
in which a single stimulus is presented and the participant’s task is
to assign it to category A or B by pressing the appropriate response
key. In the Pair conditions, two stimuli were displayed—one from
category A and one from category B and the participant’s task was
to indicate whether the category A stimulus was on the left or right
by pressing one key associated with a left response or another key
associated with a right response. Note that there is no consistent
stimulus-response mapping in the Pair conditions because half

Category A Category B
Non-configural stimuli

Configural stimuliA

B

Category A Category B

Figure 1. Stimuli used in Experiments 1 and 2.

3Sanderson et al. (2006) called the pair-display condition the structural-
discrimination condition and the single-display condition the transverse-
patterning condition.
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the time participants pressed one key for category A and half the
time they pressed the other key.

Our experiments are purely behavioral, so we have no direct
method for assessing MTL involvement. Even so, we have several
indirect methods that have been used with success in previous re-
search. First, much previous research suggests that striatal-
mediated procedural learning is impaired if the trial-by-trial feed-
back is delayed for 2.5 sec or more, whereas declarative-memory
mediated category learning is unaffected by feedback delays as
long as 10 sec (Maddox et al. 2003; Maddox and Ing 2005; Dunn
et al. 2012; Crossley andAshby 2015). Furthermore, within the stri-
atum, the hypothesized cellular basis of the impaired learning
caused by feedback delays has been identified (Yagishita et al.
2014). Therefore, Experiment 2 added feedback-delay conditions
as a method for identifying striatal-mediated learning.

Feedback delays impair striatal learningmore thanMTL learn-
ing. Ideally, wewould also like amethod that impairsMTL learning
more than striatal learning. However, while some fMRI studies
have reported correlated BOLD patterns in MTL during categoriza-
tion tasks (for review, see Zeithamova et al. 2019), we know of no
noncontroversial method for disrupting MTL processing in
healthy humans. Instead, we pursued a different goal: disrupt the
processing of information that is presumably encoded by MTL.
Since there is much evidence that interactions between prefrontal
cortex (PFC) and the MTL are critical for visuospatial processing
(Petrides 1985; Swainson et al. 2006; Barker and Warburton
2013; Renzi et al. 2013), Experiment 2 used amethod known to in-
terfere with PFC-mediated learning—namely, requiring partici-
pants to switch quickly to a new task after the categorization
feedback is presented. Maddox et al. (2004a) reported that such
switching interferes with declarative-memory mediated category
learning muchmore than with procedural category learning—pre-
sumably because feedback processing requires attention and effort
in declarative systems, but not in procedural systems.

Results

Experiment 1
This experiment used a 2 ×2 factorial design that crossed two levels
of stimulus type (Configural vs. Nonconfigural) with two levels of
stimulus display (Single vs. Pair). The stimuli are shown in Figure 1
and the display conditions are illustrated in Figure 2. Each condi-
tion included several blocks of learning, and a final transfer-test
block at the end in which the opposite display type from training
was used and no feedback was provided. Participants were excused
if they responded correctly on all 48 trials in a block, or if 45 min

had elapsed. As a result, some participants completed more blocks
than other participants.

Figure 3 shows the accuracy in each condition for all blocks
that were completed by at least 10 participants. Note that perfor-
mance in the Pair condition is consistently better than in the
Single condition for both types of stimuli, although this advantage
appears to be smaller for the Nonconfigural stimuli than for the
Configural stimuli after the fifth block.

To test these conclusions more rigorously, we performed a
number of different statistical analyses. Because the dependent var-
iable is dichotomous (i.e., correct vs. incorrect response), our main
analysis used logistic regression. First, we tested the full model in
which accuracy is a function of trial, display type (Single or Pair),
and stimulus type (Configural or Nonconfigural). The results are
shown in Table 1.

Note that these results generally reinforced the informal con-
clusions drawn from a visual inspection of Figure 3. Specifically,
the effect of display type was significant [χ2(1) = 9.514, P=0.002],
suggesting that performancewas better with pair displays than sin-
gle displays. A follow-up analysis showed that after block 5, this dif-
ference was only significant in the Configural conditions
[Configural conditions: χ2(1) = 4.452, P=0.035; Nonconfigural
conditions: χ2(1) = 0.138, P=0.711]. A reanalysis with all the data
(i.e., including blocks with small sample sizes) reached this same
conclusion.

