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Abstract

Background: Chronological age is a prominent risk factor for many types of cancers including colorectal cancer
(CRC). Yet, the risk of CRC varies substantially between individuals, even within the same age group, which may
reflect heterogeneity in biological tissue aging between people. Epigenetic clocks based on DNA methylation are a
useful measure of the biological aging process with the potential to serve as a biomarker of an individual’s
susceptibility to age-related diseases such as CRC.

Methods: We conducted a genome-wide DNA methylation study on samples of normal colon mucosa (N = 334).
Subjects were assigned to three cancer risk groups (low, medium, and high) based on their personal adenoma or
cancer history. Using previously established epigenetic clocks (Hannum, Horvath, PhenoAge, and EpiTOC), we
estimated the biological age of each sample and assessed for epigenetic age acceleration in the samples by
regressing the estimated biological age on the individual’s chronological age. We compared the epigenetic age
acceleration between different risk groups using a multivariate linear regression model with the adjustment for
gender and cell-type fractions for each epigenetic clock. An epigenome-wide association study (EWAS) was
performed to identify differential methylation changes associated with CRC risk.

Results: Each epigenetic clock was significantly correlated with the chronological age of the subjects, and the
Horvath clock exhibited the strongest correlation in all risk groups (r > 0.8, p < 1 × 10−30). The PhenoAge clock (p =
0.0012) revealed epigenetic age deceleration in the high-risk group compared to the low-risk group.

Conclusions: Among the four DNA methylation-based measures of biological age, the Horvath clock is the most
accurate for estimating the chronological age of individuals. Individuals with a high risk for CRC have epigenetic
age deceleration in their normal colons measured by the PhenoAge clock, which may reflect a dysfunctional
epigenetic aging process.
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Background
Colorectal cancer (CRC) is a leading cause of cancer-
related death in the USA and arises via a polyp-to-cancer
progression sequence. Virtually, all CRCs arise from aden-
omatous polyps or serrated polyps, although only 5–10% of
colon polyps become CRC [1]. Advanced histologic features
in the polyp (e.g., villous histology, high-grade dysplasia)

and size of the polyp directly correlate with an increased
risk of CRC [2]. A precise determination of the factors that
mediate polyp initiation and progression would have a
major impact on CRC prevention.
At the molecular level, CRC results largely from the pro-

gressive accumulation of genetic and epigenetic alterations
in colon epithelial cells. DNA methylation alterations
commonly occur in adenomas and CRCs and appear to
cooperate with gene mutations to mediate field canceriza-
tion (also known as “field effect” or “field defect”) in the
colon and induce the initiation and progression of aden-
omas [3–9]. Previous studies evaluating methylation in the
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normal-appearing colon mucosa have demonstrated an
association between DNA methylation of certain cancer-
related genes and neoplastic lesions located elsewhere in
the colon [10–13]. Methylation of the five genes in the
CpG island methylator phenotype (CIMP) panel (RUNX3,
SOCS1, NEUROG1, CACNA1G, and IGF2) was increased
in the normal colon of individuals with advanced proximal
sessile polyps, the precursor lesion to CIMP cancers [9].
Others have demonstrated a direct correlation between
aberrantly methylated APC, DKKI, CDKN2A/p16, and
SFRP4 in the apparently normal colon mucosa of cancer
patients, and to a lesser extent of polyp patients [14].
Therefore, DNA methylation alterations in the normal
colon mucosa could serve as epigenetic markers for colon
adenoma and/or CRC risk.
Age is the strongest risk factor for CRC, and advanced

