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Abstract

Cell surface proteins can play important roles in cancer pathogenesis. Comprehensive 

understanding of the surface protein expression patterns of tumor cells and, consequently, the 

pathogenesis of tumor cells, depends on molecular probes against these proteins. To be effectively 

used for tumor diagnosis, classification and therapy, such probes would be capable of specific 

binding to targeted tumor cells. Molecular aptamers, designer DNA/RNA probes, can address this 

challenge by recognizing proteins, peptides and other small molecules with high affinity and 

specificity. Through a process known as cell-SELEX, we used live acute myeloid leukemia 

(AML) cells to select a group of DNA aptamers that can recognize acute myeloid leukemia cells 

with dissociation constants (Kds) in the nanomolar range. Interestingly, one aptamer (KH1C12), 

compared with two control cell lines (K562 and NB4), showed significant selectivity to the target 

AML cell line (HL60) and could recognize the target cells within a complex mixture of normal 

bone marrow aspirates. The other two aptamers KK1B10 and KK1D04 recognize targets 

associated with monocytic differentiation. Our studies demonstrate that the selected aptamers can 

be used as a molecular tool for further understanding surface protein expression patterns on tumor 

cells and thus providing a foundation for effective molecular analysis of leukemia and its 

subcategories.

Introduction

Acute leukemia has been traditionally classified according to the FAB (French-American-

British) system that is based on morphology and cytochemistry studies. In 2001, the World 

Health Organization (WHO) classification system of acute leukemia was introduced. 

Currently, therefore, a new basis for diagnosing both adult and pediatric acute leukemia has 

been established. This is based on a combination of cytological examination, 

immunophenotypic analysis by flow cytometry, and cytogenetic karyotyping, or molecular 

analysis of genetic mutations known to carry good or poor risk for patients.1 Because of the 

relatively simple technical requirements and short turnaround time, immunophenotyping and 

monitoring residual diseases in clinical practice by flow cytometry has been the method of 

choice. However, the available monoclonal antibodies are only used to classify tumors by 

tissue origin or lineage, not to identify the molecular events underlying the neoplastic 

process or the information required to aggressively pursue prognosis and clinical 
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management.2 This picture changes significantly when we consider cell surface proteins 

which can play important roles in cell proliferation and differentiation in response to 

extracellular stimulatory and inhibitory signals.2 Specifically, the differences in surface 

protein expression among various types of tumor cells can potentially be used to diagnose 

and detect tumor cells and predict their behavior. Such differentiation in protein expression 

also gives the clues required, to predict effective therapeutic regimens, perform targeted 

therapy as well as determine long term outcomes.1 However, in order to define the 

molecular basis of a disease process, we must be able to generate the molecular signature of 

an individual disease. Therefore, by developing probes that can recognize surface proteins, it 

will open opportunities that can ultimately aid in profiling the surface protein changes that 

are related to neoplasia or diseases, and classify tumors according to their molecular 

characteristics instead of tissue origin or cell lineages.

In our earlier studies,3, 4 we used a cell-based aptamer selection strategy known as cell-

based SELEX to develop aptamers that distinguish target cells (CCRF-CEM, human 

precursor T-cell acute lymphoblastic leukemia, T-ALL) from the control B-cell tumor 

(Ramos, human Burkitt's lymphoma) and vice versa. Having been derived from normal B- 

and T-lymphocytes, the tumor cells of B- or T-cell lineage have distinctive surface proteins, 

which is the reason we chose them to implement our aptamer selection strategy. We found 

that a panel of selected aptamer probes could recognize CEM T-ALL or Ramos cells mixed 

with normal human bone marrow cells and also real clinical specimen, demonstrating the 

potential clinical application of leukemia cell detection and characterization. However, we 

still needed to validate the potential of this strategy in identifying specific molecular markers 

in closely related tumor cells. Consequently, in this paper, we report the applicability of this 

procedure in two closely related acute leukemia cell lines, HL60 and NB4.

