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Abstract

Background: While the importance of record linkage is widely recognised, few studies have attempted to quantify how
linkage errors may have impacted on their own findings and outcomes. Even where authors of linkage studies have
attempted to estimate sensitivity and specificity based on subjects with known status, the effects of false negatives and
positives on event rates and estimates of effect are not often described.

Methods: We present quantification of the effect of sensitivity and specificity of the linkage process on event rates and
incidence, as well as the resultant effect on relative risks. Formulae to estimate the true number of events and estimated
relative risk adjusted for given linkage sensitivity and specificity are then derived and applied to data from a prisoner
mortality study. The implications of false positive and false negative matches are also discussed.

Discussion: Comparisons of the effect of sensitivity and specificity on incidence and relative risks indicate that it is more
important for linkages to be highly specific than sensitive, particularly if true incidence rates are low. We would recommend
that, where possible, some quantitative estimates of the sensitivity and specificity of the linkage process be performed,
allowing the effect of these quantities on observed results to be assessed.
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Introduction

Record linkage is the task of bringing together information from

two or more different sources that pertain to the same individual.

Increasingly it is used to determine outcomes, particularly cancer

and mortality, in large cohort studies or registry based populations

[1–10]. There are a number of advantages of record linkage

studies. The ability to use existing administration data can

significantly increase cost-efficiency. In addition, the size and

representativeness of the study sample may be increased [11].

However, record linkage studies are constrained by the quality of

the datasets being linked and by the methods of linkage used [11–

13]. Particularly, linkage can be more complex if the amount or

quality of identifying data for individuals are limited. In these

cases, probabilistic linkage methods have become widely used

[14].

Probabilistic linkage assigns weights to potentially matched

records, based on the contribution from each partial identifier

[14,15]. Being more unique, agreement on first and last name in

both records, for example, will contribute more weight than

agreement on sex. To maximise accuracy, several matching

strategies and subsequent clerical review are usually employed

[14,15]. While there are an increasing number of studies aimed at

the development and improvement of record linkage procedures,

no probabilistic linkage is perfect. Some records that are true

matches will fail to be linked and other truly non-matching records

will be incorrectly linked. While the objective of any linkage

strategy will be to maximise sensitivity and specificity, thereby

minimising misclassification of outcomes, a certain degree of error

will remain. Furthermore the trade-off between sensitivity/

specificity means any improvement in sensitivity, must be at some

cost in terms of poorer specificity and the increased likelihood that

false links will be made.

It has long been recognised that misclassification, and as a result

linkage errors, can lead to biased results [16]. While most

researchers are aware that poor sensitivity will result in under

estimation of event rates and poor specificity will result in false

positive matches and an over estimation of event rates, few

researchers have attempted to quantify how this may have

impacted on their study’s findings and outcomes. Even where

authors of linkage studies have attempted to estimate sensitivity

and specificity based on subjects with known status or estimates of

sensitivity and specificity are provided by the data linkage unit, the

effects of false negatives and positives on event rates are not often

described [17–19].

The purpose of this paper is to provide further assistance to

researchers who are attempting to appraise the possible impact of

errors in the linkage process. The problem of missing linkage is

viewed as misclassification of outcome and with this in mind we

present a simple quantification of the effect of sensitivity and

specificity on incidence and event rates as well as the resultant
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effect on relative risks. Furthermore, we present a derived formula

that allows the ‘‘true’’ number of events in a linkage study to be

estimated from the observed number of events based on the

sensitivity and specificity of the data linkage and illustrate its use in

a linkage study [17].

Methods

Relationship between sensitivity, specificity and
estimates of incidence

Table 1 outlines the relationship between true and observed

event data. The sensitivity (SE) is the probability of detecting an

event via linkage if an event has truly occurred and is equal to TP/

(TP+FN). The specificity (SP) is the probability of not detecting an

event if the event is truly absent and is equal to TN/(TN+FP). N is

the number of individuals in the population and equals TP+FP+
TN +FN. Otrue is the actual number of events in the population

which equals TP+FN and Oobs is the observed number of events

and equals TP+FP. Thus the following formula (1) can be used to

ascertain the observed number of events by weighting the number

of true events by the sensitivity and the number of non-events by

the specificity.