age has been associated with an increased risk for ad-
vanced polyps and CRC [2, 15]. However, the risk of CRC
varies substantially between individuals, even within the
same age group, which may reflect heterogeneity in bio-
logical tissue aging between people. It has been well ap-
preciated that an individual’s biological age can vary from
the chronological age and the biological aging rate differs
between individuals [16–19]. These observations have led
to efforts to identify accurate markers of biological age.
Recently, epigenetic clock CpGs, which are composed of
specific sets of methylated CpGs, have been identified as
accurate markers of the “true” biological or physiological
aging of tissues. For example, Bocklandt et al. generated
the first DNAm age estimator using DNA extracted from
the saliva [20]. Later, Hannum et al. developed an accurate
single-tissue age estimator based on 71 CpGs from per-
ipheral blood leukocyte (PBL) DNA [21]. Horvath con-
structed the first accurate multi-tissue age estimator based
on 353 CpGs using ~ 8000 publicly available microarray
samples from over 30 different tissues and cell types col-
lected from children and adults [22]. Levine et al. derived
a clock using 513 CpGs to estimate the phenotypic age
based on 10 clinical characteristics that associate with the
morbidity and mortality risk of individuals (DNAm Phe-
noAge clock) [23]. Yang et al. built an epigenetic mitotic
clock using 385 Polycomb group target (PCGT) promoter
CpGs, termed EpiTOC [24]. Interestingly, while EpiTOC,
an epigenetic mitotic clock, predicts a universal acceler-
ation in the pan-cancer analysis as well as in normal buc-
cal tissue of smokers [24], the biological age of some
cancer types (including CRC) is decelerated [25, 26]. The
utility of these clocks in assessing the biological age in
normal colon mucosa from people with differing risk of
CRC has not been investigated.
In this study, using previously established epigenetic

clocks (Hannum, Horvath, PhenoAge, and EpiTOC), we
estimated the biological tissue age of the normal colon
in individuals within three CRC risk groups. We defined

biological age acceleration for each sample by comparing
the estimated biological age with the individual’s chrono-
logical age, to assess whether accelerated or dysfunctional
aging in the colon is associated with an increased CRC
risk.

Methods
Patient and tissue information
This study included 334 tissue samples of normal colon
mucosa collected at the University of Washington Medical
Center (Seattle, WA, USA) by endoscopic biopsy from
patients undergoing colonoscopies (age 19–85) [27] and by
surgical resection from newly diagnosed CRC patients (age
28–89, stages I–IV) [28, 29], following the protocols
approved by the Institutional Review Board. To avoid the
potentially confounding effects of anatomic location, only
the samples from the left colon were included in the study.
Genome-wide DNA methylation levels were assessed using
the Illumina Infinium HumanMethylation450 (HM450, N
= 120, completed years 2012–2016) and Infinium Methyla-
tionEPIC (EPIC, N = 214, completed years 2017–2019)
BeadChip arrays.
Risk group assignment was based on the subject’s personal

history of adenomas or CRC, which is known to associate
with the risk of developing CRC in the future [2]. We de-
fined three risk groups: low, which was based on no concur-
rent adenomas; medium, which was based on non-advanced
adenomas or advanced adenomas (defined as being an aden-
oma > 1 cm or having tubulovillous histology or high-grade
dysplasia); and high, which was based on concurrent CRC.
Table 1 summarizes the risk groups and characteristics of
the study subjects. We adjusted for the clinical covariates,
especially gender and age, and corrected batch effects in our
analyses (Additional file 1: Figure S1).

DNA extraction and methylation assessment
DNA extraction and bisulfite conversion were performed
as described previously [29]. In brief, genomic DNA
samples were extracted from the fresh frozen normal colon
mucosa tissue samples using the DNeasy Blood and Tissue
Kit (Qiagen). Genomic DNA quantification was performed
using the Quant-iT PicoGreen DNA assay kit (Life Tech-
nologies). DNA (500 ng) from each sample was bisulfite con-
verted using the EZ DNA Methylation Kit (Zymo Research,
Irvine, USA). The DNA samples were submitted to the Gen-
omics Core at the Fred Hutchinson Cancer Research Center
where they were processed and run on HM450 or EPIC
arrays following the manufacturer’s instructions (Illumina,
Inc.). The returned raw intensity (IDAT) files were then pre-
processed and normalized as described below.

Methylation array data processing
The raw IDAT files of the two methylation arrays were
read into R with the minfi package separately [30]; the
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combineArrays function was utilized to combine the two
arrays’ data together based on their common CpG sites.
Then, the data was preprocessed with background and
dye bias correction using the Noob method [31],
followed by the functional normalization [32]. CpG
probes that were SNP-associated, cross-reactive, located
on sex chromosomes, and unreliably detected (> 10% of
samples with detection p value > 0.01), with the excep-
tion of the epigenetic clock CpGs, were excluded from
the analysis [33–35]. Methylation β value for each CpG
site in each sample was calculated as M/(M + U + α),
where M and U represent methylated and unmethylated
signal intensities at the CpG site, respectively, and α is
an arbitrary offset (usually 100) intended to stabilize β
values where fluorescent intensities are low. NA values,
if existed after the QC filtering, were imputed as the
means of all non-NA values of the corresponding CpGs.
The β values were transformed into M values as log2(β/
(1 – β)), and the batch effects were removed based on
the M values using the Combat approach [36].