HL60 and NB4 cells are morphologically similar and can undergo in vitro granulocytic 

differentiation when treated with retinoic acid,5 a characteristic feature of APL. NB4, a 

model APL cell line, has the t(15;17) translocation involving the retinoic acid receptor alpha 

(RAR) gene. The resultant fusion proteins created by the specific translocation disrupt the 

function of RAR, which blocks the normal maturation of granulocytes, thus leading to the 

accumulation of abnormal promyelocytes. Treatment with ATRA, a derivative of vitamin A, 

causes differentiation of the immature leukemic promyelocytes into mature granulocytes.6 

HL60 cells can also be induced to differentiate by ATRA, even though HL60 cells lack this 

chromosomal translocation. The underlying mechanism for such induced HL60 cell 

differentiation remains unclear. Both NB4 and HL60 cell line can be induced to differentiate 

towards monocytic and granulocytic pathways depending on the chemical inducer.1 By 

using the model system, we examine whether it is possible to select aptamers capable of 

detecting the difference in the surface protein expression between these closely related cell 

lines.

Materials and methods

Cell lines and cell culture

HL60, NB4 [t (15;17) (q22;q12)], K562 [t (9;21)(q34;q11)], CEM, Ramos, Jurkat cell lines, 

Kasumi-1[t(8;21)(q22;q22)], Monomac-6 [t(9;11)(p22;q23)], HEL and MV4-11 [t(4;11)
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(q21;q23)] were used for the studies. All cells were maintained in culture with RPMI-1640 

(American Type Cell Culture) culture media, supplemented with 20% heat-inactivated FBS 

(Kasumi-1 and MV4-11) and the rest with 10% FBS and 100Units/mL penicillin-

streptomycin (Cellgro). They were incubated at 37°C under a 5% CO2 atmosphere. The 

leftover human bone marrow samples were obtained from the Hematopathology Laboratory, 

Department of Pathology, University of Florida/Shands Hospital.

DNA primers and library

The DNA library used for cell-based aptamer selection consisted of a pool of 

oligonucleotides made up of a continuous stretch of 45 randomized nucleotides flanked on 

both ends by PCR primer sequences. The 5′ end is labeled by fluorescein isothiocyanate 

(FITC) (5′ FITC- ATC CAG AGT GAC GCA GCA N45 TGG ACA CGG TGG CTT AGT 

3′). The forward primer was labeled at the 5′ end with FITC (5′ FITC- ATC CAG AGT 

GAC GCA GCA 3′) and the reverse primer with biotin at the 5′ end (5′ Biotin- ACT AAG 

CCA CCG TGT CCA 3′). All sequences were synthesized by standard phosphoramidite 

chemistry using a 3400 DNA synthesizer (Applied Biosystems) and purified by reverse 

phase HPLC (Varian Prostar). During selection, eluted sequences were amplified by PCR, 

and the FITC-labeled sequences were separated from the biotinylated complementary strand 

by denaturation (200mM NaOH) and streptavidin-biotin interactions. All PCR mixtures 

contained 50 mM KCl, 10 mM TrisHCl (pH 8.3), 1.5 mM MgCl2, dNTPs (each at 2.5 mM), 

0.5μM each primer, and Hot start Taq DNA polymerase (5units/μl). Amplifications were 

carried out in a Biorad 1 Cycler at 95°C for 30 sec, 56.3°C for 30 sec, and 72°C for 30 sec, 

followed by the final extension for 3 min at 72°C. The FITC-labeled sequences were used to 

continue and monitor progress of selection by flow cytometry.

Cell-based selection

In this study, HL60 was used as target (positive cell line) and NB4 for counter selection 

(negative cell line). Twenty nmol of DNA library was dissolved in 500 μl of binding buffer 

(4.5 g/liter glucose, 5 mM MgCl2, 0.1 mg/ml tRNA and 1mg/ml BSA, all dissolved in 

Dulbecco's PBS with magnesium chloride and calcium chloride). The DNA pool was 

denatured at 95°C for 5 min and quickly cooled on ice for 10 min. The detailed SELEX 

procedure is outlined in previous studies.3 Briefly, 5 × 106 HL60 cells were washed twice 

with washing buffer (4.5 g/liter glucose, 5 mM MgCl2, dissolved in Dulbecco's PBS with 

0.1g/L magnesium chloride and 0.133g/L calcium chloride) and centrifuged at 940 rpm for 

5min at 4°C. The cells were incubated with the DNA pool in binding buffer, on ice in an 

orbital shaker for 45 min. After incubation, the cells were washed three times to remove 

unbound DNA sequences. The bound DNA sequences were eluted with 500 μl binding 

buffer by heating at 95°C for 10 min and centrifugation. The supernatant containing the 

DNA sequences was incubated with 2 × 107 NB4 cells to perform a subtraction. The 

unbound sequences were amplified by PCR using FITC- and biotin-labeled primers. The 

selected sense ssDNA strands were separated from the biotinylated antisense ssDNA by 

alkaline denaturation and affinity purification with streptavidin-coated Sepharose beads (GE 

