

Received 22 September 2015 Accepted 19 October 2015

Edited by V. V. Chernyshev, Moscow State University, Russia

+ These authors contributed equally

Keywords: crystal structure; *N*-(aryl)arylsulfonamides; C—H···O interactions; C—H··· π interactions

CCDC reference: 1432501 **Supporting information**: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structures of 4-methoxy-*N*-(4-methylphenyl)benzenesulfonamide and *N*-(4-fluorophenyl)-4-methoxybenzenesulfonamide

Vinola Z. Rodrigues, ^a C. P. Preema, ^a S. Naveen, ^b \neq N. K. Lokanath^c§ and P. A. Suchetan^d*¶

^aDepartment of PG Studies and Research in Chemistry, St Aloysius College, Mangalore, India, ^bInstitution of Excellence, University of Mysore, Mysuru-6, India, ^cDepartment of Physics, University of Mysore, Mysuru-6, India, and ^dDepartment of Chemistry, University College of Science, Tumkur University, Tumkur 572 103, India. *Correspondence e-mail: pasuchetan@yahoo.co.in

Crystal structures of two *N*-(aryl)arylsulfonamides, namely, 4-methoxy-*N*-(4-methylphenyl)benzenesulfonamide, $C_{14}H_{15}NO_3S$, (I), and *N*-(4-fluorophenyl)-4-methoxybenzenesulfonamide, $C_{13}H_{12}FNO_3S$, (II), were determined and analyzed. In (I), the benzenesulfonamide ring is disordered over two orientations, in a 0.516 (7):0.484 (7) ratio, which are inclined to each other at 28.0 (1)°. In (I), the major component of the sulfonyl benzene ring and the aniline ring form a dihedral angle of 63.36 (19)°, while in (II), the planes of the two benzene rings form a dihedral angle of 44.26 (13)°. In the crystal structure of (I), N-H···O hydrogen bonds form infinite *C*(4) chains extended in [010], and intermolecular C-H··· π_{aryl} interactions link these chains into layers parallel to the *ab* plane. The crystal structure of (II) features N-H···O hydrogen bonds forming infinite one dimensional *C*(4) chains along [001]. Further, a pair of C-H···O intermolecular interactions consolidate the crystal packing of (II) into a three-dimensional supramolecular architecture.

1. Chemical context

Sulfonamide drugs were the first among the chemotherapeutic agents to be used for curing and preventing bacterial infection in human beings (Shiva Prasad et al., 2011). They play a vital role as a key constituent in a number of biologically active molecules. Up to now, sulfonamides have been known to exhibit a wide variety of biological activities, such as antibacterial (Subhakara Reddy et al., 2012; Himel et al., 1971), antifungal (Hanafy et al., 2007), antiinflamatory (Kuçukguzel et al., 2013), antitumor (Ghorab et al., 2011), anticancer (Mansour et al., 2011), anti-HIV (Sahu et al., 2007) and antitubercular activities (Vora & Mehta, 2012). In recent years, extensive research studies have been carried out on the synthesis and evaluation of pharmacological activities of molecules containing the sulfonamide moiety for different activities, and have been reported to be important pharmacophores (Mohan et al., 2013).

With these considerations in mind and based on our structural study of *N*-(4-substituted-phenyl)-4-methoxy-benzenesulfonamides (Vinola *et al.*, 2015), we report herein the crystal structures of 4-methoxy-*N*-(4-methylphen-yl)benzenesulfonamide, (I), and *N*-(4-fluorophenyl)-4-methoxybenzenesulfonamide, (II).

2. Structural commentary

In (I) (Fig. 1), the benzenesulfonamide ring is disordered due to rotation across the $C_{ar}-S(O_2)$ bond over two orientations,

Figure 1

A view of (I), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Only the major component of the disordered benzene ring is shown.

with atoms C2, C3, C5 and C6 occupying two positions with a 0.516 (7):0.484 (7) ratio. The dihedral angle between the two parts of disordered benzene ring, i.e. C1/C2A/C3A/C4/C5A/ C6A and C1/C2B/C3B/C4/C5B/C6B, is 28.0 (1)°. The dihedral angle between the sulfonyl benzene ring (considering the major component) and the aniline ring is $63.36 (19)^\circ$, and the N-C bond in the C-SO₂-NH-C segment has a gauche torsion with respect to the S=O bonds. Further, the molecule is twisted at the S-N bond, with a C1-S1-N1-C7 torsion angle of 66.33 (19)°. The methoxy group in the sulfonylbenzene ring is in the same plane as that of the major component of the disordered sulfonylbenzene ring, the torsion angle C5A - C4 - O3 - C14 being $-176.2 (4)^{\circ}$, while it deviates slightly from planarity with respect to the minor component, the C5B-C4-O3-C14 torsion angle being 165.9 (4)°.

In (II) (Fig. 2), the dihedral angle between the two benzene rings of 44.26 $(13)^{\circ}$ is less than that observed in (I), and the N-C bond in the C-SO₂-NH-C segment has a gauche torsion with respect to the S=O bonds. Further, the molecule

Figure 2

A view of (II), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Table	1
-------	---

Hydrogen-bond geometry (Å, $^{\circ}$) for (I).

Cg is the centroid of the C7–C12 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1\cdotsO2^{i}$ $C14-H14B\cdots Cg^{ii}$ $C9-H9\cdots Cg^{iii}$	0.89 (1) 0.96 0.93	2.13 (1) 2.70 2.87	3.010 (2) 3.541 (2) 3.560 (2)	170 (2) 146 132

Symmetry codes: (i) x, y + 1, z; (ii) -x, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Table 2 Hydrogen-bond geometry (Å, °) for (II).

