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The Zika virus is a flavivirus that can cause fulminant outbreaks and lead to Guillain-Barré syndrome,
microcephaly and fetal demise. Like other flaviviruses, the Zika virus is transmitted by mosquitoes and
provokes neurological disorders. Despite its risk to public health, no antiviral nor vaccine are currently
available. In the recent years, several studies have set to identify human host proteins interacting with
Zika viral proteins to better understand its pathogenicity. Yet these studies used standard human protein
sequence databases. Such databases rely on genome annotations, which enforce a minimal open reading
frame (ORF) length criterion. An ever-increasing number of studies have demonstrated the shortcomings
of such annotation, which overlooks thousands of functional ORFs. Here we show that the use of a cus-
tomized database including currently non-annotated proteins led to the identification of 4 alternative
proteins as interactors of the viral capsid and NS4A proteins. Furthermore, 12 alternative proteins were
identified in the proteome profiling of Zika infected monocytes, one of which was significantly up-
regulated. This study presents a computational framework for the re-analysis of proteomics datasets to
better investigate the viral-host protein interplays upon infection with the Zika virus.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Flaviviruses are the most common cause of arthropod-borne
human diseases, such as dengue and yellow fevers, Japanese
encephalitis, West Nile and Zika virus infections [1]. Among these,
the Zika virus (ZIKV) has known a surge of interest from the scien-
tific community following recent outbreaks [2,3]. The first known
outbreak took place on Yap Island in 2007, where 73% of the resi-
dents were infected and developed mild and short-lived symptoms
[4]. The first association with more severe symptoms, such as
Guillain-Barré syndrome, a neuro-inflammation of the peripheral
nervous system, was discovered in the 2013–2014 outbreak in
French Polynesia [5]. In late 2014, the virus spread through Brazil
with a concomitant rise in Guillain-Barré syndrome and micro-
cephaly in newborns [6]. Following these symptoms, the World
Health Organization declared the Zika virus infection a Public
Health Emergency of International Concern in 2016 [2].

ZIKV is an enveloped, positive-strand RNA virus. The primary
source of infection is by mosquito bite, sexual and perinatal trans-
mission [2]. ZIKV is blood-borne and can be detected 10 to 24 days
post-infection in blood, and up to 60 days in semen [2]. However,
the cellular and molecular intricacies of ZIKV pathogenesis, espe-
cially how the virus rewires the cellular pathways in favor of its
replication, are not completely understood. Recently, several
groups have used transcriptomics and proteomics methods to
identify up- or down-regulated proteins during Zika virus infec-
tion, and to decipher its interaction with host proteins [3,7–12].
These studies are pivotal as they identify regulated pathways and
protein–protein interactions between the host cell and the virus.
However, and as reviewed in [3], such datasets are complex and
findings are for the most part not reproduced across studies. First,
comparisons across networks of viral-host protein interactions
revealed a poor overlap [3]. These discrepancies certainly reflect
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experimental specificities such as the viral strain, the cellular
background, the gene-delivery method and the experimental
design. However, an often-overlooked source of variabilities is
the analytical method used, both for the analysis and for the com-
parison. Furthermore, comparisons of RNA-seq and proteomics-
based data in Zika-infected cells also revealed large differences.
These indicate that the protein abundances cannot be confidently
inferred from mRNA expression levels [13]. Although this is also
true for physiological states, it is particularly relevant during infec-
tions as viruses modulate gene expression in part by altering
mRNA processing, transport and translation rate [14–16].