Of note, 64% of the samples were run on the EPIC
array platform, while the rest were run on the HM450
array (Table 1 and Additional file 1: Figure S2). In our
study, we first analyzed the data of the two array plat-
forms separately and found comparable results with re-
gard to the determined epigenetic age and acceleration
and CRC risk; we also performed an inverse variance-
based meta-analysis [37] to combine the testing statistics
and p values of the two datasets and confirmed the re-
sults of using the combined dataset are similar to those
obtained from the separate datasets (see results in the
“Discussion” section). Therefore, we finally combined
the EPIC and HM450 datasets to increase the sample
size and gain more statistical power for the studies we
conducted.

Estimation of cell-type fractions
Cell-type heterogeneity may cause somatic DNA methy-
lation variation between tissue samples and may be an
important confounder in the study of DNAm and epi-
genetic age alterations in association with CRC risk in
the normal colon tissues [18]. Therefore, we used EpiD-
ISH [38], a reference-based algorithm for the inference
of cell-type proportions in cell mixture samples, to esti-
mate the fractions of epithelial cells, fibroblasts, and total
immune cells in our samples.

Calculation of epigenetic age
The epigenetic ages of each sample were estimated using
4 popular epigenetic clocks, which were the Hannum
clock, which relies on 71 CpGs identified in blood DNA
samples [21]; the Horvath clock, which relies on 353
CpGs and is based on the analysis of DNA methylation
from multiple tissue types [22]; the PhenoAge clock,
which is based on 513 CpGs derived to measure pheno-
typic aging [23]; and the EpiTOC clock, which is derived
from the analysis of 385 Polycomb group target pro-
moter CpGs [24]. Note these epigenetic clocks were de-
veloped using data from the HM450 array. Although the
EPIC array lacks some of the CpGs in the Hannum (6),
Horvath (19), and EpiTOC (31) clocks due to the differ-
ences in the array design between the HM450 and EPIC
arrays (Additional file 1: Figure S3), McEwen et al. have
demonstrated that the missing clock CpGs on the EPIC
array do not substantially affect the accuracy of the Han-
num or Horvath age determination [39]. To verify this
observation for all 4 clocks, we performed a sensitivity
analysis on our HM450 data. We selected the common
clock CpGs on both arrays to calculate the epigenetic
ages for the HM450 samples and compared these results
with their epigenetic ages derived from using all clock
CpGs (see results in the “Discussion” section).
A linear regression model was used to describe the re-

lationship between the epigenetic age and chronological

Table 1 Study participant characteristics

Characteristic CRC risk status

Low (%)
[no concurrent
adenomas]

Medium (%)
[concurrent
adenomas]

High (%)
[concurrent
cancer]

Total 105 (100.0) 128 (100.0) 101 (100.0)

Gender*

Female 62 (59.0) 55 (43.0) 39 (38.6)

Male 43 (41.0) 73 (57.0) 62 (61.4)

Age*

Range (mean) 19–81 (58) 31–85 (63) 28–79 (57)

BMI

Range (mean) 18–69 (30) 19–48 (30) 19–67 (30)

Not available 5 7 29

Smoking

Current 13 (12.8) 11 (8.8) 10 (12.5)

Former 24 (23.5) 49 (39.2) 24 (30.0)

Never 65 (63.7) 65 (52.0) 46 (57.5)

Not available 3 3 21

NSAID use

Yes 44 (43.1) 70 (56.0) 31 (40.3)

No 58 (56.9) 55 (44.0) 46 (59.7)

Not available 3 3 24

Array*

HM450 48 (45.7) 31 (24.2) 41 (40.6)

EPIC 57 (54.3) 97 (75.8) 60 (59.4)

NSAID nonsteroidal anti-inflammatory drug
*p value < 0.05. Chi-square test for category variables, ANOVA F test for
numerical variables
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age at the time of tissue collection. The deviation be-
tween epigenetic age and chronological age, also known
as epigenetic age acceleration, was calculated for every
sample based on the residuals of regressing the epigen-
etic ages on the chronological ages of all the samples, as
described by McEwen et al. [39].