	• • • •	. ,		
$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdotsO2^{i}$ $C6-H6\cdotsO1^{ii}$ $C13-H13B\cdotsO3^{iii}$	0.90 (1) 0.93 0.96	2.06 (1) 2.55 2.60	2.951 (3) 3.192 (3) 3.468 (3)	171 (3) 127 151

Symmetry codes: (i) x, y, z + 1; (ii) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $z - \frac{1}{2}$; (iii) -x + 1, -y, $z + \frac{1}{2}$.

is twisted at the S-N bond, with a C1-S1-N1-C7 torsion angle of $68.4 (2)^{\circ}$. Similar to (I), the methoxy group in the sulfonylbenzene ring is in the same plane as that of the sulfonylbenzene ring, the C5-C4-O3-C13 torsion angle being 177.0 (2)°.

3. Supramolecular features

In the crystal structure of (I), $N1-H1\cdots O2$ hydrogen bonds (Table 1) link the molecules into infinite one-dimensional C(4)chains along [010]. Neighbouring C(4) chains are inter-

A portion of the crystal packing of (I), viewed approximately along [010] and showing intermolecular hydrogen bonds as thin blue lines. Only the major component of the disordered benzene ring is shown. H atoms not involved in hydrogen bonding have been omitted for clarity.

research communications

 Table 3

 Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	C14H15NO2S	C12H12FNO2S
M_	277.33	281.30
Crystal system, space group	Monoclinic, $P2_1/c$	Orthorhombic, $Pna2_1$
Temperature (K)	296	296
a, b, c (Å)	14,5604 (5), 5,2459 (2), 17,6094 (6)	20.2188 (13), 12.1199 (8), 5.1770 (3)
α, β, γ (°)	90, 95,205 (2), 90	90, 90, 90
$V(A^3)$	1339.50 (8)	1268.62 (14)
Z	4	4
Radiation type	Cu Κα	Cu Κα
$\mu (\text{mm}^{-1})$	2.19	2.44
Crystal size (mm)	$0.33 \times 0.27 \times 0.21$	$0.32 \times 0.27 \times 0.22$
Data collection		
Diffractometer	Bruker APEXII	Bruker APEXII
Absorption correction	Multi-scan (SADABS; Bruker, 2009)	Multi-scan (SADABS; Bruker, 2009)
T_{\min}, \hat{T}_{\max}	0.517, 0.632	0.481, 0.585
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	7071, 2139, 2047	5438, 1830, 1784
R _{int}	0.042	0.037
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.583	0.583
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.048, 0.145, 1.12	0.034, 0.100, 1.09
No. of reflections	2139	1830
No. of parameters	175	177
No. of restraints	19	2
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.45, -0.43	0.30, -0.35
Absolute structure	-	Flack (1983), 973 Friedel pairs
Absolute structure parameter	-	0.08 (2)

Computer programs: APEX2, SAINT-Plus and XPREP (Bruker, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

connected *via* C-H··· π_{aryl} interactions (Table 1) into layers (Fig. 3) parallel to the *ab* plane.

The crystal structure of (II) features N1-H1···O2 hydrogen bonds (Fig. 4 and Table 2), forming infinite onedimensional C(4) chains along [001]. Further, weak intermolecular C-H···O interactions (Table 2) consolidate the crystal packing of (II), leading to a three-dimensional supramolecular architecture (Fig. 5).

4. Database survey

Three *N*-(4-substituted-phenyl)-4-methoxybenzenesulfonamides (Vinola *et al.*, 2015), namely, 4-methoxy-*N*-(phenyl)benzenesulfonamide, (III), 4-methoxy-*N*-(4-methoxyphenyl)benzenesulfonamide, (IV), and *N*-(4-chlorophenyl)-4methoxybenzenesulfonamide, (V), have been reported previously. Compounds (IV) and (V) crystallize in monoclinic syngony, while compound (III) crystallizes in orthorhombic syngony. The dihedral angles between the two benzene rings in (III), (IV) and (V) are 55.1 (1), 56.3 (1) and 42.6 (1)°, respectively. Comparison of the dihedral angles between the two benzene rings in (I)–(V) shows that, when an electrondonating substituent is introduced into the *para* position of the aniline ring of (I) it results in a slight increase in the dihedral angle, whereas, when an electron-withdrawing substituent is

An N-H···O hydrogen-bonded (thin blue lines) chain of molecules in the crystal structure of (II).

introduced it decreases the dihedral angle. Further, the molecules of (III), (IV) and (V) are twisted at the S-N bond, with

A portion of the crystal packing of (II). Thin blue lines denote intermolecular C-H···O hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.

C1-S1-N1-C7 torsion angles of -72.9 (1), 66.2 (1) and 72.5 (1)°, respectively. These values are similar to those observed in (I) and (II).

Comparison of the crystal structures (I) and (V) shows that the effect of introducing an electron-donating substituent into the para position of the aniline ring of (I) is quite different than that due to electron-withdrawing substituents. The crystal structure of (III) features $N-H\cdots O$ hydrogen bonds that form C(4) chains, and thus, the supramolecular architecture is one-dimensional. In (IV), one N-H···O hydrogen bond and two alternating C-H··· π_{aryl} (centroid of aniline ring) interactions direct a two-dimensional architecture. This is quite similar to the crystal structure of (I). Thus, the methyl and methoxy groups on the aniline ring have similar influence on the crystal structures of these compounds. However, the crystal structures of (II) and (V) are very different. The crystal structure of (V) features $N-H \cdots O$ hydrogen bonds that form C(4) chains. Further, (V) does not feature any structuredirecting intermolecular interactions, and thus, the structure is one-dimensional. In contrast to this, the crystal structure of (II) features an N-H···O and two C-H···O interactions, leading to a three-dimensional architecture. Thus, the Cl and F atoms on the aniline ring have very different influences on the crystal structures of these compounds.