Figure 4 shows accuracy during the final transfer-test block in
each of the four conditions for all perfect learners (i.e., all partici-
pants who achieved 10% correct during their last training block).
Recall that the transfer block display was of the opposite type
from training. So during transfer, participants in the Pair condi-
tions were tested on Single displays, whereas participants in the
Single conditions were tested on Pair displays. For example, note
that participants trained on configural stimuli with single stimulus
displays were 81% correct during transfer when tested on pair
displays.

Note that transfer accuracy was good in all conditions (above
80%). The main effect of stimulus type was significant [mean pro-
portion correct was 0.92 for nonconfigural stimuli, and 0.86 for
configural stimuli; χ2(1) = 6.838, P<0.001], suggesting that transfer
performance was better for the nonconfigural stimuli than for the
configural stimuli. In contrast, the main effect of display type was
not significant [Display type: χ2(1) = 0.213, P=0.644]. The in-
teraction effect was also significant [χ2(1) = 153.223, P<0.001].
Both simple main effects were significant [Configural stimuli:
χ2(1) = 47.079, P<0.001; Nonconfigural stimuli: χ2(1) = 106.36,

Figure 3. Experiment 1 learning curves for each condition from all
blocks that included 10 or more participants. Error bars represent standard
errors. See Figure 9 in the Appendix for the sample size of each block.

A or B?

Single Conditions

Pair Conditions

Is A on the left or right?

A

B

Figure 2. The two different types of stimulus displays used in
Experiments 1 and 2.
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P <0.001], indicating that transfer accuracy was significantly high-
er with pair-display training than with single-display training for
the configural stimuli, which is consistent with the hypothesis
that pair-display learning is MTL dependent and thus is flexible.
However, this advantage was not seen in the Nonconfigural condi-
tion, suggesting that pair-display training without configural stim-
uli may not be as strongly MTL dependent.

Interestingly, we also found evidence that participants might
have learned different strategies during pair- and single-display
training. During pair-display training, participants always had to
indicate which of the two stimuli belonged to the “Good” catego-
ry. Then, during the transfer test, they had to indicate whether the
single displayed stimulus belonged to the “Good” or “Bad” catego-
ry. To assess how their pair-display training affected their single-
display categorization, we examined the mean response times
(RTs) of all perfect learners during the transfer test. Results showed
that participants responded “Good” more quickly than “Bad”
[F(1,44) = 15.504, P<0.001]. In contrast, for participants who
trained with single displays, mean RTs to “Good” and “Bad”
stimuli did not significantly differ during the last training block
[F(1,43) = 3.482, P=0.069]. Therefore, pair-display training seemed
to cause participants to learn a qualitatively different categoriza-
tion strategy than single-display training. One possibility is that
having to identify which of the two stimuli was “Good” encour-
aged a comparison process that was absent during single-display
training and biased participants more toward “Good” stimuli
than “Bad” stimuli.

Experiment 2
Experiment 1 showed that learning is faster with pair display train-
ing than with single display training, that performance was better
with the nonconfigural stimuli than with the configural stimuli—
regardless of display type, and also that the knowledge that is ac-
quired with either type of training generalizes to the opposite dis-
play type. Experiment 2 focuses on the question of how the
configural-stimulus categories are learned under single- and pair-
display conditions.

Experiment 2 was also a 2×2 factorial design, with two levels
of stimulus display (Single vs. Pair), and two levels of learning dis-
ruption (Feedback Delay vs. Task Switching). The stimuli were the
same as the Configural conditions of Experiment 1 (i.e., see Fig. 1).
All other methods were the same as in Experiment 1. For data anal-
ysis purposes, we included results of the Configural conditions
from Experiment 1 as control conditions in which there was no
learning disruption. Hereafter, we refer to these as the None condi-
tions (because the level of learning disruption was none).