Oobs~Otrue � SEz N{Otrueð Þ � 1{SPð Þ ð1Þ

By substituting the nomenclature above into the right hand side

of formula one,

~(TPzFN) � (TP=(TPzFN))

z (TPzFPzTNzFN){(TPzFN)ð Þ � 1{(TN=(TNzFP))ð Þ

Cancelling the TP+FN in the first part of the equation and

simplifying throughout results in

~TPz(TNzFP) � 1{(TN=(TNzFP))ð Þ

Multiplying the TN+FP the last part of the equation results in

~TPz(TNzFP){ TNð Þ~TPzFP, which is our definition

of observed number of events (Oobs).

Misclassification as a result of poor sensitivity results in an under

estimation of the number of events, while poor specificity results in

an over estimation of events. Figure 1 demonstrates that for a

range of true incidence rates, the observed incidence is more

biased by poor specificity than by poor sensitivity. Furthermore, it

illustrates that regardless of the sensitivity, if specificity is high then

the true event rate is always under estimated. Thus if any bias

occurs, it would be towards the null, allowing study results to be

interpreted more robustly.

Relationship between sensitivity, specificity and
estimates of relative risk

Linkage studies are often used to examine the effect of certain

risk factors on a specific event. The impact of sensitivity and

specificity on incidence carries through to the estimation of effect

size such as relative risks (RR) or standardised ratios and can result

in significant bias in these estimators. This effect is illustrated by

applying equation 1 to determine the observed number of events

in the population exposed to the risk factor, separately to those not

exposed to the risk factor. For example, consider a population of

10,000, half of whom are exposed and the other half not exposed.

If we set the true event rate to be 10% in the exposed and 5% in

the non-exposed populations, the relative risk is given by

RR~
O

E
=N

E

O
NE
=N

NE

ð2Þ

Where NE is the number of individuals in the exposed

population, OE is the number of events in the exposed population,

NNE is the number of individuals in the non-exposed population

and ONE is the number of events in the non-exposed population.

So the true relative risk is given by:

RR~
500=5000

250=5000
~2

However if the number of events can only be determined with a

sensitivity of 0.90 and specificity of 0.95 then by applying equation

1: the observed events in the exposed population become:

OE~0:9 � 500z 1{0:95ð Þ � 5000{500ð Þ~675

the observed events in the non-exposed population become:

ONE~0:9 � 250z 1{0:95ð Þ � 5000{250ð Þ~462:5

And hence dRRRR~
675=5000

462:5=5000
~1:46.

The observed RR 1.46 is a considerable under estimate of the

true RR = 2.

Figure 2 depicts the estimated relative risks derived by including

various combinations of sensitivity and specificity in equation 1 in

situations of both lower incidence (B) and higher true relative risk

(C). It can be seen across all scenarios that the derived RR is an

under estimate of the true RR, with bias towards the null. Again,

changes in specificity have a greater impact than changes in

sensitivity. The greatest impact of poor specificity is seen in

scenarios where incidence rates are low or the relative risk is high.

Figure 2B depicts the scenario where incidence is reduced to 1%

in the exposed. In this instance, even when specificity is 0.999 and

sensitivity is 0.99, the estimated relative risk is 1.83, substantially

lower than the estimated RR of 1.98 when incidence is 10% in the

exposed (Figure 2A). Figure 2C depicts the scenario where the

true RR is 5. In this instance, the estimate of RR decreases from

4.81 to 3.65 (24.1%) when sensitivity is held at 0.99 and specificity

reduced from 0.999 to 0.99. By comparison, when the true RR is 2

the estimated RR decreases from 1.98 to 1.83 (7.6%) (Figure 2A).

Additionally, if the specificity of event incidence is 100%, then

the relative risk will not be biased irrespective of sensitivity. To

examine this further, consider our application of equation 1 to

determine event rates in exposed and non-exposed individuals.

Oobs~Otrue � SEz N{Otrueð Þ � 1{SPð Þ

If specificity is 100%, the second half of the equation

N{Otrueð Þ � 1{SPð Þ becomes zero and can be eliminated.

Therefore the observed relative risk would be

Affects of Linkage Sensitivity and Specificity
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RR~
O

E
xSE=N

E

O
NE

x SE=N
NE

Sensitivity terms will cancel in the equation and thus the

equation for observed relative risk simplifies to the equation for the

true relative risk

RR~
O

E
=N

E

O
NE
=N

NE

Adjusting observed events
So far, we have described the effect of sensitivity and specificity

on the observed number of events. However, it is more common in

linkage studies that the observed number of events is known and

the aim is to determine how much the observed number of events

is biased from the true number of events. If the sensitivity and

specificity for a linkage is known, the true number of events, Otrue,

can be derived by adjusting the number of observed events, Oobs,

using equation 1 and Table 1 as follows.