5. Synthesis and crystallization

Compounds (I) and (II) were prepared according to the literature method of Vinola *et al.* (2015). The purity of the compounds were checked by determining the melting points. Single crystals used for X-ray diffraction studies were

obtained by slow evaporation of ethanol solutions of the compounds at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The amino H atoms were located in a difference map and were refined isotropically with the bond-length restraint N-H = 0.90 (1) Å. To improve considerably the values of R1, wR2, and S (goodness-of-fit), a partially obscured reflection (*i.e.* 100) was omitted from the final refinement of (I). The two parts (A and B) of the disordered benzenesulfonyl ring in (I) were restrained to be planar (FLAT instruction), and thus, the r.m.s. deviations (considering non-H atoms) observed for the planes defining the two rings are 0.047 (1) (major-component ring A) and 0.054 (1) Å (minor-component ring B). The disordered atoms (C2, C3, C5 and C6) in both components were isotropically refined, and the C-C bond lengths were restrained to 1.391 (1) Å.

Acknowledgements

The authors are thankful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysuru, for providing the single-crystal X-ray diffraction facility. VZR is thankful to the University Grants Commission, Delhi, for the financial assistance under its MRP scheme.

References

- Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Ghorab, M. M., Ragab, A. F., Heiba, I. H. & Agha, M. H. (2011). J. Basic Appl. Chem. 1, 8–14.
- Hanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Jpn J. Med. Mycol. 48, 47–50.
- Himel, C. M., Aboulsaa, W. G. & Uk, S. (1971). J. Agric. Food Chem. 19, 1175–1180.
- Kuçukguzel, S. G., Coskun, I., Aydın, S., Aktay, G., Gursoy, S., Cevik, O., Ozakpınar, O. B., Ozsavc, D., Sener, A., Kaushik-Basu, N., Basu, A. & Talele, T. T. (2013). *Molecules*, 18, 3595–3614.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mansour, S., Al-Said Ghorab, M. M., Al-Dosari, M. S. & Hamed, M. M. (2011). Eur. J. Med. Chem. 46, 201–207.
- Mohan, N. R., Sreenivasa, S., Manojkumar, K. E. & Chakrapani Rao, T. M. (2013). J. Appl. Chem. 2, 722–729.
- Sahu, K. K., Ravichandran, V., Mourya, V. K. & Agrawal, R. K. (2007). *Med. Chem. Res.* **15**, 418–430.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shiva Prasad, K., Shiva Kumar, L., Vinay, K. B., ChandraShekar, S., Jayalakshmi, B. & Revanasiddappa, H. D. (2011). *Int. J. Chem. Res.* **2**, 1–6.
- Subhakara Reddy, N., Srinivas Rao, A., Adharvana Chari, M., Ravi Kumar, V., Jyothy, V. & Himabindu, V. (2012). J. Chem. Sci. 124, 723–730.
- Vinola, Z. R., Sreenivasa, S., Naveen, S., Lokanath, N. K. & Suchetan, P. A. (2015). J. Appl. Chem. 4, 127-135.
- Vora, P. J. & Mehta, A. G. (2012). IOSR J. Appl. Chem. 1, 34-39.

Acta Cryst. (2015). E71, 1388-1391 [doi:10.1107/S2056989015019787]

Crystal structures of 4-methoxy-*N*-(4-methylphenyl)benzenesulfonamide and *N*-(4-fluorophenyl)-4-methoxybenzenesulfonamide

Vinola Z. Rodrigues, C. P. Preema, S. Naveen, N. K. Lokanath and P. A. Suchetan

Computing details

For both compounds, data collection: *APEX2* (Bruker, 2009); cell refinement: *APEX2* and *SAINT-Plus* (Bruker, 2009); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

(I) 4-Methoxy-N-(4-methylphenyl)benzenesulfonamide

Crystal data

C₁₄H₁₅NO₃S $M_r = 277.33$ Monoclinic, $P2_1/c$ a = 14.5604 (5) Å b = 5.2459 (2) Å c = 17.6094 (6) Å $\beta = 95.205$ (2)° V = 1339.50 (8) Å³ Z = 4F(000) = 584

Data collection

Bruker APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.517, T_{\max} = 0.632$ 7071 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.145$ S = 1.122139 reflections 175 parameters 19 restraints Prism $D_x = 1.375 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 178 reflections $\theta = 5.0-64.1^{\circ}$ $\mu = 2.19 \text{ mm}^{-1}$ T = 296 KPrism, colourless $0.33 \times 0.27 \times 0.21 \text{ mm}$

2139 independent reflections 2047 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 64.1^{\circ}, \ \theta_{min} = 5.0^{\circ}$ $h = -16 \rightarrow 16$ $k = -5 \rightarrow 6$ $I = -20 \rightarrow 20$ 1 standard reflections every 1 reflections intensity decay: 0.1%