Figures 5 and 6 show the learning curves separately for the
Feedback-Delay (Fig. 5) and Task-Switching conditions (Fig. 6),
along with the learning curves from the None conditions as con-
trols. Only data from all blocks that were completed by at least
10 participants are included. First, note from Figure 5 that the feed-

back delay appeared to have no effect on learning with pair dis-
plays, but to impair performance substantially with single
displays. Second, note from Figure 6 that the apparent effect of
switching quickly to the memory-scanning task was to impair
learning in the Pair condition much more than in the Single
condition.

We followed the same statistical approach as in Experiment
1. First, we tested the full model in which accuracy is a function
of trial, display type (Single or Pair), and disruption type (None,
Feedback Delay, or Task Switching). The results are shown in
Table 2.

Note that there was a main effect of display type, suggesting
that, as in Experiment 1, performance was significantly better in
the Pair display conditions than in the Single conditions. In addi-
tion, the main effect of disruption type was also significant, which
suggests that feedback delay and/or quickly switching to a second
task impaired performance in at least some display conditions.

To investigate these effectsmore closely, we performed several
follow-up logistic regression analyses. First, we separately exam-
ined the data from the Single/None and Single/Delay conditions
[i.e., via a two-factor analysis—trial × disruption (None vs.
Feedback Delay)]. The results showed that performance was signif-
icantly worse in the Feedback Delay condition [χ2(1) = 5.727, P=
0.017]. Next, we repeated this analysis for the Pair/None and
Pair/Delay conditions. In this case, the effect of feedback delay
was not significant [χ2(1) = 0.266, P=0.606]. The hypothesis that
the feedback delay impaired learning more in the Single display
condition is further supported by the fact that the number of par-
ticipants who failed to achieve 60% correct by block 8 (the fewest
blocks completed by any nonlearner) was significantly higher in
the Single/Delay condition than in the Pair/Delay condition (12
of 27 participants in the Single/Delay condition; three of 25 partic-
ipants in the Pair/Delay condition; Z=2.58, P=0.0049).

We then performed similar analyses to investigate the effects
of quickly switching to the second (memory-scanning) task. In the
Single display conditions, Task-Switching performance was not
significantly different from None performance [χ2(1) = 1.144, P=
0.285], but with Pair displays, performance was worse in the
Task-Switching than in the None condition [χ2(1) = 3.999, P=
0.046]. The number of nonlearners was not significantly different
in these two conditions (6 of 21 participants in the Pair/
Task-Switching condition; 7 of 22 participants in the Single/
Task-Switching condition; Z=0.232, P= 0.408). Critically, perfor-
mance in the Pair/Task-Switching condition was no better than
performance in either of the Single conditions.

Non-configural stimuli
Configural stimuli

.6

.7

.8

.9

1
Transfer Accuracy

Single test after
pair training

Pair test after
single training

Figure 4. Experiment 1 accuracy during the final transfer-test block for
perfect learners (i.e., all participants who achieved 100% correct during
the last training block). Error bars represent standard errors. See Figure 9
in the Appendix for the sample size of each group.

Table 1. Logistic regression results from Experiment 1

Effect χ2 df P

Trial 6730.523 1 <0.001
stimulus type 2.746 1 0.097
display type 9.514 1 0.002
display × stimulus 0.021 1 0.885
display × trial 74.147 1 <0.001
stimulus × trial 24.861 1 <0.001
display × stimulus × trial 67.539 1 <0.001

Display type includes Single and Pair conditions. Stimulus type includes
Configural and Nonconfigural conditions.
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We also replicated all these analyses without excluding any
data—that is, we included data from all blocks, even those for
which the sample size was less than 10. The results were qualita-
tively identical. In particular, Pair performance was still signifi-
cantly better than Single performance, feedback delay still
impaired Single performance but not Pair performance, and task
switching still impaired Pair but not Single performance.

One possible concern is that our results may have been biased
by the unequal sample sizes across blocks that resulted from our
strategy to increase participant motivation by terminating their
training after any block in which they achieved perfect accuracy
(see Fig. 9 in the Appendix for the sample sizes of each block in ev-
ery condition of both experiments). To investigate this possibility,
we repeated all analyses on the data from the first 8 blocks for all
participants who completed at least 8 blocks of training. This was
the largest number of blocks that included at least 10 participants
in all conditions. The learning curves are shown in Figures 7
(Feedback-Delay conditions) and 8 (Task-Switching conditions).
We replicated all the above analyses on these reduced data sets
and the results were again qualitatively identical. The same results
were also obtained when the analyses were done on data from the
first 6, 7, or 9 blocks of training, rather than the first 8 (see Fig. 10 in
the Appendix).