Healthcare). The entire selection process was repeated according to the extent of 

enrichment. To acquire aptamers with high affinity and specificity, the washing strength was 

enhanced gradually by extending wash time (2-5 min), as well as increasing the volume of 
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washing buffer (3-5 mL) and the number of washes (3-5 times). Additionally, an increased 

amount of FBS (10% - 20%) was added to the incubation mixture, while the number of cells 

was reduced from 5 million to 1 million. The enrichment of specific sequences was 

monitored using flow cytometry. By 16 rounds of selection, there was significant 

enrichment of DNA sequences to enable selective recognition of the target cells rather than 

the negative cell line. The enriched pool was amplified by PCR using unlabeled primers and 

the PCR products cloned into Escherichia coli using TOPO TA cloning Kit for sequencing 

(Invitrogen). The positive clones were sequenced by a high throughput sequencing facility at 

the University of Florida.

Flow cytometry assays

Using flow cytometry to monitor aptamer binding to cultured cells

The enrichment of aptamer candidates during selection was determined by flow cytometry. 

The FITC-labeled ssDNA at a final concentration of 250nM was incubated with 1 × 106 

target, or negative control cells, in 200μl binding buffer containing 20% FBS and placed on 

ice for 30 min. The cells were washed twice with binding buffer, and the pellets with the 

bound sequences were resuspended in 350μl binding buffer. The fluorescence intensity was 

determined with a FACScan cytometer (BD Immunocytometry Systems) by counting 30,000 

events. The FITC-labeled unselected ssDNA library was used as a negative control. To 

determine the cell specificity of the selected aptamers, cell lines including K562, 

Monomac-6, HEL, Kasumi-1, MV4-11, Jurkat, Ramos and CEM were used in binding 

assays by flow cytometry

Determination of aptamer affinity

The screening of potential aptamers and the binding affinity of the successful aptamer 

candidates were performed using flow cytometry. To determine the binding affinity of the 

aptamers, target cells (1 × 106) were incubated with varying concentrations of FITC-labeled 

aptamer in a 200 μl volume of binding buffer containing 20% FBS. Cells were washed twice 

with binding buffer, resuspended in 350 μl buffer and analyzed by flow cytometer. The 

FITC-labeled unselected library was used as a negative control to determine nonspecific 

binding. All binding assays were in triplicate. The mean fluorescence intensity of the 

unselected library was subtracted from that of the aptamer with the target cells to determine 

the specific binding of the labeled aptamer. The equilibrium dissociation constant (Kd) of 

the aptamer-cell interaction was obtained by fitting the dependence of intensity of specific 

binding on the concentration of the aptamers to the equation Y = B max X/(kd + X), using 

Sigma Plot (Jandel, San Rafael, CA).

Competition assays

Cell-based selection may identify multiple aptamers for multiple targets as well as multiple 

aptamers for a single target. We therefore tested the selected aptamers for competition 

against each other. We tested aptamers selected at the same time, as well as those known to 

bind to leukemia cell lines.3 In competition assays, unlabeled competitive aptamer was 

incubated with HL60 cells in 10-fold excess concentration (2.5μM), and then the labeled 
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aptamer was added at a final concentration of 250nM. The cells were washed, and their 

fluorescence intensity was determined by flow cytometry.

Effect of temperature on the binding of KH1C12

Since the selection of the aptamers was done on ice, all of the binding assays reported here 

were performed at a temperature of 4°C. We have observed that some of the aptamers 

selected at lower temperatures may not bind well at elevated temperatures, such as 37°C, 

and that this may affect further studies using such aptamers under physiological conditions. 

We therefore performed binding assays at 37°C to verify the stability of aptamer binding to 

its target. Three separate assays were performed. In set one, the aptamer was heated to 95°C 

and cooled on ice immediately, while in sets two and three, it was cooled to room 

temperature and 37°C, respectively. Aptamers were incubated with the target at 37°C, and 

fluorescence intensity was determined by flow cytometry. Aptamers denatured at 95°C, 

cooled immediately at 4°C and incubated on ice were used as positive control.