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.095P)^{2} + 0.6515P] \qquad \Delta \rho_{max} = 0.45 \text{ e } \text{\AA}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.43 \text{ e } \text{\AA}^{-3}$ $(\Delta/\sigma)_{max} = 0.001$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
H1	0.7020 (19)	0.376 (2)	0.4174 (15)	0.033 (7)*	
C1	0.87525 (15)	0.0577 (4)	0.41335 (12)	0.0223 (5)	
C2A	0.9220 (3)	0.2925 (9)	0.4259 (2)	0.0227 (12)*	0.516 (7)
H2A	0.8960	0.4215	0.4532	0.027*	0.516 (7)
C3A	1.0070 (3)	0.3298 (9)	0.3973 (3)	0.0243 (12)*	0.516 (7)
H3A	1.0392	0.4819	0.4057	0.029*	0.516 (7)
C2B	0.9452 (3)	0.1901 (9)	0.4561 (3)	0.0230 (13)*	0.484 (7)
H2B	0.9355	0.2534	0.5040	0.028*	0.484 (7)
C3B	1.0299 (3)	0.2268 (10)	0.4262 (3)	0.0231 (13)*	0.484 (7)
H3B	1.0768	0.3160	0.4540	0.028*	0.484 (7)
C4	1.04337 (15)	0.1285 (4)	0.35455 (12)	0.0226 (5)	
C5A	0.9913 (3)	-0.0795 (10)	0.3344 (3)	0.0190 (14)*	0.516 (7)
H5A	1.0125	-0.1992	0.3011	0.023*	0.516 (7)
C6A	0.9068 (4)	-0.1143 (11)	0.3631 (3)	0.0199 (16)*	0.516 (7)
H6A	0.8710	-0.2557	0.3483	0.024*	0.516 (7)
C5B	0.9778 (4)	-0.0372 (12)	0.3192 (4)	0.0215 (16)*	0.484 (7)
H5B	0.9903	-0.1226	0.2750	0.026*	0.484 (7)
C6B	0.8942 (4)	-0.0756 (12)	0.3492 (3)	0.0191 (17)*	0.484 (7)
H6B	0.8514	-0.1900	0.3264	0.023*	0.484 (7)
S1	0.76759 (3)	0.02277 (10)	0.45066 (3)	0.0195 (3)	
O3	1.12308 (11)	0.1523 (3)	0.32071 (9)	0.0257 (4)	
01	0.77618 (12)	0.1184 (3)	0.52696 (8)	0.0288 (4)	
O2	0.73662 (11)	-0.2332 (3)	0.43553 (9)	0.0239 (4)	
N1	0.69436 (13)	0.2136 (3)	0.40319 (10)	0.0209 (5)	
C10	0.60286 (15)	0.1132 (4)	0.16969 (13)	0.0233 (5)	
C7	0.66683 (14)	0.1726 (4)	0.32369 (12)	0.0190 (5)	
C11	0.66087 (17)	0.3146 (5)	0.19337 (13)	0.0269 (5)	
H11	0.6785	0.4311	0.1576	0.032*	
C9	0.57863 (15)	-0.0581 (5)	0.22474 (14)	0.0251 (5)	
Н9	0.5409	-0.1957	0.2099	0.030*	
C14	1.18279 (18)	0.3601 (5)	0.34384 (17)	0.0401 (7)	
H14A	1.1496	0.5177	0.3367	0.060*	

H14B	1.2345	0.3610	0.3137	0.060*
H14C	1.2043	0.3410	0.3967	0.060*
C8	0.60898 (15)	-0.0295 (4)	0.30080 (13)	0.0219 (5)
H8	0.5908	-0.1449	0.3366	0.026*
C12	0.69271 (16)	0.3439 (4)	0.26919 (12)	0.0236 (5)
H12	0.7317	0.4791	0.2839	0.028*
C13	0.56880 (18)	0.0780 (6)	0.08674 (14)	0.0363 (6)
H13A	0.6139	-0.0147	0.0614	0.054*
H13B	0.5589	0.2417	0.0631	0.054*
H13C	0.5119	-0.0155	0.0831	0.054*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	<i>U</i> ²³
C1	0.0253 (12)	0.0218 (12)	0.0201 (11)	-0.0001 (10)	0.0032 (9)	-0.0043 (9)
C4	0.0233 (11)	0.0225 (12)	0.0222 (11)	0.0006 (9)	0.0021 (9)	0.0015 (9)
S 1	0.0239 (4)	0.0169 (4)	0.0181 (4)	-0.0004 (2)	0.0046 (2)	-0.00107 (18)
O3	0.0223 (8)	0.0264 (9)	0.0290 (8)	-0.0022 (7)	0.0056 (7)	0.0003 (7)
01	0.0336 (9)	0.0348 (10)	0.0187 (8)	0.0010 (8)	0.0062 (7)	-0.0046 (7)
O2	0.0294 (9)	0.0151 (8)	0.0277 (8)	-0.0003 (7)	0.0046 (7)	0.0038 (6)
N1	0.0286 (10)	0.0129 (10)	0.0220 (10)	0.0015 (8)	0.0061 (8)	-0.0028 (7)
C10	0.0199 (11)	0.0249 (13)	0.0254 (12)	0.0060 (9)	0.0027 (9)	-0.0035 (9)
C7	0.0186 (11)	0.0154 (11)	0.0236 (11)	0.0038 (8)	0.0046 (9)	-0.0017 (8)
C11	0.0322 (13)	0.0231 (12)	0.0258 (12)	0.0017 (10)	0.0060 (10)	0.0025 (9)
C9	0.0187 (11)	0.0223 (12)	0.0339 (13)	-0.0017 (10)	0.0008 (9)	-0.0041 (10)
C14	0.0262 (13)	0.0385 (15)	0.0570 (18)	-0.0111 (12)	0.0118 (12)	-0.0074 (13)
C8	0.0177 (11)	0.0179 (11)	0.0305 (13)	-0.0004 (9)	0.0042 (9)	0.0032 (9)
C12	0.0294 (12)	0.0145 (11)	0.0274 (12)	-0.0036 (9)	0.0051 (9)	-0.0021 (9)
C13	0.0329 (14)	0.0476 (17)	0.0281 (13)	0.0003 (13)	0.0019 (11)	-0.0059 (12)

Geometric parameters (Å, °)