Note that with each disruption type, some participants were
able to learn perfectly within 7 blocks. Of course, this does not
mean that they were not affected by the manipulation. For exam-
ple, a Pair-Display participant who responded correctly on every
trial of block 7 under Task-Switching conditions might have re-
sponded correctly on every trial of block 5 under None conditions.
Our experiment was not designed to address this question. The im-
portant point is that our results show that, at the group level, task
switching impairs pair-display category learning.

Discussion

We reported the results from two experiments that used unstruc-
tured categories. The experiments were designed to investigate
the effects on learning of two different design features. One feature
was whether the stimulus display included one or two stimuli, and
the secondwas whether or not categorymembership depended on
configural properties of the stimulus features.

Our results supported prior conclusions that with single stim-
ulus displays, unstructured category learning depends on proce-
dural learning that previous research suggests is mediated in the

striatum, regardless of whether category membership depended
on configural properties of the stimuli. The best evidence for this
came in Experiment 2, which showed that a feedback delay of
2.5 sec highly impaired single-display learning, but had no effect
on learning with pair displays. Prior research has shown that feed-
back delays of this type impair learning in tasks that are known to
be mediated by procedural learning, but have little or no effect on
learning in tasks that depend on declarative memory systems
(Maddox et al. 2003; Maddox and Ing 2005; Dunn et al. 2012;
Crossley and Ashby 2015).

Our most important finding, however, was that a switch to
pair displays seemed to cause a switch to learning strategies that
are supported by declarativememory systems, especially when cat-
egory membership depended on configural properties of the stim-
ulus features. First, although the categories were identical in the
Single and Pair conditions, learning was significantly better with
the pair displays, and this advantage appeared to be even greater
with configural stimuli. Second, the same feedback delay that im-
paired single-display learning had no effect on pair-display learn-
ing. Third, a manipulation that reduced the time and attention
available for feedback processing (i.e., quickly switching to a sec-
ond task) impaired pair-display learning but not single-display
learning. Maddox et al. (2004a) reported that this same manipula-
tion impaired learning in a declarative-memorymediated task, but
not in a task that recruited procedural learning.

Although more research is needed, the most likely scenario is
that learning with pair displays depended on MTL memory sys-
tems. First, the absence of a feedback-delay effect rules out proce-
dural learning. Second, the unstructured nature of the categories
means that there is no simple explicit rule that determines category
membership and therefore learning could not have depended on
rule discovery. Third, Experiment 2 closely followed the design
of Sanderson et al. (2006), who reported thatMTL lesions impaired
learning with pair displays, but not with single displays.

Of course, humans have a larger repertoire of executive skills
and a higher working-memory capacity than rats, and therefore,
our design cannot fully exclude the possibility that learning in
the Pair conditions was mediated primarily by working memory.
For example, participants may have verbalized an association of
the category label with the stimulus configuration (in the case of
the configural stimuli) or with some unique set of stimulus features
(in the case of the nonconfigural stimuli), and then retained and
rehearsed this association in working memory during the task. If
so, then the MTL would not be critical for humans to learn these

Figure 5. Experiment 2 learning curves for the None and Feedback-
Delay conditions from all blocks that included 10 or more participants.
Error bars represent standard errors. See Figure 9 in the Appendix for
the sample size of each block.