Test selected aptamers with cells in normal human bone marrow cells and acute leukemia 
cells

We tested the recognition pattern of the selected aptamers with the different types of cells in 

normal bone marrow aspirates. FITC-labeled aptamer, together with peridinin -chlorophyll- 

protein-labeled anti-CD45 antibody (PerCP-CD45, BD Biosciences), were incubated with 

normal bone marrow aspirates. FITC-labeled unselected DNA library was used as a control. 

We next tested the feasibility of using an aptamer to identify its target when it is mixed with 

normal human bone marrow aspirates. Again, FITC-labeled aptamer was mixed with PerCP-

antiCD45 and incubated with a mixture of normal bone marrow aspirates and HL60 or NB4 

cells. These mixtures were assayed by flow cytometry. We also determined the interaction 

of the selected aptamers with real clinical patient samples. Different leukemia samples were 

tested, including AML, APL, T-cell and B-cell ALL. FITC-labeled aptamers were mixed 

with PerCP-antiCD45 and/or R-phycoerythrin-labeled anti-CD117 antibody, (PE-anti-

CD117, BD Biosciences).

Chemically Induced differentiation Assays

Differentiation agents, all-trans-retinoic acid (ATRA) and butyric acid sodium salt were 

obtained from Sigma. ATRA was dissolved in ethanol and sodium butyrate in water at stock 

concentrations of 10mM and 0.5M, respectively. These were aliquoted and stored. Before 

induction of differentiation, HL60 and NB4 cells were quantified and assessed for viability 

by tryphan blue dye exclusion test on hemacytometer. Cells (viability over 95%) were 

seeded in RPMI-1640 at 100 000 cells/mL in total volume of 5mL per each sample in Petri 

dishes. Differentiation was induced at final concentrations of 1μM ATRA (granulocytic 

pathway) and 0.5mM sodium butyrate (monocytic pathway). The cells were incubated at 

37°C in a humidified atmosphere of 5% CO2. Control experiments were done with equal 

volumes of ethanol for ATRA experiments and water for sodium butyrate. All experiments 

were done in triplicate. The extent of differentiation was assessed between 1-5 days by 

nitroblue tetrazolium (NBT) reduction assay and the functional recognition of the aptamers 

probes also assessed by flow cytometry.
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NBT reduction Test

NBT reduction was performed using standard methodology, and the percentage of cells that 

contained intracellular black formazan deposits was determined. Briefly, treated and 

untreated cells at specific time points of inducer exposure were washed with PBS and about 

100 000 cells in 50μl volume incubated with NBT solution at 37°C for 30min. Cytospin 

slide preparations were made and the smear allowed to dry. Cells were stained with 

Accustain Wright stain. Differential counts were performed under light microscope (Leica 

DM6000B) on a minimum count of 200 cells. The percentage of cells containing 

intracellular formazan deposits was determined.

Binding studies of aptamers with differentiated cells by flow cytometry

The effect of differentiation of HL60 and NB4 cells on the binding pattern of KH1C12, 

KK1B10 and KK1D04 was determined. At the same time points of differentiation used for 

the NBT reduction test, portions of the cells were incubated with the aptamers at a final 

concentration of 250nM for 30min on ice. The cells were washed and assayed by flow 

cytometry. Unselected DNA library was used as a background fluorescence signal. The 

fluorescence intensity of the individual aptamers was compared with the control cells 

without differentiation.

Verification of aptamers binding to monocytic differentiated cells

This assay was done with normal bone marrow cells. The cells were incubated with specific 

aptamers labeled with biotin at the 5′ end and the fluorescence signal detected using PE-

labeled streptavidin. Each individual aptamers was incubated alongside with monocyte 

specific monoclonal antibodies anti-CD14 labeled with Allophycocyanin (APC) and FITC 

labeled anti-CD64. After incubation and washing, the florescence signal was detected by 

flow cytometry.

Results

Selection and binding assays

Cell-SELEX was effectively used for the selection using HL60 as positive and NB4 as 

negative cell lines. A random ssDNA pool (approximately 1014) was subjected to sequential 

binding and elution to enrich DNA sequences that can recognize surface markers of the 

target cells. Two myeloid cell lines, HL60 and NB4, were chosen as the model system to 

select DNA sequences for differential recognition. HL60 was used as the target cell line and 

NB4 for counter selection. The introduction of counter selection provides the opportunity to 

eliminate, as much as possible, common surface markers while enriching differential 

markers on the target cells. DNA pool collected after each round of selection was amplified 

by PCR. The enrichment of the DNA pool through successive selection was monitored by 

flow cytometry. The increased fluorescence intensity is an indication of the enrichment of 

cell-binding DNA sequences (Figure 1). With the increasing numbers of selection cycles, 

there was steady increase in the fluorescence intensity on the target cells, while there was no 

significant change of fluorescence intensity on the control cells. By the 16th round of 

selection, the fluorescence signals on the target cells significantly exceeded those on the 
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control cells. That notwithstanding, the enrichment fluorescence intensity seemed not to be 

very large as is generally observed between target and control cells. We believe that this 

observation is due to the closeness of these two cell lines. In addition the intensity of the 

fluorescence signal can be influenced by the coupling efficiency of the fluorophore.