C1—C6A	1.371 (5)	S1—O2	1.4340 (17)
C1—C6B	1.378 (5)	S1—N1	1.6360 (19)
C1—C2B	1.395 (5)	O3—C14	1.430 (3)
C1—C2A	1.415 (5)	N1—C7	1.437 (3)
C1—S1	1.763 (2)	N1—H1	0.893 (10)
C2A—C3A	1.391 (5)	C10—C9	1.391 (3)
C2A—H2A	0.9300	C10—C11	1.393 (3)
C3A—C4	1.426 (5)	C10—C13	1.511 (3)
СЗА—НЗА	0.9300	C7—C8	1.391 (3)
C2B—C3B	1.397 (6)	C7—C12	1.392 (3)
C2B—H2B	0.9300	C11—C12	1.382 (3)
C3B—C4	1.394 (5)	C11—H11	0.9300
СЗВ—НЗВ	0.9300	C9—C8	1.380 (3)
C4—C5A	1.358 (5)	С9—Н9	0.9300
C4—O3	1.358 (3)	C14—H14A	0.9600
C4—C5B	1.395 (5)	C14—H14B	0.9600

C5A—C6A	1.385 (6)	C14—H14C	0.9600
C5A—H5A	0.9300	C8—H8	0.9300
C6A—H6A	0.9300	C12—H12	0.9300
C5B—C6B	1.385 (6)	C13—H13A	0.9600
С5В—Н5В	0.9300	C13—H13B	0.9600
С6В—Н6В	0.9300	C13—H13C	0.9600
S101	1.4291 (16)		
C6A—C1—C2B	113.9 (3)	01-81-02	120.18 (10)
C6B-C1-C2B	120.3 (3)	01-S1-N1	105.25 (10)
C6A - C1 - C2A	1193(3)	$0^{2}-1^{1}$	107 39 (9)
C6B-C1-C2A	116.1 (3)	O1 = S1 = C1	107.99 (10)
C6A - C1 - S1	1222(3)	$0^{2}-1^{2}-1^{2}$	107.66 (10)
C6B-C1-S1	122.2(3) 120.2(3)	N1 = S1 = C1	107.83 (10)
C2B-C1-S1	120.2(3) 1187(2)	C4 - C3 - C14	117 83 (18)
C2A - C1 - S1	117.6(2)	C7-N1-S1	121.05(10)
C_{3A} C_{2A} C_{1}	1198(4)	C7—N1—H1	121.13(11) 1157(17)
C_{3A} C_{2A} H_{2A}	120.1	S1N1H1	112.7(17)
C1 - C2A - H2A	120.1	C_{0}	112.3(10) 117.8(2)
$C_1 = C_2 A = H_2 A$	120.1 118 1 (4)	C_{P} C_{10} C_{13}	117.0(2) 120.0(2)
$C_{2A} = C_{3A} = C_{4}$	120.0	C_{11} C_{10} C_{13}	120.9(2) 121.3(2)
$C_{A} = C_{A} = H_{A}$	120.9	C_{8} C_{7} C_{12}	121.3(2) 110.2(2)
$C_1 = C_2 R = C_3 R$	120.9 110 5 (A)	$C_{8} = C_{7} = C_{12}$	119.2(2) 120.31(10)
C1 = C2B = C3B	119.3 (4)	$C_{0} - C_{7} - N_{1}$	120.31(19) 120.4(2)
$C_1 - C_2 D - H_2 D$	120.3	C_{12} C_{11} C_{10}	120.4(2)
C_{3B} C_{2B} C_{2B} C_{2B}	120.3	C12 $C11$ $U11$	121.0 (2)
C4 = C3B = C2B	119.4 (4)		119.5
$C_4 - C_3 B - H_3 B$	120.3	C10-C11-H11	119.5
C2B-C3B-H3B	120.3	C_{2}	121.8 (2)
C5A = C4 = C3P	110.0(3)	C8—C9—H9	119.1
C3A - C4 - C3B	114.4 (3)	C10-C9-H9	119.1
03-C4-C3B	124.1(3)	03	109.5
03	116.0 (3)	U3	109.5
C3B-C4-C5B	119.2 (3)	H14A - C14 - H14B	109.5
C_{A} C_{4} C_{3} C_{4	120.5 (3)	03—C14—H14C	109.5
03—C4—C3A	122.4 (2)	HI4A—CI4—HI4C	109.5
C5B-C4-C3A	115.1 (3)	H14B— $C14$ — $H14C$	109.5
C4—C5A—C6A	120.3 (4)	C9—C8—C7	119.8 (2)
С4—С5А—Н5А	119.9	C9—C8—H8	120.1
С6А—С5А—Н5А	119.9	С/—С8—Н8	120.1
C1—C6A—C5A	120.6 (4)	C11—C12—C7	120.4 (2)
С1—С6А—Н6А	119.7	C11—C12—H12	119.8
С5А—С6А—Н6А	119.7	C7—C12—H12	119.8
C6B—C5B—C4	120.7 (5)	C10—C13—H13A	109.5
C6B—C5B—H5B	119.7	C10—C13—H13B	109.5
C4—C5B—H5B	119.7	H13A—C13—H13B	109.5
C1—C6B—C5B	119.2 (5)	C10—C13—H13C	109.5
C1—C6B—H6B	120.4	H13A—C13—H13C	109.5
C5B—C6B—H6B	120.4	H13B—C13—H13C	109.5