Figure 6. Experiment 2 learning curves for the None and
Task-Switching conditions from all blocks that included 10 or more partic-
ipants. Error bars represent standard errors. See Figure 9 in the Appendix
for the sample size of each block.
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categories. Even so, there are a number of reasons this hypothesis
seems unlikely. First, Figure 3 shows that even in the easiest condi-
tion (i.e., Pair display/Nonconfigural stimuli) average accuracy was
still increasing after 4 blocks of training. The duration of learning
therefore exceeded the duration of working memory maintenance
by several orders of magnitude. Second, it has been reported that
MTL-lesioned patients are impaired in spatial associative learning
with just six pairs of stimuli (Petrides 1985). Third, Barense et al.
(2005) reported that “feature ambiguity” predicts learning diffi-
culty for MTL-lesioned patients better than the number of items;
specifically, they demonstrated that when each stimulus feature
is associated with both categories, exactly as with our configural
stimuli, MTL-lesioned patients were impaired in discrimination
learningwith as fewas four stimulus pairs. For these reasons, we be-
lieve the most likely hypothesis is that success in our pair-display
conditions recruited MTL learning and memory systems.

Intuition seems to suggest that unstructured categories must
require explicit memorization for learning to be successful, and
therefore that MTL systems should be recruited, regardless of the
conditions. Episodic memory surely mediates the participant’s
conscious recollection of specific stimuli that were shown during
the experimental session, but with single-stimulus displays, epi-
sodicmemorymight not be ideally suited for using the trial-by-trial
feedback to associate an arbitrary categorization response with
each stimulus. Instead, such feedback-based trial-and-error learn-
ing is a hallmark of striatal-mediated procedural learning.

If procedural learning is advantageous, then why isn’t it used
in the pair-display conditions? Procedural learning requires a con-
sistent associationbetween a stimulus and a response. For example,
performance is impaired if the location of the response keys is
switched after learning is complete in tasks that recruit procedural
learning, but not in declarative-memory mediated tasks (Ashby
et al. 2003; Maddox et al. 2004b; Spiering and Ashby 2008;
Crossley et al. 2012). With pair displays, no such consistent map-
ping is available, and so procedural learning is defeated. Evidence
supporting this hypothesis comes from Helie and Ashby (2012),
who reported results from a same-different categorization task
that used a pair display. On each trial, two stimuli were presented
and the participant’s task was to indicate whether the stimuli were
from the same or different categories. Therewas no evidence of any
learning with categories that were learned procedurally under
single-display conditions, whereas learning was good with catego-
ries that recruited declarative strategies in single-display
conditions.

We also found other evidence that learning with pair displays
was qualitatively different than learning with single displays. First,
accuracy was consistently higher with pair displays. This could be
because pair displays provide more information than single dis-
plays. For example, a well-known result from signal detection the-
ory is that d′ in pair-display tasks is

��

2
√

larger than in single-display
tasks if an optimal decision strategy is used. But the optimal strat-

egy with pair displays is different thanwith single displays—for ex-
ample, it requires comparing the two stimuli. Therefore, signal
detection theory predicts that the higher accuracy we observed
with pair displays is because participants used different strategies
with single and pair displays. Second, after training with pair dis-
plays, participants responded to the “Good” stimuli more quickly
than the Bad stimuli during the single-display transfer-test block.
In contrast, this difference was not evident in participants who
trained with single displays. Therefore, pair-display training may
have encouraged participants to compare and contrast the two
stimuli, which might then have led to better declarative memory
for “Good” stimuli.

Our results also suggest that the use of stimuli in which cate-
gorymembership depends on configural properties of the stimulus
features (i.e., see Fig. 1) had at most a small effect on the nature of
learning. First, the evidence strongly suggested that learning was
mediated by procedural systemswhen the display included a single
stimulus, even when category membership depended on configu-
ral properties of the stimulus. Second, the advantage of pair dis-
plays over single displays persisted with the nonconfigural
stimuli, in which the configural relations among stimulus features
were less critical. Even so, more research is needed to settle this
question since so many previous studies have implicated the
MTL in encoding configural properties of a stimulus (e.g., Rudy
and Sutherland 1989; Sutherland and Rudy 1989; Aggleton et al.
2007; Duncan et al. 2018).