Statistical methods
The correlation between epigenetic ages and chrono-
logical ages of the samples was calculated with the Pear-
son correlation coefficient. To investigate the change of
this association between the different CRC risk groups, a
linear regression model with interaction effect was
adopted by considering the chronological age as a linear
predictor and the risk status as a categorical predictor.
To test the association of epigenetic clock with cancer
risk, a multivariate linear regression was applied with the
epigenetic age acceleration as the dependent variable
and the cancer risk as the independent variable with ad-
justment for other covariates, such as gender and cell-
type fractions. When considering other clinical variables
that might be able to affect DNA methylation or aging,
such as the BMI, smoking, and NSAID use (Table 1), a
subset of 293 samples that had no missing data of these
variables were analyzed. The Fligner-Killeen test was
used to test the homogeneity of variances between dif-
ferent CRC risk groups.

Epigenome-wide association study of CRC risk
We implemented the Surrogate Variable Analysis (sva)
[40] on the DNAm data (M values) by setting a null
model matrix (mod0 ~ age + gender) and a full model
matrix (mod ~ risk + age + gender) to estimate the
surrogate variables (SVs) that represented other latent
confounding factors. Then, an epigenome-wide associ-
ation study (EWAS) was performed to identify DNAm
changes between different CRC risk groups using a
multivariate linear regression model, where DNAm level
of a CpG was the outcome, CRC risk status was the in-
dependent variable of interest, and age, gender, and SVs
were the adjustment variables. The output included

effect size (i.e., M value mean difference) and p value for
each CpG. The false discovery rate (FDR)-adjusted p
values were calculated for the multiple testing adjust-
ment. FDR < 0.01 was used to determine the differen-
tially methylated CpGs between different risk groups.
One-way Fisher’s exact test was performed on a two-by-
two contingency table, which contained the numbers of
differentially methylated CpGs (from the EWAS ana-
lysis) in a clock and in a whole array as well as the num-
bers of total CpGs in the corresponding clock and array
to test if the clock was enriched with more differential
CpGs. Gene Ontology (GO) functional annotation for
the genes close to the differentially methylated clock
CpGs was analyzed using the online Database for Anno-
tation, Visualization and Integrated Discovery (DAVID)
v6.8 [41].

Results
Assessment of epigenetic clocks in normal colon mucosa
To study epigenetic aging in the normal colon and its
correlation with the risk for developing colorectal can-
cer, we conducted a genome-wide DNA methylation
study on normal colon mucosa samples collected from
patients assigned to the low, medium, and high CRC risk
groups (N = 105, 128, and 101, respectively, see Table 1
for subject information). We calculated the Pearson cor-
relation coefficient between the epigenetic age and
chronological age for subjects in each risk group and for
the combined set of samples. We found that the Horvath
clock had the strongest and most significant correlation
with the chronological age in all of the groups (r > 0.8, p
< 1 × 10−30), while the Hannum, PhenoAge, and Epi-
TOC clocks showed weaker correlations with chrono-
logical age, particularly in the high-risk group (Fig. 1).
The linear regression with interaction effect did not re-
veal significant changes in the association of epigenetic
age with chronological age between the risk groups (p >
0.05 in all tests). Our observations demonstrate that the
Horvath clock is the most accurate clock for predicting
the chronological age in the normal colon and that the
epigenetic ages derived from the Hannum, PhenoAge,

Fig. 1 Correlation of four epigenetic age estimates (Hannum, Horvath, PhenoAge, and EpiTOC) in the normal colon with the chronological age of
the individuals providing the normal colon samples. Different colors represent different groups based on the CRC risk status
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and EpiTOC clocks diverge from the chronological age
of the samples.