The significantly enriched DNA pool was used for DNA cloning, and the positive clones 

were sequenced using a high throughput sequencing facility at the Interdisciplinary Center 

for Biotechnology Research (ICBR), University of Florida. The DNA sequences were 

grouped into families based on their sequence homology. Representative sequences from the 

different families were chosen to test their interactions with the target cells. Out of the initial 

10 sequences tested, 8 showed significant binding to the target, HL60 (Table 1). We then 

determined the dissociation constant for some of the selected aptamers, and all were in the 

nanomolar range. As shown in Table 1 and Figure 2, KH1C12 and KHG11 showed selective 

binding to the target, and they bound to target with very high affinity (kd = 5.4 ± 1.6 nM and 

6.1 ± 2.1 respectively). In general, the nanomolar range dissociation constants of the 

selected aptamers compare well with that of antibodies.

We tested the influence of the other aptamers selected along with KH1C12, as well as those 

known to bind to leukemia cell lines, 3, on the binding of KH1C12 to its target. Ten-fold 

excess of the unlabeled competitor was first incubated with HL60 before cells were 

incubated with KH1C12 to ensure the competitive advantage. As shown in Supplementary 

Figure 1, only KHG11 could block the binding of KH1C12. As a positive control to check 

the effectiveness of the assay, the unlabeled KH1C12 also blocked the binding of the FITC-

labeled KH1C12 (Supplementary Figure 2k). The observation that KHG11 influence the 

binding of KH1C12 suggests that these aptamers bind to the same target and/or to the same 

binding pocket though they have significant sequence diversity (Table 1). None of the other 

selected aptamers had any influence on the binding of KH1C12. This result further 

confirmed the binding specificity of selected aptamers.

Since the KH1C12 aptamer showed better affinity than KHG11 and initial study suggesting 

that both seem to bind to the same molecule on target cell, KH1C12 was further 

characterized for its interaction with other cell lines, including myeloid and T- and B-cell 

leukemia lines. As shown in Table 2, aptamer KH1C12 showed no recognition at all to T-

cell and B-cell lines tested (Supplementary Figure 2). On the other hand, we observed a 

differential recognition pattern to myeloid cell lines. Aptamer KH1C12 did not have any 

interaction with the K562 (erythroid leukemia cell line with t(9;22) translocation) or HEL 

(erythroleukemia) cell lines. However, some level of recognition was observed with 

Kasumi-1, t(8, 21) translocation (AML-M2), Monomac-6 (AML-M5), and MV4-11 

(biphenotypic B myelomonocytic leukemia) (Table 2 and Supplementary Figure 1).

The stability of aptamer binding to target cells was also assessed at different temperatures. 

Since aptamers were selected at 4°C, a study was done to verify the suitability of using this 

aptamer at physiological temperature. The aptamer/cell mixtures were incubated at 4°C, 

room temperature and 37°C. As shown in flow cytometry binding assays in Supplementary 

Figure 3, there was no significant change in fluorescence intensities among the three 

different temperatures tested. This observation is important for further development of 
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assays testing the uses of these aptamers for targeted therapy or for apoptotic and viability 

assays at physiological conditions.

Testing on normal human bone marrow aspirates and patients' leukemia samples using 
selected aptamers

Although there are significant differences between patients' leukemia cells in clinical 

samples and established leukemia cell lines7, considering this variability, we assessed the 

suitability of using the selected aptamers for molecular recognition of leukemia cells in 

clinical samples. These aptamers were used, along with characteristic monoclonal 

antibodies, as positive controls. As a first step, the FITC-labeled aptamer was incubated with 

normal bone marrow aspirates. KH1C12 showed no recognition with any subpopulation of 

the normal bone marrow aspirates (Figure 4a). However, when the bone marrow aspirates 

were mixed with HL60 or NB4 cells, and incubated with the aptamer, KH1C12 could 

selectively recognize the target HL60 cells (Figure 4b), but not the negative control NB4 

cells (Figure 4c). This property may be useful especially when real clinical specimen is 

involved. Generally leukemia clinical specimen has diverse cell constituents and the 

importance of a probe to single out diseased cells cannot be overemphasized. The 

recognition of the selected aptamers with clinical samples was diversed. As shown in table 