It is also important to note that our results are inconsistent
with the leading neurobiologically detailed theory of human cate-
gory learning—called COVIS (Ashby et al. 1998; Ashby and
Valentin 2017). Briefly, COVIS assumes that humans learn catego-
ries in at least two qualitatively different ways. An executive atten-
tional systemuses workingmemory to learn explicit rules, whereas
a procedural system uses dopamine-mediated reinforcement learn-
ing when perceptual similarity determines category membership
and the optimal strategy is difficult or impossible to describe ver-
bally and also to learn the arbitrary stimulus-response associations
required with unstructured categories. The rule-learning system is
mediated by a broad neural network that includes the prefrontal
cortex, the anterior cingulate, and the MTL, whereas the
procedural-learning system depends primarily on the basal

Table 2. Logistic regression results from Experiment 2

Effect χ2 df P

Trial 8675.294 1 <0.001
display type 14.279 1 <0.001
disruption type 6.215 2 0.045
display × disruption 3.900 2 0.142
disruption × trial 803.831 2 <0.001
display × trial 1236.004 1 <0.001
display × trial × disruption 285.849 2 <0.001

Display type includes Single and Pair. Disruption type includes None,
Feedback Delay, and Task Switching.

Figure 7. Experiment 2 learning curves for the None and
Feedback-Delay conditions for the first 8 blocks. Participants who were
excused before block 8 were excluded so that each condition includes
equal sample sizes in every block. Error bars represent standard errors.
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ganglia, and especially the striatum. COVIS assigns a role to the
MTL, but only in consolidating memories of which categorization
rules were investigated during the course of learning. A complete
theory of category learning will need to generalize this component
of the COVIS model to account for the results described here.

Historically, the cognitive neuroscience of category learning
literature has focused heavily on the critical roles played by the
basal ganglia. Meanwhile, the contributions of the MTL have
been more controversial, and unambiguous evidence of MTL
involvement has been limited to certain restricted special cases
(e.g., the learning of exceptions). Our results suggest the inter-
esting hypothesis that this bias in the literature may be due
largely to the predominance of single-stimulus displays in
category-learning experiments. Pair displays may naturally recruit
MTL-mediated declarative learning, rather than basal ganglia-
mediated procedural learning. Furthermore, pair displays may
also promote different categorization strategies than single dis-
plays. For example, categorization with pair displays may be
more of a comparative process than with single displays. We be-
lieve these hypotheses should be the targets of future research.

Materials and Methods

Experiment 1

Participants
One hundred and two undergraduates fromUC Santa Barbara par-
ticipated as partial fulfillment of a course requirement. They were
each randomly assigned to one of the four experimental condi-
tions: 26 in Pair/Configural, 28 in Single/Configural, 24 in
Single/Nonconfigural, 24 in Pair/Nonconfigural.

.6

.7

.8

.9

1

Non-configural stimuli
Configural stimuli

Single test after
pair training

Pair test after
single training

Transfer Accuracy
A B

C D

Figure 9. Sample sizes in each block and condition of Experiments 1 and 2.

Figure 8. Experiment 2 learning curves for the None and
Task-Switching conditions for the first 8 blocks. Participants who were
excused before block 8 were excluded so that each condition includes
equal sample sizes in every block. Error bars represent standard errors.
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Stimuli and apparatus
The stimuli are shown in Figure 1. Half of the configural stimuli
were from Sanderson et al. (2006), and half were created based
on the same principles. The 12 stimuli formed six mirror-image
pairs. Each figure included 2 elements, and each element was as
likely to be on the left as on the right in both categories. Eight of
the nonconfigural stimuli were identical to those used by
Crossley et al. (2012) and Seger and Cincotta (2005), and four
were created based on the principles described by Seger and
Cincotta (2005). The stimuli were presented on a gray background
using the Psychophysics Toolbox (Brainard 1997) running in
MATLAB. The order in which the stimuli were presented was ran-
domized across participants and blocks. Responses were made
with keys labeled on a keyboard (d key labeled as “A,” and k key
as “B”).

Procedures
The experiment was a 2×2 fully crossed factorial design, with two
levels of stimulus display (single vs. pair), and two levels of stimu-
lus type (configural vs. nonconfigural). Each condition included
several blocks of learning. There was a final transfer-test block at
the end. Each block included 48 trials.