Association of epigenetic age with colorectal cancer risk
Next, we analyzed the association between the epigenetic
ages of the samples and their CRC risk status to deter-
mine whether the biological tissue age of the colon was
associated with an increased risk of developing CRC. We
initially assessed the epigenetic ages of the samples using
the four different epigenetic clocks and found an older
mean age in the medium-risk group for the Horvath
clock but a younger mean age in the high-risk group for
the Hannum, PhenoAge, and EpiTOC clocks compared
to the low-risk group (Additional file 1: Figure S4). In
addition, the analysis using the Fligner-Killeen test re-
vealed that the Hannum (p = 7.5 × 10−4) and PhenoAge
(p = 0.047) epigenetic ages of the high-risk samples had
a significantly larger amount of variances compared to
the low-risk samples. To adjust for the bias due to indi-
vidual chronological age, we assessed epigenetic aging
using a popular measure named epigenetic age acceler-
ation, which was obtained from the residuals of regressing
epigenetic ages of all the samples onto their chronological
ages [39].
Cell-type heterogeneity may cause somatic DNA

methylation variation between different groups of colon
samples and may be an important confounder affecting
epigenetic clocks in association with CRC risk [18].
Therefore, we estimated the fractions of epithelial cells,
fibroblasts, and total immune cells within each sample
using the EpiDISH algorithm [38]. We found that cell-
type fractions were highly correlated with top PCs of the
DNAm data (Additional file 1: Figure S5A), indicating
cell-type heterogeneity had a considerable influence on
the DNAm results of the samples. The percentage of
fibroblasts was significantly higher (p = 2.6 × 10−11), and
the percentage of total immune cells was significantly
lower (p = 2.8 × 10−9) in the high-risk group compared
to the low-risk group (Additional file 1: Figure S5B). We

also found that the estimated cell-type fractions were
correlated with the Hannum, PhenoAge, and EpiTOC age
estimates but were not correlated with the Horvath age es-
timate (Additional file 1: Figure S5C), perhaps because the
Horvath clock was built on large-scale multi-tissue data
and hence can adjust for the influence of cell-type hetero-
geneity intrinsically, while the other three clocks are more
sensitive to changes in cell-type composition.
By taking the potential confounders into consideration,

we used a multivariate linear regression with the adjustment
for the gender and the estimated cell-type fractions to test
the difference of epigenetic age acceleration between the
CRC risk groups. We observed significant deceleration of
PhenoAge (p = 0.0012) in the high-risk samples compared
to the low-risk samples (Fig. 2). A similar phenomenon was
also observed after additionally adjusting for other relevant
clinical variables, such as BMI, smoking, and NSAID use, in
the regression model using a subset of 293 samples
that had sufficient clinical annotation for these vari-
ables (Additional file 1: Figure S6).
To validate our results and considering the lack of

datasets from genome-wide DNAm analysis of normal
colons from healthy individuals, we generated 2 HM450
datasets by (1) combing the raw IDAT files of our low-
risk normal colon samples (N = 48, UWAS-Low) with
the TCGA-COAD adjacent normal left colon samples
(N = 9, TCGA-High) and (2) combing the raw IDAT
files of our 48 low-risk normal colon samples with nor-
mal left colon samples from patients with CRC from the
Australian Melbourne Collaborative Cohort Study (N =
14, MCCS-High) [42]. We repeated all the analyses using
these datasets and observed epigenetic age deceleration
in the TCGA-High group for the Hannum, PhenoAge,
and EpiTOC clocks and in the MCCS-High group for
the Hannum and EpiTOC clocks (Additional file 1:
Figure S7, p < 0.05).
We wish to note that it might be also interesting to

estimate the epigenetic age of matched cancer tissues
from the high-risk group patients; hence, we assessed

Fig. 2 Distribution of epigenetic age acceleration in the three CRC risk groups. The y-axis shows the epigenetic age acceleration after adjusting
for gender and cell-type fractions (i.e., residual of regressing the epigenetic age acceleration on gender and cell-type fractions). Standardized
effect size (i.e., Cohen’s d) and p value for the significant association (p value < 0.01) is shown above the corresponding line

Wang et al. Clinical Epigenetics            (2020) 12:5 Page 5 of 9



the CRC samples from a subset of the people with can-
cer (N = 13). We combined all the normal colon and
CRC samples together and assigned them into four
groups (low, medium, high, and CRC). We determined
the epigenetic age in these samples and found that the
Horvath clock was significantly decelerated while the
PhenoAge and EpiTOC clocks were significantly acceler-
ated in the CRC samples (Additional file 1: Figure S8).