C6A—C1—C2A—C3A	-10.4 (6)	S1—C1—C6B—C5B	177.4 (5)
C6B—C1—C2A—C3A	-26.8 (6)	C4C5BC6BC1	1.9 (9)
C2B—C1—C2A—C3A	79.3 (5)	C6A—C1—S1—O1	145.9 (4)
S1—C1—C2A—C3A	-179.7 (3)	C6B-C1-S1-O1	163.2 (4)
C1—C2A—C3A—C4	1.2 (6)	C2B-C1-S1-O1	-7.0 (3)
C6A-C1-C2B-C3B	27.0 (6)	C2A-C1-S1-O1	-45.0 (3)
C6B—C1—C2B—C3B	11.9 (6)	C6A—C1—S1—O2	14.8 (4)
C2A—C1—C2B—C3B	-80.4 (5)	C6B-C1-S1-O2	32.1 (4)
S1—C1—C2B—C3B	-177.9 (3)	C2B—C1—S1—O2	-138.2 (3)
C1—C2B—C3B—C4	-0.6 (6)	C2A—C1—S1—O2	-176.2 (3)
C2B—C3B—C4—C5A	-27.1 (6)	C6A—C1—S1—N1	-100.8 (4)
C2B—C3B—C4—O3	-179.6 (3)	C6B-C1-S1-N1	-83.5 (4)
C2B-C3B-C4-C5B	-9.8 (6)	C2B—C1—S1—N1	106.3 (3)
C2B—C3B—C4—C3A	82.0 (6)	C2A—C1—S1—N1	68.2 (3)
C2A—C3A—C4—C5A	8.2 (6)	C5A-C4-O3-C14	-176.2 (4)
C2A—C3A—C4—O3	176.2 (3)	C3B-C4-O3-C14	-24.1 (4)
C2A—C3A—C4—C3B	-80.1 (6)	C5B-C4-O3-C14	165.9 (4)
C2A—C3A—C4—C5B	25.4 (6)	C3A-C4-O3-C14	15.3 (4)
O3—C4—C5A—C6A	-177.0 (4)	O1—S1—N1—C7	-178.58 (16)
C3B—C4—C5A—C6A	28.1 (7)	O2—S1—N1—C7	-49.43 (18)
C5B—C4—C5A—C6A	-82.9 (14)	C1—S1—N1—C7	66.33 (19)
C3A—C4—C5A—C6A	-8.3 (7)	S1—N1—C7—C8	71.9 (2)
C6B—C1—C6A—C5A	92.3 (16)	S1—N1—C7—C12	-112.4 (2)
C2B-C1-C6A-C5A	-26.5 (7)	C9—C10—C11—C12	-0.5 (3)
C2A—C1—C6A—C5A	10.5 (7)	C13—C10—C11—C12	-179.2 (2)
S1—C1—C6A—C5A	179.3 (4)	C11—C10—C9—C8	1.3 (3)
C4—C5A—C6A—C1	-1.2 (8)	C13—C10—C9—C8	180.0 (2)
C5A—C4—C5B—C6B	86.0 (14)	C10—C9—C8—C7	-1.2 (3)
O3—C4—C5B—C6B	179.8 (5)	C12—C7—C8—C9	0.4 (3)
C3B—C4—C5B—C6B	9.2 (8)	N1—C7—C8—C9	176.2 (2)
C3A—C4—C5B—C6B	-27.4 (7)	C10-C11-C12-C7	-0.3 (3)
C6A—C1—C6B—C5B	-80.7 (16)	C8—C7—C12—C11	0.4 (3)
C2B—C1—C6B—C5B	-12.5 (8)	N1-C7-C12-C11	-175.4 (2)
C2A-C1-C6B-C5B	25.2 (8)		

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C7–C12 ring.

D—H···A	D—H	H···A	D····A	D—H··· A	
N1—H1···O2 ⁱ	0.89(1)	2.13 (1)	3.010 (2)	170 (2)	
C14—H14 B ···· Cg^{ii}	0.96	2.70	3.541 (2)	146	
C9—H9···· <i>Cg</i> ⁱⁱⁱ	0.93	2.87	3.560 (2)	132	

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*, *y*+1/2, –*z*+1/2; (iii) –*x*+1, *y*–1/2, –*z*+1/2.

(II) N-(4-Fluorophenyl)-4-methoxybenzenesulfonamide

Crystal data

C₁₃H₁₂FNO₃S $M_r = 281.30$ Orthorhombic, *Pna*2₁ Hall symbol: P 2c -2n a = 20.2188 (13) Å b = 12.1199 (8) Å c = 5.1770 (3) Å V = 1268.62 (14) Å³ Z = 4F(000) = 584

Data collection

Bruker APEXII
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min} = 0.481, \ T_{\max} = 0.585$
5438 measured reflections

Refinement

Hvdrogen site location: inferred from Refinement on F^2 Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.034$ H atoms treated by a mixture of independent $wR(F^2) = 0.100$ and constrained refinement S = 1.09 $w = 1/[\sigma^2(F_o^2) + (0.0719P)^2]$ 1830 reflections where $P = (F_0^2 + 2F_c^2)/3$ 177 parameters $(\Delta/\sigma)_{\rm max} = 0.001$ 2 restraints $\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$ Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 973 Friedel Secondary atom site location: difference Fourier pairs Absolute structure parameter: 0.08 (2) map

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Prism

 $D_{\rm x} = 1.473 {\rm Mg} {\rm m}^{-3}$

 $\theta = 4.3 - 64.1^{\circ}$

 $\mu = 2.44 \text{ mm}^{-1}$ T = 296 K

 $R_{\rm int} = 0.037$

 $h = -22 \rightarrow 23$ $k = -13 \rightarrow 14$ $l = -5 \rightarrow 5$

Prism. colourless

 $0.32 \times 0.27 \times 0.22$ mm

 $\theta_{\rm max} = 64.1^\circ, \, \theta_{\rm min} = 4.3^\circ$

intensity decay: 0.1%

1830 independent reflections 1784 reflections with $I > 2\sigma(I)$

1 standard reflections every 1 reflections

Cu *K* α radiation, $\lambda = 1.54178$ Å Cell parameters from 143 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates	and isotropic o	r equivalent i	sotropic d	lisplacement	parameters	$(Å^2)$
	1	1	1	1 .	1	\ /