The observed number of events is described as:

Oobs ~ Otrue�SEz N{Otrueð Þ � 1{SPð Þ ð3Þ

~(TPzFN) � SEz FPzTNð Þ � 1{SPð Þ

The observed number of non-events is described as:

N{Oobs~ TPzFNð Þ� 1{SEð Þz(FPzTN)�SP ð4Þ

Multiplying equation (3) by specificity and equation (4) by 1

minus specificity gives

Figure 1. The effect of changing sensitivity and specificity on observed incidence when true incidence is 1.0%, 5.0% and 20.0%.
doi:10.1371/journal.pone.0103690.g001

Table 1. Distribution of study events according to both actual event and observed event (by linkage).

True event

Yes No

Observed event (by linkage) Yes TP (true positives) FP (false positives) TP+FP

No FN (false negatives) TN (true negatives) FN+TN

TP+FN FP+TN

doi:10.1371/journal.pone.0103690.t001
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SP�Oobs~ SP� TPzFNð Þ�SE½ �z SP� FPzTNð Þ� 1{SPð Þ½ � ð5Þ

1{SPð Þ�(N{Oobs)~ 1{SPð Þ� TPzFNð Þ� 1{SEð Þ½ �

z 1{SPð Þ�(FPzTN)�SP½ �
ð6Þ

Solving these two simultaneous equations for the true number of

events, Otrue, gives

SP�Oobs{½ 1{SPð Þ�(N{Oobs)�

~ SP� TPzFNð Þ�SE½ �z SP� FPzTNð Þ� 1{SPð Þ½ �

{ 1{SPð Þ� TPzFNð Þ� 1{SEð Þ½ �z 1{SPð Þ�(FPzTN)�SP½ �

SP� FPzTNð Þ� 1{SPð Þ½ � cancels from the right hand side of

the equation to get

SP�Oobs{½ 1{SPð Þ�(N{Oobs)�

~ SP� TPzFNð Þ�SE½ �{ 1{SPð Þ� TPzFNð Þ� 1{SEð Þ½ �

Rearrange the right hand side of the equation to get:

SP�Oobs{½ 1{SPð Þ�(N{Oobs)�

~ TPzFNð Þ½(SP � SE){½(1{SP) � (1{SE)��

Simplifying the left hand side of the equation to get:

SP�Oobs {½N{SP �NzSP �Oobs{Oobs�

~ TPzFNð Þ½(SP � SE){½(1{SP) � (1{SE)��

{NzSP �NzOobs

~ TPzFNð Þ½(SP � SE){½(1{SP) � (1{SE)��

Multiplying both sides of the equation by 1=½(SP � SE){
½(1{SP) � (1{SE)�� to get:

TPzFNð Þ~{NzSP �NzOobs=½(SP � SE)

{½(1{SP) � (1{SE)��

Simplifying this equation you get:

Otrue~ TPzFNð Þ~ N � SP{1ð ÞzOobsð Þ= SEzSP{1ð Þ ð7Þ

If linkage study estimates of sensitivity and specificity are

available, then these estimates can be used with equation 7 to

assess the effect of false positive and negative matches due to the

linkage process on overall observed results. Further, the adjusted

number of events can then be used to determine adjusted measures

of effect.

Results

Illustration using the NSW prison inmate linkage study
Adjusted measures of effect can be derived from linkage studies

which are able to estimate sensitivity and specificity either via

internal or external validation. This is illustrated by an empirical

example from the population-based studies of prisoners in New

South Wales [20]. A total of 85,203 inmates incarcerated in the

NSW prison system between January 1988 and December 2002,

were linked with records in the National Death Index database

from January 1988 to December 2002. Linkage was performed

using the probabilistic record linkage software package Integrity

using the personal identifiers: full name, date of birth, sex and date

of last contact with the prison system. The validity of the data

linkage was assessed in a sub-study in which outcomes in 7,869

prisoners of known vital status at the end of the study period were

Figure 2. (A) Effect of sensitivity and specificity on estimated relative risk (RR); and effect on this relationship at lower incidence (B)
and higher true relative risk (C).
doi:10.1371/journal.pone.0103690.g002
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compared to that determined by probabilistic linkage [17]. A total

of 311 prisoners died while in prison and so were known to be

dead. A total of 7,558 were alive in prison at the end of the study

period and so were known to be alive. Data for these prisoners

with known vital status were linked with the National Death Index

using the same method used in the full study, with the results given

in Table 2.