DNA methylation changes in association with CRC risk
and impact on epigenetic clocks
In light of our observation of deceleration of the epigen-
etic clocks in the high-risk normal colon samples, we
next assessed for epigenome-wide methylation changes
in association with CRC risk status of the samples in
order to determine if the risk-associated methylation
changes in the normal colon were skewing the perform-
ance of the epigenetic clocks. We performed an EWAS
analysis on the methylation data of all 334 samples to
identify genome-wide DNA methylation changes that
were associated with cancer risk by applying a multivari-
ate linear regression to each CpG. Using a significance
threshold of FDR < 0.01, we identified 14,947 differen-
tially methylated CpGs in the high-risk group compared
to the low-risk group (see Manhattan, QQ, and histo-
gram plots of EWAS p values in Additional file 1: Figure
S9A). We noticed that 5 of the Hannum clock CpGs, 18
of the Horvath clock CpGs, 20 of the PhenoAge clock
CpGs, and 20 of the EpiTOC clock CpGs were differen-
tially methylated in the high-risk group vs. the low-risk
group (see volcano plots in Additional file 1: Figure
S9B). None of the four clocks was significantly enriched
with differentially methylated CpGs (Fisher’s exact test p
value > 0.01). Gene Ontology (GO) functional annota-
tion for the genes close to these differentially methylated
clock CpGs indicated that they were significantly rele-
vant to the biological process of “cardiac cell fate deter-
mination” (p value < 0.01). We further investigated the
relationship between the methylation mean differences
of the clock CpGs in the high-risk group derived from
the EWAS and their coefficients (or weights) in the
weighted sum-based epigenetic clock models (i.e., y =
βX). We wish to note the EpiTOC clock is an average
methylation model, where each clock CpG has the same
coefficient that is 1/385. We multiplied the coefficient of
each clock CpG by its EWAS mean difference to quan-
tify its overall mean difference in terms of the epigenetic
clock (see the scatter plots in Additional file 1: Figure
S9C). Although some CpGs in the PhenoAge clock
were significantly hypermethylated in the high-risk
group, their negative clock coefficients made them
contribute to the observed age deceleration. In con-
trast, the EpiTOC clock was directly affected by
methylation changes of the clock CpGs.

Discussion
Aging is associated with a variety of diseases, including
cancer. The risk for cancer and other age-related diseases
varies dramatically between individuals. Furthermore, it
appears that some people age prematurely at a biological
level and are consequently at increased risk for age-related
diseases, such as heart disease and dementia [43–45].
Thus, there is an intense interest in identifying accurate
markers for the biological aging process. Recently, the epi-
genetic clock and epigenetic/biological aging have been
shown to predict a variety of age-related physiologic de-
cline processes and age-related diseases, and individuals
with these diseases often have an acceleration of their
epigenetic clocks [18]. In this study, we have assessed the
association between epigenetic age and risk for developing
colorectal cancer using a variety of established epigenetic
clocks, the Hannum [21], Horvath [22], PhenoAge [23],
and EpiTOC [24] clocks. We found that the individuals
with the highest risk for CRC had a significant deceler-
ation of PhenoAge in their normal colons compared to
the normal colons of low-risk individuals. We also found
that the Horvath clock is the most accurate clock for esti-
mating the chronological age of normal colon samples.
Colorectal cancer is primarily a disease of the elderly and

is believed to arise in large part secondary to age-related
changes in the colon. A variety of age-mediated cellular
and molecular mechanisms have been proposed to induce
a tendency for tissues to transform into cancer. These
mechanisms include cellular senescence, the accumulation
of mutations in stem cells, long-term exposure to oxidative
exposures, and increased mutation rates [46–49], among
others. More recently, the accumulation of epigenetic alter-
ations in aged tissues has been proposed as a cancer-
causing molecular mechanism in the colon. One example is
the age-related DNA methylation affects genes in the key
Wnt signaling pathway in the normal colon crypts [13, 14].
Although speculative, our results raise the possibility that
deregulation of the epigenetic clocks as reflected in the de-
celerated aging we observe in the normal colon of people
with CRC, rather than strict acceleration, may be occurring
in the colon of people at risk for developing CRC. Similarly,
prior studies have shown epigenetic age deceleration in the
subsets of breast cancers and colorectal cancers [22, 26, 50].
These observations suggest that the process of carcinogen-
esis may involve disruption, rather than only acceleration,
of epigenomic maintenance systems that can result in de-
celeration of epigenetic clocks in cancers and cancer-prone
tissues. Our results are consistent with this possibility. Re-
cently, Marwitz et al. observed epigenetic age deceleration
in squamous cell carcinoma of the lungs and that stem cell-
related gene expression was increased in these cancers [51].
This raises the possibility that epigenetic age deceleration in
the high-risk normal colons may reflect expansions of the
stem cell pool, which could increase CRC risk. Other
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possible explanations for our findings include that the epi-
genetic clocks are not trained specifically in colon tissue
and do not accurately measure epigenetic aging in the
colon or that the epigenetic aging process is altered in
colon cancerization in a way that invalidates the current
epigenetic clocks in use.
Our observations indicate that different epigenetic clocks