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.77164 (2)	0.42206 (4)	0.40154 (13)	0.0172 (2)
F1	0.96703 (8)	-0.00461 (12)	0.4446 (3)	0.0328 (4)

01	0.75213 (8)	0.53031 (14)	0.4790 (4)	0.0229 (4)
02	0.79392 (9)	0.40209 (15)	0.1426 (4)	0.0234 (4)
03	0.56267 (8)	0.10112 (16)	0.6458 (4)	0.0289 (5)
N1	0.83314 (9)	0.38833 (18)	0.5945 (4)	0.0179 (5)
C10	0.93385 (12)	0.0915 (2)	0.4822 (6)	0.0245 (6)
C6	0.70105 (11)	0.2317 (2)	0.3318 (5)	0.0224 (6)
H6	0.7303	0.2162	0.1979	0.027*
C8	0.85326 (11)	0.1947 (2)	0.7108 (5)	0.0229 (6)
H8	0.8215	0.2003	0.8401	0.028*
C7	0.86643 (11)	0.2844 (2)	0.5534 (5)	0.0181 (5)
C4	0.60893 (10)	0.1812 (2)	0.5970 (6)	0.0216 (6)
C2	0.66316 (11)	0.3540 (2)	0.6686 (6)	0.0221 (5)
H2	0.6672	0.4199	0.7591	0.027*
C5	0.65224 (10)	0.15819 (19)	0.3967 (6)	0.0234 (5)
H5	0.6482	0.0924	0.3056	0.028*
C11	0.94793 (12)	0.1792 (2)	0.3219 (6)	0.0277 (6)
H11	0.9794	0.1731	0.1917	0.033*
C12	0.91355 (11)	0.2773 (2)	0.3611 (5)	0.0240 (6)
H12	0.9224	0.3382	0.2575	0.029*
C3	0.61372 (11)	0.2795 (2)	0.7337 (5)	0.0234 (6)
H3	0.5843	0.2952	0.8667	0.028*
C1	0.70619 (12)	0.3303 (2)	0.4696 (5)	0.0186 (5)
C13	0.51905 (13)	0.1183 (2)	0.8577 (6)	0.0330 (7)
H13A	0.5443	0.1268	1.0134	0.049*
H13B	0.4901	0.0560	0.8745	0.049*
H13C	0.4933	0.1837	0.8281	0.049*
C9	0.88759 (13)	0.0962 (2)	0.6755 (6)	0.0261 (6)
H9	0.8794	0.0353	0.7801	0.031*
H1	0.8245 (14)	0.399 (2)	0.763 (2)	0.023 (8)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0222 (3)	0.0161 (3)	0.0134 (3)	-0.0004 (2)	-0.0004 (2)	-0.0003 (2)
F1	0.0403 (8)	0.0248 (8)	0.0333 (10)	0.0127 (6)	0.0008 (8)	-0.0014 (8)
01	0.0286 (8)	0.0160 (9)	0.0241 (10)	0.0003 (7)	-0.0029 (7)	-0.0009 (7)
O2	0.0280 (9)	0.0249 (10)	0.0172 (10)	-0.0017 (8)	0.0010 (8)	-0.0009 (8)
O3	0.0258 (9)	0.0260 (10)	0.0349 (13)	-0.0065 (8)	0.0066 (9)	-0.0040 (9)
N1	0.0228 (9)	0.0193 (11)	0.0117 (11)	-0.0006 (8)	0.0019 (9)	-0.0019 (9)
C10	0.0262 (12)	0.0222 (14)	0.0251 (15)	0.0056 (11)	-0.0031 (11)	-0.0029 (11)
C6	0.0239 (11)	0.0208 (13)	0.0225 (15)	0.0030 (10)	0.0038 (10)	-0.0064 (11)
C8	0.0221 (10)	0.0265 (15)	0.0202 (14)	0.0010 (10)	0.0050 (10)	0.0016 (11)
C7	0.0202 (11)	0.0186 (13)	0.0155 (13)	-0.0019 (10)	-0.0016 (9)	-0.0015 (10)
C4	0.0201 (11)	0.0181 (13)	0.0265 (14)	-0.0009 (9)	-0.0039 (11)	0.0023 (11)
C2	0.0268 (12)	0.0202 (13)	0.0193 (13)	-0.0003 (10)	-0.0019 (10)	-0.0052 (11)
C5	0.0258 (11)	0.0183 (12)	0.0261 (14)	-0.0003 (9)	-0.0027 (11)	-0.0081 (13)
C11	0.0279 (11)	0.0306 (15)	0.0246 (17)	0.0054 (12)	0.0065 (11)	-0.0005 (12)
C12	0.0275 (11)	0.0227 (12)	0.0218 (14)	0.0003 (10)	0.0065 (11)	0.0023 (11)

C3	0.0234 (11)	0.0268 (14)	0.0201 (14)	-0.0002 (11)	0.0034 (10)	-0.0032 (11)
C1	0.0212 (11)	0.0182 (12)	0.0162 (12)	0.0018 (10)	-0.0026 (9)	-0.0010 (10)
C13	0.0272 (12)	0.0401 (15)	0.0316 (17)	-0.0092 (12)	0.0027 (12)	0.0013 (14)
C9	0.0316 (13)	0.0208 (14)	0.0260 (16)	-0.0008 (11)	-0.0004 (12)	0.0050 (12)

Geometric parameters (Å, °)