3, the selected aptamers showed between 20 and 40% recognition of the AML patients 

samples tested compared. Interestingly, Sgc4 showed 70% recognition to AML samples but 

however showed broad recognition to other leukemia. Expectedly, none of the AML 

aptamers could identify any of the T-cell and B-cell samples tested and only one aptamer 

selected, KK1D04, was positive for the one APL sample tested.

Effect of differentiation on aptamer binding

Several studies have reported NB4 and HL60 differentiation pathways associated with 

ATRA and sodium butyrate induction.8, 9,10, 11, 12 We therefore used the nitroblue 

tetrazolium (NBT) reduction test to assess and confirm that the leukemic blasts differentiate 

into peroxidase-positive leukocytes (neutrophils and monocytes). Upon induction of ATRA, 

NB4 and HL60 cells differentiate along the granulocytic pathway, whereas sodium butyrate 

induces the monocytic pathway. Metcalf and Boyd11 reported that sodium butyrate induced 

differentiation in virtually 100% of HL60 cells over a four-day interval to cells with multiple 

phenotypic markers of monocytes. Treatment of HL60 and NB4 cells with 1μM ATRA and 

0.5mM sodium butyrate was studied for up to 5 days. Continued exposure of the cells to 

these differentiating agents resulted in morphological and functional changes, including 

decrease in cell volume and increase in black formazan deposits over time in both cells lines 

(Figures 5a, b, c and 6a, b, c). Associated with these events, the selected aptamers showed 

various patterns of recognition to the differentiated cells. Generally, KH1C12 did not show 

any observable change in fluorescence intensity among the treated HL60 cells with ATRA 

and sodium butyrate ((Figures 5e, f and 6e, f) and the controls ((Figures 5d and 6d), 

suggesting that there was no significant change in the expression level of target. On the 

other hand, KK1B10 and KK1D04 produced significant change in binding patterns with 

both cell lines. Both aptamers lost significant fluorescence signal (KK1D04 reduced to 

background) with ATRA-induced HL60 and NB4 cells (Figure 5h, k and 6h, k). In contrast, 

they showed an increase in fluorescence signal intensity when cells were induced to 

Sefah et al. Page 8

Leukemia. Author manuscript; available in PMC 2009 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



differentiate with sodium butyrate (Figure 5i, l and 6i, l). These findings suggest that the 

targets recognized by KK1B10 and KK1D04 are up-regulated when leukemic cells 

differentiate toward monocytic cells.

The observation that the florescence signal intensity of KK1B10 and KK1D04 was 

increased with monocytic differentiated HL60 and NB4 cells was further assessed with 

monocytic cells from bone marrow aspirate. The assay was done alongside with monocytes 

specific antibodies CD14 and CD64. The aptamers KK1B10 and KH1C12 were used in this 

assay. Figure 7a shows the various cell types in bone marrow aspirate. The gated area, 

showing high florescence signal for CD64 represents monocytes. The aptamers KH1C12 

and KK1B10 response to these monocytes are represented in figures 7b – 7e. KH1C12 

shows some level of recognition in all stages of the monocytic population as shown in figure 

7e and represented in histogram in figure 7d. On the other hand, KK1D04 showed 

tremendous recognition with mature monocytes (figure 7b and 7c) implying that as cells 

differentiate into monocytes, the target protein is highly expressed. This may explain why 

KH1C12 signal intensity did not change but significantly increased for KK1B10 when the 

HL60 and NB4 cells were differentiated to monocytes.

Discussion

Using the strategy of the cell-based SELEX system, we report here the development of a 

molecular aptamer probe that can distinguish target HL60 cells from control NB4 cells, 

demonstrating the achieved specificity of selected aptamers. These two cell lines are closely 

related morphologically5 and that the leukemic cells of most patients with AML are 

generally homogenous with respect to the expression of myeloid cell surface antigens.13 As 

such, it should have been very difficult to generate aptamers to distinguish between them. 

Nonetheless, we were able to accomplish this task by identifying aptamer KH1C12 which 

could selectively recognize the target HL60 cells, but not the negative control NB4 cells. 