Interestingly, viral infection changes the translational landscape
of the host cell [15,16]. These translational changes can lead to the
production of novel unannotated proteins. For example, in cells
infected with the human cytomegalovirus (HCMV) several small
open reading frames (sORFs) from the b2.7 allegedly non-coding
RNA (ncRNA) were translated [17]. Sera samples from HCMV-
positive blood donors revealed a strong response to these sORFs-
encoded peptides, suggesting expression of these proteins and pre-
sentation on MHC molecules as functional antigens [18]. Addition-
ally, a genetic screen study identified a novel protein, CYREN,
encoded in a previously annotated ncRNA, among peptides impor-
tant for resistance to retroviral infection [19]. More recently, a
large-scale study identified 19 novel proteins, encoded by non-
annotated ORFs in the human genome, as differentially regulated
upon infection with flu lysates [20]. These findings highlight how
current genome annotations shape the investigations of viral-
host protein interplays.

The shortcomings of current annotations have been increas-
ingly demonstrated throughout the last decade [21–23]. In order
to minimize the identification of random non-functional ORFs,
genome annotations enforce two arbitrary criteria : a minimal
length of 100 codons and a single ORF per transcript, except for
previously characterized examples [21]. However, these criteria
are not supported by experimental evidence and led to an over-
sight of small and alternative ORFs [24–26]. Alternative ORFs are
found in regions currently annotated as non-coding (ncRNAs, 50

and 30 UTRs of mRNAs) or overlapping an annotated ORF in a differ-
ent reading frame [21,27]. To foster a more systematic exploration
of alternative ORFs, several repositories have been published [28–
30]. Such resources are pivotal for a deeper exploration of cellular
events [21,26,31]. For example, in mass spectrometry (MS)-based
proteomics, mass spectra must be matched to theoretical spectra
generated from a database of possible proteins during the analysis.
Thus, if a protein is absent from the database, it cannot be identi-
fied [21]. Differences in the database used for the analysis of MS
data to elucidate the viral-host protein interactions can also be a
source of discrepancies across studies. More importantly, it could
prevent the identification of key interactors that are currently
not annotated [17,19,20,32].

In this study, we propose a computational framework to inves-
tigate the importance of non-annotated proteins in the Zika infec-
tion through the re-analysis of published MS and RNA-seq
datasets. We first address the comparison between such complex
datasets and validate our MS analysis pipeline to identify highly
confident interacting proteins (HCIPs). We then take advantage of
published RNA-seq data to build a custom database using anno-
tated proteins (UniProtKB, Ensembl and NCBI RefSeq) [33–35]
and alternative proteins (OpenProt) [30]. Using this custom data-
base, we queried an affinity-purification MS (AP-MS) dataset and
a proteome profiling dataset for novel proteins important in the
Zika virus pathogenicity. This computational framework demon-
strates the importance of transcriptomic-informed proteomic anal-
yses to identify changes in transcriptomic, translational and
proteomic landscapes upon ZIKV infection.
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2. Materials & Methods

2.1. Mass spectrometry-based proteomics

2.1.1. Datasets and databases
Affinity-purification mass spectrometry (AP-MS) data origi-

nated from a study by Shah and colleagues [8], and was retrieved
from the Chorus repository (accession Project ID 1438). This data-
set was generated using HEK293 cells infected with 2 strains of
Zika virus (ZIKV French Polynesia 2013H/FP/2013 and ZIKV Uganda
1947 MR766). The experimental procedures have been described
in the original study [8]. Briefly, Zika virus ORFs were tagged with
a C-terminal 2xStrep II affinity tag and inserted into a pCDNA4_TO
plasmid for expression in HEK293 cells. The authors used Strep-
tactin beads to purify viral proteins and their interactors 40 h
post-infection. The samples were digested with trypsin overnight
before analysis on a Q-Exactive Plus Orbitrap (ThermoFisher) mass
spectrometer.

Whole proteome label-free quantification data originated from
a study by Ayala-Nunez and colleagues [9], and was retrieved from
the PRIDE repository (accession PXD014002). This dataset was
generated using human monocytes purified from 2 healthy blood
donors. The experimental procedures have been described in the
original study [9]. Briefly, cells were either infected with the Zika
virus or not infected and quantitative proteomic profiling was per-
formed 48 h after infection using a Q-Exactive Plus Orbitrap (Ther-
moFisher) mass spectrometer.