The sensitivity and specificity of linkage was estimated to be

88.4% and 99.7% respectively. For the study cohort, a total of

5,137 of 85,203 inmates were found to have died according to data

linkage. This compared to an expected 1,323 events, giving an

SMR (standardised mortality ratio) of 3.9. Equation 7 above was

used to determine the true number of events, in this case deaths,

and then applied to the SMR as follows:

Adjusted SMR~Otrue=E

where Otrue is the number of deaths determined by data linkage

adjusted for sensitivity and specificity of the linkage and E is the

expected number of deaths based on mortality rates in the

comparator population.

After adjusting for the sensitivity and specificity obtained in the

sub-study using equation 7, the adjusted number of deaths was

5,540 to give an adjusted SMR for mortality of 4.2. In this case,

where the linkage process was shown to have good sensitivity and

very high specificity, the effect of false positive and negative

matches is estimated to have biased the study SMR slightly

towards the null.

The relative risk can be similarly adjusted. Among male

prisoners, the RR for death in those with psychiatric hospital

admission was determined. In those admitted to psychiatric

hospitals and not admitted, respectively, the following were

reported: observed deaths (467, 4247), expected deaths (85.25,

1183.43) and populations (3919, 72444) to give a RR of 2.03. After

applying these data to equation 7 to determine the number of true

deaths in each group adjusted for the reported sensitivity (88.4%)

and specificity (99.7%), the true relative risk for death following

psychiatric hospital admission is 2.09. This result again shows that

misclassification in the linkage resulted in a slight bias towards the

null.

Discussion

Results of epidemiological studies using outcomes determined

by linked datasets are affected by errors in linkage. To date,

methods to quantitatively assess the effect of misclassification on

observed study events in linkage studies have not been described.

This study develops and tests a simple formula for adjusting

observed events and relative risk by known estimates of sensitivity

and specificity. This formula and the conceptual framework

behind it are analogous to the methods used to adjust for

misclassification when calculating odds ratios and hazard ratios in

general epidemiological studies [21].

If the estimates of sensitivity and specificity are not valid, then it

is possible for the formula to give nonsense adjusted estimates, for

example, negative values if specificity is estimated to be low. The

formula is also only a simple, approximate adjustment. It only

adjusts the observed number of events, and does not adjust

estimates of person-years at risk that would also be affected.

However, for events that are relatively uncommon, the person-

years at risk would be altered only minimally and are probably not

an important component of uncertainty.

A further limitation is that our method does not allow for

uncertainty in the estimates of sensitivity and specificity. We would

recommend that the formula is used as a quantitative assessment

of sensitivity and specificity of the linkage process, but that

unadjusted results are presented as the main study findings. Our

analyses have assumed that errors in linkage are random or non-

differential and demonstrate how random error will bias outcomes

towards null findings. A review by Bohensky et al. reminds us that

there are many non-random factors which impact on linkage

producing a range of less unpredictable biases [22].

Our results have important implications for study design.

Comparisons of the effect of sensitivity and specificity on incidence

indicate that it is much more important for linkages to be highly

specific than sensitive, particularly if true incidence rates are low.

Typically, linkage studies commonly use probabilistic linkage

methods and these methods are primarily designed to improve the

sensitivity of the linkage process. However, the trade-off between

sensitivity and specificity means any improvement in sensitivity

must be at some cost in terms of poorer specificity. Despite this

trade-off, our results suggest that linkage methods that maximise

specificity will lead to the most robust study results, particularly for

events that are rare. Other approaches which have accounted for

the impact of linkage error on statistical inference include work

done by Scheuren and Winkler [23] Scheuren and Winkler [24],

and Lahiri and Larsen [25]. They considered linear regression

methods that correct for linkage error by applying a bias

correction estimated from linkage weights to the ordinary least

squares (OLS) estimate. These methods are useful when it is not

possible to validate the linkage against a gold-standard sub-sample.

As a result of our deliberations we would recommend that

analyses which only consider exact linkage matches, an approach

that would probably result in close to 100% specificity but at a

possibly much lower sensitivity, should routinely be included as

sensitivity analyses. Furthermore, in all linkage studies we would

recommend that some quantitative estimates of the sensitivity and

specificity of the linkage process be performed if possible, allowing

the effect of these quantities on observed results to be assessed.

Table 2. Distribution of prisoner vital status on the basis of record linkage and known vital status.

Records with known vital status

Dead Alive

Vital status according to data linkage Dead 275 23 298

Alive 36 7535 7571

311 7558

doi:10.1371/journal.pone.0103690.t002
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