Moreover, aptamer KH1C12 recognized HL60 with high affinity (4.5 nM), and its binding 

to target was not significantly influenced by increasing the temperature to 37°C, a critical 

advantage in the development of probes for in vivo applications. We could not make 

comparison to any antibody in regards to this selective recognition potential since to the best 

of our knowledge, there is no such antibody. At best the antigens may be differentially 

expressed on the different myeloid cell lines. Apparently, we also identified aptamers that 

can recognize target as well as control cells. However, none of the aptamers selected against 

myeloid leukemia cell lines showed recognition to any of tested cell lines of T-cell or B-cell 

leukemias or lymphomas. The counter selection strategy can help to select cell-specific 

aptamer probes, but it is not feasible to remove all the aptamer sequences that recognize 

both target and control cells. Other reported studies also showed similar findings and 

concluded that the counter selection strategy might not be completely effective.3, 14 The 

preliminary observation that the selected aptamers can recognize real clinical patient 

samples is significant. This is an indication of the potential of these probes when they are 

well developed and optimized. Further testing of more clinical specimen will however be 

needed to fully establish the feasibility of further development of these aptamers for clinical 

use.
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The HL60 and NB4 cell lines have played important roles as model cell systems in 

analyzing the various mechanisms underlying cellular differentiation events. For instance, 

microarray analysis of TPA-induced differentiation of HL-60 cells has resulted in the 

identification of a large number of genes that showed altered expression. A number of 

downstream targets were induced by TPA, and some of these are thought to be essential for 

the onset of differentiation.15 Similarly, Lijun et al.16 reported that ATRA-induced 

differentiation of NB4 cells resulted in about 168 up-regulated, and over 179 down-

regulated, genes. Many of the altered genes are thought to encode products that participate 

in signaling pathways, cell differentiation, programmed cell death, transcription regulation 

and production of cytokines and chemokines. Therefore knowing the molecular mechanisms 

associated with differentiation and maturation of hematopoietic cells may be useful for the 

manipulation of blood cell production.

We therefore used these cell systems to assess the effect of cellular differentiation on the 

binding capacity of three aptamers selected by cell-SELEX. To accomplish this, we 

compared the changes in fluorescence intensities of these aptamers as they interacted with 

undifferentiated and differentiated cells. Although the binding pattern of aptamer KH1C12 

was not affected by cell differentiation, the fluorescent signals of both KK1B10 and 

KK1D04 aptamers to HL60 and NB4 cells are altered during chemical induced cell 

differentiation. Both aptamers showed decreased binding signals in ATRA-treated cells, but 

increased binding signals in sodium butyrate-treated cells, indicating their target proteins are 

differentially regulated in two different differentiation processes induced by two chemical 

products. It has been severally reported that both NB4 and HL60 cell line can be induced to 

differentiate towards monocytic and granulocytic pathways depending on the chemical 

inducer, ATRA inducing granulocytic differentiation17, 18 and sodium butyrate inducing 

monocytic/macrophage diffentiation.10, 11, Therefore, it is conceivable that the targets 

recognized by both KK1B10 and KK1D04 are associated with monocytic differentiation and 

they can potentially be useful probes for study of monocytic differentiation process. Our 

study suggests qualitative and quantitative differences in the protein targets of KK1B10 and 

KK1D04 occur during monocytic and granulocytic differentiation. Similarly, Mollinedo et 

al10 observed that treatment of HL60 cells with sodium butyrate, induced monocytic 

differentiation, causing remarkable increase in AP-1 binding activity. Another monocytic 

differentiation agent 1 alpha,25-dihydroxyvitamin D3, induced a weak, but appreciable, 

increase in AP-1 activity. Furthermore, addition of sodium butyrate or 1 alpha,25-

dihydroxyvitamin D3 to HL-60 cells induced the expression of c-fos, c-jun, jun B and jun D 

proto-oncogenes. In contrast, when HL-60 cells were treated with retinoic acid, a 

granulocytic differentiation inducer, no enhanced AP-1 binding activity was observed, and 

only a weak increase in jun D mRNA level was detected. The findings of our studies 

indicate that aptamer based technology can also be used as a tool for comparative analysis 

between tumor cells and their differentiated forms, which could enable us to identify gene 

products that may have specific roles in cellular differentiation and tumor pathogenesis.