For annotated proteins, sequences were retrieved from the Uni-
ProtKB resource (Homo sapiens SwissProt, 2020–03). This fasta file
contained 20,352 proteins. Protein sequences from the Zika virus
were appended as described in [8]. The custom database was built
using RNA-seq data to filter the whole OpenProt database (version
1.5: a non-redundant list of proteins from the full UniProtKB (03–
2019), Ensembl (Jan 2019) and NCBI RefSeq (Jan 2019) databases as
well as novel predicted proteins). Thus, our custom database con-
tained 98,508 protein sequences. These included 13,048 proteins
from the full UniProtKB database, 83 proteins from Ensembl 95
and 311 proteins from NCBI RefSeq not contained in the UniProtKB
database, 4,469 novel isoforms from the OpenProt database (ver-
sion 1.5, 2020–06), 80,573 alternative proteins from the OpenProt
database, and 19 protein sequences derived from the RNA-seq data
(see Section 2.3.2).
2.1.2. Mass spectrometry analysis pipeline
Raw AP-MS files were first converted to mgf files using the

ThermoRawFileParser (version 1.2.0) [36]. The files were analysed
using PeptideShaker software (version 1.16.42) [37] configured to
use three search engines (X!Tandem, MS-GF+ and Comet) via
SearchGUI (version 3.3.17) [38]. The decoy database was generated
using reversed sequences. SearchGUI general parameters were set
as follows: the fragment mass tolerance was set to 20 ppm and the
precursor ion tolerance to 4.5 ppm; the enzyme was set to trypsin
with a maximum of 2 missed cleavages; oxidation of methionine
and acetylation of protein N-terminus were set as variable modifi-
cations, and carbamidomethylation of cysteine was set as fixed
modification; a maximum of 5 modifications were allowed per
peptide, a maximum charge of 7 + and minimal length of 7 amino
acids. False discovery rates (FDR) were set to 1% at the peptide and
protein level. Additionally, a novel protein was deemed confidently
identified only if supported by at least one unique peptide. Thus,
similarly to the OpenProt pipeline, the following peptide assigna-
tion rules were enforced: if a peptide was shared between 2 known
proteins the spectrum was assigned to both and a protein group
was created; if a peptide was shared between 2 novel proteins
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the spectrum was assigned to both, and a protein group was cre-
ated; if the peptide is shared between known and novel proteins,
the spectrum was only be assigned to the previously known pro-
teins. Although biased against novel proteins, this approach
ensured a certain robustness in their identification.

For quantitative proteome profiling, raw files were analysed
with MaxQuant (version 1.6.0.16) [39]. The decoy database was
generated using reversed sequences. The search parameters were
set as follows: the fragment mass tolerance was set to 20 ppm
for the first search and 5 ppm for the main search; MS/MS toler-
ance was set to 40 ppm; the enzyme was set to trypsin with a max-
imum of 1 missed cleavages; oxidation of methionine was set as
variable modification, and carbamidomethylation of cysteine as
fixed modification; label-free quantification (LFQ) was imple-
mented using a minimal ratio count of 1 [40]; and the match
between runs was enabled with a 2-min time window after
retention-time alignment. The protein FDR was set to 1%, with
the same peptide assignation rules as the AP-MS data analysis.

2.2. Protein interaction and quantification analyses

2.2.1. Protein interaction scoring with MiST and CompPASS
Protein-protein interaction candidates from the AP-MS analysis

were scored using both MiST [41] and CompPASS [42] scoring algo-
rithms. First, to control for data quality and reproducibility across
replicates, peptide and protein counts per sample, as well as bait
spectral counts were used to screen unreliable samples. At least
three replicates for each bait were kept.