The experiment lasted no more than 50 min depending on
the participant’s response speed and the number of blocks required
for learning. Participants were told that the stimuli could be sepa-
rated into two categories “Good” and “Bad,” and that their taskwas
to learn to assign each stimulus to its correct category. Tomotivate
participants, they were told that the learning stage would end as
soon as they achieved 100% correct in a block, which therefore
would allow them to leave earlier. Otherwise, the learning stage
would terminate after 45 min.

On each trial of the learning stage, the stimuli were displayed
on the screen until the participant pressed a key. The Single and
Pair conditions are illustrated in Figure 2. In the Single conditions,
only one figure was displayed in the middle of the screen on each
trial, and participants had to assign the stimulus to the “Good” or
“Bad” category by pressing the “A” key for “Good” and the “B” key
for “Bad.” Participants were instructed to use the left index finger
for the “A” key, and the right index finger for the “B” key, and to
respond within 5 sec. In the Pair conditions, one stimulus from
each category was displayed on the screen, one on the left and
the other on the right, with their position randomized on each tri-
al. Participants were told that only one of the two figures was
“Good,” and they had to identify the “Good” figure by pressing
the “A” key if it was on the left and the “B” key if it was on the right.
In the configural conditions, the two stimuli were always mirror
images.

The participant’s response was followed by a 500 msec blank
screen, and then a line of text was displayed for 500 msec as feed-
back. If the response timewasmore than 5 sec, theywould see “Too
Slow” in white; otherwise, they would see “Correct” in green or
“Incorrect” in red, corresponding to the accuracy of their response.
The interval between trials was 1 sec for all conditions.

The final block of 48 trials was a transfer-test block in which
no feedback was provided. Participants in the Single conditions re-
ceived Pair displays during this block, whereas participants in the
Pair conditions received Single displays.

Experiment 2

Participants
Ninety five undergraduates from UC Santa Barbara participated as
partial fulfillment of a course requirement. They were each

D E F

A B C

Figure 10. Learning curves from Experiment 2 for the Task-Switching (A–C ) and Delay (D–F ) conditions, along with the Experiment 1 curves for com-
parison (None condition). Each panel includes equal sample sizes in every block. Panels A and D include data from all participants who completed at least
six blocks, panels B and E include data from all participants who completed at least seven blocks, and panels C and F include data from all participants who
completed at least nine blocks. Error bars represent standard errors. The sample sizes for each panel are shown in Figure 9.
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randomly assigned to one of the four experimental conditions: 25
in Pair/Feedback Delay, 21 in Pair/Task Switching, 27 in Single/
Feedback Delay, and 22 in Single/Task Switching.

Stimuli and apparatus
The stimuli and apparatus were identical to those used in the
Configural conditions of Experiment 1.

Conditions and procedures
The experimentwas a 2×2 factorial design, with two levels of stim-
ulus display (Single vs. Pair) crossed with two levels of learning dis-
ruption (Feedback Delay vs. Task Switching). Each condition
included several blocks of learning. Unlike Experiment 1, there
was no final transfer-test block. Each block included 48 trials.

The procedures were identical to Experiment 1, except that in
the Feedback-Delay conditions, the response was followed by a 2.5
sec noise mask, and then by the same 500msec text feedback as in
the Control conditions; and in the Task-Switching conditions, the
response was followed by a 500 msec blank screen, the 500 msec
feedback, and then immediately by the Sternberg (1966)
memory-scanning task. On each memory-scanning trial, four ran-
dom digits were shown on the screen for 1 sec, followed by a blank
screen for 1 sec, then a randomdigit, and then the probe “Was it in
the list? (A) Yes, (B) No”. The “Yes” and “No” responses were ran-
domly paired with the “A” and “B” keys on each trial. There was no
feedback in thememory-scanning task. To ensure that participants
paid enough attention to the memory-scanning task, a warning
“Please pay more attention to the memory task” would appear
on the screen every 10 trials when memory-scanning accuracy
dropped below 90%. The interval between trials was 1 sec for all
conditions.
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Appendix

This appendix provides more detailed results of Experiments 1 and
2. Figure 9 shows the sample sizes for each block and condition of
both experiments. Figure 10 shows learning curves for all partici-
pants who completed at least six blocks of training (panels A and
D), seven blocks of training (panels B and E), or nine blocks of
training (panels C and F).
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