Malignancy such as myeloid leukemias is composed of tumor cells at different 

differentiation direction and at different differentiation stages. Leukemia cells are classified 

as myeloid leukemia as long as they show evidence of one of the following differentiation, 
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erythroid, granulocytic, monocytic or megakaryocytic differentiation. Having molecular 

probes that can recognize a specific differentiation pathway would be very useful in 

leukemia studies as well as in clinical leukemia diagnosis. Although this study only 

produced a few specific aptamers, it demonstrates the capability of the cell-based aptamer 

selection strategy in identifying markers for subclasses of AML and the potential for 

exploring new and useful disease surface markers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flow cytometry assays to monitor the enrichment of aptamer candidates during selection. (a) 

the target cells, HL60; (b) the negative cells, NB4. The fluorescence intensity is shown as 

the following: control unselected library (red); DNA pools; 12th -round DNA pool (green), 

13th round DNA pool (blue), 14th round DNA pool (purple), and 16th round DNA pool (light 

blue).
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Figure 2. 
Identification of potential aptamer candidates. Binding assays of selected aptamers, 

KH1C12 with target HL60 (a), and control cells NB4 (b); KHG11 with the target Hl60 (c) 

and control cells NB4 (d). The red histogram shows the background binding.
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Figure 3. 
Binding curve of the KH1C12 aptamer with HL60 cells. Cells were incubated with varying 

concentrations of FITC-labeled aptamer in triplicate. The mean fluorescence intensity of the 

unselected library (background binding) at each concentration was subtracted from the mean 

fluorescence intensity of the corresponding aptamer.
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Figure 4. 
KH1C12 interaction with normal bone marrow cells (a) and its recognition with HL60 and 

NB4 cells, each in mixture with normal bone marrow aspirates. FITC-labeled KH1C12 and 

PerCP-labeled anti-CD45 antibody were incubated with HL60 (b) and NB4 cells (c) mixed 

with normal bone marrow aspirates (blue dots: lymphocytes, green dots: granulocytes and 

red dots: leukemic cells. The incubation mixtures were assayed by flow cytometry. KH1C12 

could recognize HL60, but not NB4, in mixture with normal bone marrow cells. This is 

shown by the increase in fluorescence intensity in FL1-Height of the red dots (b), but not in 

(c)
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Figure 5. 
Cytospin preparations followed by Accustain Wright staining of HL60 cells (a) untreated, 

(b) ATRA-induced differentiated, and (c) sodium butyrate-induced differentiated, showing 

the formation of formazan deposits (×10 magnification). The FACscan histograms above 

show the binding profile of the selected aptamers to the untreated, ATRA treated and 

sodium butyrate treated cells. The red histograms show fluorescence background using the 

unselected DNA library.
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Figure 6. 
Cytospin preparations followed by Accustain Wright staining of NB4 cells (a) untreated, (b) 

ATRA-induced differentiated, and (c) sodium butyrate- induced differentiated, showing the 

formation of formazan deposits (×10 magnification). The FACscan histograms show the 

binding profile of the selected aptamers to the untreated, ATRA treated and sodium butyrate 

treated cells. The red histograms show fluorescence background using the unselected DNA 

library.
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Figure 7. 
Flow cytometry analysis of aptamers binding to monocytic cells in bone marrow aspirate. 

(a) Dot plot of bone marrow cells as identified by FITC-labeled anti-CD64. The gated cells 

(purple) with high anti-CD64 signal represent monocytic cells. (b) and (c) represent 

KK1B10 signal (blue) whereas (d) and (e) represent KH1C12 signal (blue). Unselected 

library was used as fluorescence background (purple).
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Table 2
Recognition pattern of KH1C12 aptamer to different leukemia cell lines

Cell line Disease KH1C12

HL60 AML/APL ++++

NB4 APL -

Kasumi-1 AML +

Monomac- 6 AML ++

MV4-11 AML ++

HEL AML -

K562 CML -

Ramos B-cell -

CEM T-cell, ALL -

Jurkat T-cell, ALL -

The fluorescence intensity of KH1C12 with HL60 cells was chosen as the maximum with an estimated >95% of cell binding (++++). The 
fluorescence intensities with other cell lines were therefore compared and accordingly assigned approximate binding intensity. A “–” indicates that 
the fluorescence intensity is similar to that of the unselected library.

Abbreviations: AML, acute myeloid leukemia; APL, acute promyelocytic leukemia; CML, chronic myeloid leukemia; ALL, acute lymphoblastic 
leukemia.
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