For MiST scoring, peptide spectrum match (PSM) counts were
used as quantifying feature. The recommended weights relating
to reproducibility (R), bait specificity (S) and abundance (A) of
the interaction were used: R = 0.309, S = 0.686 and A = 0.006
[41,43]. Only proteins with a MiST score above 0.75 were consid-
ered when using MiST alone to score highly confident interacting
proteins (HCIPs). For CompPASS scoring, PSM counts were also
used as quantifying feature. When using CompPASS alone to score
HCIPs, proteins with a weighted D-score in the top 5% were consid-
ered. To evaluate the performance of each HCIP scoring protocol,
the proteins identified in the original study were used as target
true positives [8]. Thus, the precision was calculated as:

Truepositive
TruepositiveþFalsepositive . The recall was calculated as: Truepositive

TruepositiveþFalsenegative

. The F1 score was calculated as: 2� Precision�Recall
PrecisionþRecall . The precision,

recall and F1 score calculated for each approach is shown in Sup-
plementary Fig. 1.

2.2.2. Naive Bayes classification
To further optimize prey hits filtration (optimize the F1 score)

and to capitalize on the optimization work from the original study
[8], a Naive Bayes model was trained. Such classifiers have previ-
ously been published to identify HCIP in large datasets [44]. The
model was trained to distinguish HCIP from background proteins
using interactions from the original study and another AP-MS
experiment with ZIKV viral proteins in HEK293 cells [11] as posi-
tive labels. MiST score and the CompPASS Z-score were used as fea-
tures. We used the CompPASS Z-score as it complemented the
MiST score whereas the weighted D-score correlated with it. To
avoid over-fitting, the set of candidate interactions was randomly
divided into 10 sets and each was scored with a classifier trained
on data from the other nine sets in a 10-fold cross-validation man-
ner. Thus, 10 models were trained, each blinded to the set of inter-
actions it was aimed to evaluate. The model assigned a score
reflecting the likelihood of a specific interaction for each bait-
prey pair. The precision, recall and F1 score were calculated as
described above using interactions from the original study as labels
for positive HCIPs. The threshold for the Naïve Bayes was selected
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by observing the behavior of the three metrics across a range of
thresholds. The threshold that optimized F1 score while prioritiz-
ing recall over precision (Supplementary Fig. 1). The inherent lack
of true negative examples in protein interaction datasets requires
prioritizing recall over precision when selecting the classifier
threshold. It is generally expected that the rate of false positives
be over estimated due to this bias. Thus, a threshold of 0.45 was
chosen for the analysis with the UniProt database, and 0.42 for
the analysis with the custom database (Supplementary Fig. 2).

2.2.3. Protein quantification and differential expression analysis
LFQ intensities were reported by MaxQuant and used for quan-

tification and differential expression analysis. To be included in the
analysis, proteins needed be identified in all replicates (4 repli-
cates) in at least one condition (4 conditions: 2 non-infected and
2 Zika-infected). For known proteins, a requirement for a minimum
of two unique peptides was also enforced. For novel proteins, con-
sidering their smaller size (Fig. 3) and the bias inherent to the pep-
tide assignation rules (see Section 2.1.2), a minimum of one unique
peptide was used. Missing values were imputed using the ProStaR
software (version 1.18.6) [45] as done in the original study. Briefly,
the imputation was done differentially based on the nature of the
missing values. We used a structured least square adaptative
regression (SLSA mode) for partially observed values (POV), while
a deterministic value (DetQuantile method – 1% quantile, multiply-
ing factor of 1) was applied for values missing in the entire condi-
tion (MEC). The DetQuantile method was chosen for MEC as these
values corresponded to proteins below the limit of detection in one
condition, thus they could not be imputed based on values
observed in other conditions [45]. No data distortion could be
observed after imputation of missing values (Supplementary
Fig. 6). Differential expression analysis was performed using a
Limma-moderated t-test with a Benjamini-Hochberg correction
for multiple comparisons. The FDR was set to 1% for downstream
analyses.