S1—01	1.4275 (18)	С8—Н8	0.9300	
S1—O2	1.435 (2)	C7—C12	1.380 (3)	
S1—N1	1.647 (2)	C4—C5	1.385 (4)	
S1—C1	1.764 (2)	C4—C3	1.390 (4)	
F1-C10	1.358 (3)	C2—C1	1.378 (4)	
O3—C4	1.371 (3)	C2—C3	1.388 (4)	
O3—C13	1.423 (3)	C2—H2	0.9300	
N1—C7	1.444 (3)	С5—Н5	0.9300	
N1—H1	0.898 (10)	C11—C12	1.392 (4)	
С10—С9	1.371 (4)	C11—H11	0.9300	
C10-C11	1.378 (4)	C12—H12	0.9300	
C6—C5	1.372 (3)	С3—Н3	0.9300	
C6—C1	1.395 (3)	C13—H13A	0.9600	
С6—Н6	0.9300	C13—H13B	0.9600	
C8—C7	1.385 (4)	C13—H13C	0.9600	
С8—С9	1.394 (4)	С9—Н9	0.9300	
01—S1—O2	120.28 (11)	C1—C2—H2	120.0	
01—S1—N1	105.44 (11)	C3—C2—H2	120.0	
O2—S1—N1	106.74 (11)	C6—C5—C4	120.5 (2)	
01—S1—C1	108.44 (11)	C6—C5—H5	119.8	
O2—S1—C1	108.41 (11)	C4—C5—H5	119.8	
N1—S1—C1	106.77 (11)	C10-C11-C12	117.9 (2)	
C4—O3—C13	117.5 (2)	C10-C11-H11	121.1	
C7—N1—S1	118.62 (16)	C12—C11—H11	121.1	
C7—N1—H1	111.3 (19)	C7—C12—C11	120.2 (2)	
S1—N1—H1	113.8 (19)	C7—C12—H12	119.9	
F1-C10-C9	118.5 (2)	C11—C12—H12	119.9	
F1-C10-C11	118.3 (2)	C2—C3—C4	118.9 (2)	
C9-C10-C11	123.3 (2)	С2—С3—Н3	120.5	
C5—C6—C1	119.0 (2)	С4—С3—Н3	120.5	
С5—С6—Н6	120.5	C2—C1—C6	120.9 (2)	
С1—С6—Н6	120.5	C2—C1—S1	119.40 (19)	
С7—С8—С9	120.0 (2)	C6—C1—S1	119.56 (19)	
С7—С8—Н8	120.0	O3—C13—H13A	109.5	
С9—С8—Н8	120.0	O3—C13—H13B	109.5	
C12—C7—C8	120.5 (2)	H13A—C13—H13B	109.5	
C12—C7—N1	118.9 (2)	O3—C13—H13C	109.5	
C8—C7—N1	120.5 (2)	H13A—C13—H13C	109.5	
O3—C4—C5	115.2 (2)	H13B—C13—H13C	109.5	
O3—C4—C3	124.1 (2)	C10—C9—C8	118.1 (3)	

120.7 (2) 120.0 (2)	С10—С9—Н9 С8—С9—Н9	121.0 121.0
$\begin{array}{c} -176.37 (18) \\ -47.4 (2) \\ 68.4 (2) \\ -0.1 (4) \\ -177.5 (2) \\ 80.1 (3) \\ -102.5 (2) \\ 177.0 (2) \\ -3.0 (4) \\ -0.3 (4) \\ -179.4 (2) \\ 0.7 (4) \\ 179.8 (2) \\ 0.5 (4) \\ 0.6 (4) \\ 178.0 (2) \end{array}$	$C_{8} C_{9} H_{9}$ $C_{1} C_{2} C_{3} C_{4} C_{3} C_{2}$ $C_{5} C_{4} C_{3} C_{2}$ $C_{3} C_{2} C_{1} C_{6}$ $C_{3} C_{2} C_{1} C_{6}$ $C_{3} C_{2} C_{1} C_{6}$ $C_{5} C_{6} C_{1} C_{2}$ $C_{6} C_{1} C_{1} C_{6}$ $C_{7} C_{8} C_{9} C_{10}$	$\begin{array}{c} 0.5 \ (4) \\ 179.3 \ (2) \\ -0.8 \ (4) \\ -0.2 \ (4) \\ -176.4 \ (2) \\ 0.1 \ (4) \\ 176.26 \ (19) \\ -27.8 \ (2) \\ -159.9 \ (2) \\ 85.4 \ (2) \\ 156.0 \ (2) \\ 23.8 \ (2) \\ -90.8 \ (2) \\ -179.3 \ (2) \\ 0.0 \ (4) \\ -0.2 \ (4) \end{array}$
-0.8 (4)		
	120.7 (2) $120.0 (2)$ $-176.37 (18)$ $-47.4 (2)$ $68.4 (2)$ $-0.1 (4)$ $-177.5 (2)$ $80.1 (3)$ $-102.5 (2)$ $177.0 (2)$ $-3.0 (4)$ $-0.3 (4)$ $-179.4 (2)$ $0.7 (4)$ $179.8 (2)$ $0.5 (4)$ $0.6 (4)$ $178.0 (2)$ $-0.8 (4)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O2 ⁱ	0.90(1)	2.06 (1)	2.951 (3)	171 (3)
C6—H6…O1 ⁱⁱ	0.93	2.55	3.192 (3)	127
C13—H13 <i>B</i> ···O3 ⁱⁱⁱ	0.96	2.60	3.468 (3)	151

Symmetry codes: (i) *x*, *y*, *z*+1; (ii) –*x*+3/2, *y*-1/2, *z*-1/2; (iii) –*x*+1, –*y*, *z*+1/2.