may essentially assess different aspects of aging. The Hor-
vath clock has strong correlation with the chronological age
but no association with the CRC risk; it appears to result
from an intrinsic aging process that is not affected substan-
tially by cell type/composition, cell proliferation, or environ-
mental factors; while the Hannum, PhenoAge, and EpiTOC
clocks exhibit differences between the CRC risk groups,
they may better measure not only the internal clock mech-
anism of cell division but also exposure to phenotypic epi-
mutagens during cancer progression. We wish to note that
while our manuscript was under review, Lu et al. have pub-
lished an epigenetic predictor of lifespan and mortality,
named DNAm GrimAge, in 2019 [52]. We have assessed
this estimator using our normal colon dataset and observed
that the GrimAge is significantly correlated with individual
chronological age and that GrimAge and GrimAge acceler-
ation are not associated with CRC risk (Additional file 1:
Figure S10). Based on our findings, we suggest that the rele-
vant epigenetic clock to study the processes related to CRC
formation is not clear at this time.
It is noteworthy that our study has certain limitations

that may have affected our results. Among the various ex-
trinsic and intrinsic risk factors, the unique tissue environ-
ment of the colon, which includes intimate interactions
with the gut microbiome and diet digestion products, may
result in organ-specific effects on cancer risk and affect
the epigenetic clocks in a tissue-specific way. If this is true,
there may be a need to develop a colon-specific clock. In
addition, it is likely that there is heterogeneity in the fac-
tors affecting CRC risk among the subjects in each risk
group, which may limit our ability to detect a difference
based on our sample size. We also wish to note that in
our study, we combine 214 EPIC array samples and 120
HM450 array samples (Additional file 1: Figure S2). To
determine if the use of the 2 different methylation array
platforms may have adversely affected our results due to
missing clock CpGs on the EPIC array (Additional file 1:
Figure S3), we performed a sensitivity analysis on our
HM450 array data by selecting the common clock CpGs
on both arrays to recalculate the 4 epigenetic ages and ac-
celerations for the HM450 samples. Consistent with McE-
wen et al. [39], the missing CpGs did not significantly
affect the accuracy of the epigenetic age determination in
our samples. We observed nearly identical associations of
the epigenetic ages with chronological age as well as with
cancer risk (Additional file 1: Figure S11) to those of using
all available CpGs on the HM450 array (Additional file 1:

Figure S12). Furthermore, when we separately analyzed
the data of the 2 arrays, we obtained comparable results
(Additional file 1: Figures S12–S13). We used an inverse
variance-based meta-analysis [37] to combine the testing
effect sizes and p values from the 2 datasets and obtained
similar results (p = 0.006 and 0.010 for the PhenoAge and
EpiTOC clocks, respectively) to those from the combined
dataset. Therefore, we have demonstrated the feasibility
and rationality of combining the HM450 and EPIC data
and using the common clock CpGs to estimate the epi-
genetic ages of the samples and study their associations
with individual chronological age and CRC risk. We also
wish to note that although we have replicated the observa-
tion of epigenetic age deceleration in high-risk normal
colons in 2 validation datasets, the 2 datasets are not com-
pletely independent of our own dataset and that the re-
sults could be subject to the confounding effect of the
cohort/batch.

Conclusions
We have investigated four established epigenetic clocks and
their associations with the risk of developing CRC. Our
results indicate that (1) the Horvath clock is the most
accurate for estimating the chronological age of individuals,
(2) individuals at medium CRC risk have no evidence of
biological tissue age acceleration or deregulation, and (3)
individuals at high CRC risk have deceleration of PhenoAge
in their normal colons. Our results suggest the epigenetic
aging process is deregulated in the normal colon of people
at high risk for CRC, but the mechanisms driving the de-
regulation remain to be defined.
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