2.3. Transcriptomics analysis

2.3.1. RNA-seq dataset
The RNA-seq data originates from a study by Tang and col-

leagues [10], and was retrieved from the NCBI Gene Expression
Omnibus (GEO) repository (accession GSE78711). This dataset
was generated using human cortical neural progenitor cells
(hNPCs) that were either non-infected or infected with Zika virus
(ZIKV Uganda 1947 MR766 strain) at low multiplicity of infection
(MOI) (<0.1). The experimental procedures have been detailed in
the original publication [10]. Cells were collected 56 h after infec-
tion. The dataset includes 2 replicates for each condition, and each
was paired-end sequenced.

2.3.2. RNA-seq data analysis
We used the FastQC toolkit (version 0.11.8) with default param-

eters to filter low quality reads. The reads were trimmed using
TrimGalore (version 0.6.4) set for paired reads with the default
parameters except for the maximal number of N set to 5, and
end clips set to 3. The reads were subsequently mapped to the
human genome (GRCh38, GENCODE v32, primary assembly) using
the STAR software (version 2.7.3a) [46] with the default parame-
ters except for the maximal number of mismatch set to 5, the max-
imal number of multi-mapping locations set to 10 and SAM
primary flag set to all best scores. The outputs were ordered by
genomic coordinates. Cufflinks (version 2.2.1) [47] was used for
transcript assembly and evaluation of the transcript expression
level (FPKM - fragments per kilobase of exon model per million
reads mapped). For inclusion in the custom database, transcripts
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must be identified in both replicates of the Zika-infected condition
and have a FPKM above 2.8 (see Fig. 3).

2.4. Novel protein predictions

2.4.1. OpenProt resource mining
Novel proteins were retrieved from the OpenProt resource [30].

We used version 1.5 of the OpenProt database for Homo sapiens
(06–2020). These predictions were based on the GRCh38.p12 gen-
ome assembly and contain all ORFs, currently not present in anno-
tations, longer than 30 codons and starting with an ATG.
Subsequently, the corresponding proteins were classified as novel
isoforms or alternative proteins based on their homology (or lack
thereof) with the canonical protein from the same gene. The Fasta
files containing alternative proteins and novel isoforms were
downloaded using the downloads interface (www.openprot.org).
For downstream analyses, the search interface was used to gather
previous experimental evidence, conservation and prediction of
functional domains for novel proteins.

2.4.2. ORF prediction on novel transcripts
For novel transcripts predicted by Cufflinks and with enough

supporting evidence (detected in both replicates with a FPKM
above 1.499), ORFs were predicted by in silico translation using
the same criteria as those implemented by OpenProt: a minimal
length of 30 codons and an ATG start. Each transcript was assigned
an accession number (tx0000) preceded by the string ‘‘CUFF_zika”
and each ORF from a given transcript was assigned a unique num-
ber. Each ORF was then searched within the OpenProt database. If
the exact same ORF exists in the OpenProt database from another
transcript from the same gene, the encoded protein was given the
accession listed by OpenProt. When the ORF was not present in the
OpenProt database (novel ORF), the resulting protein accession
corresponded to the transcript accession concatenated to the ORF
number to provide a unique identifier for each predicted ORF.

2.5. Network analyses

2.5.1. Network similarity measures
Similarity of networks can be measured at two levels: similarity

of identified interacting proteins, and similarity of protein com-
plexes identified. For the overlap of identified interacting proteins,
the list of HCIPs for each network is compared using the Jaccard
similarity index [48] which considers the ratio of size of the inter-
section of both sets to the size of the union. The significance of this
overlap is then evaluated with a Fisher’s exact test. A p-value
below 0.05 was considered significant. To evaluate the similarities
between protein–protein interaction networks from different anal-
yses, we measured network characteristics: degree, local clustering
coefficient, and shortest path length distributions. In a protein–
protein interaction network, the nodes correspond to proteins
and edges represent interactions. The degree of a node is defined
as its number of connections. The local clustering coefficient
relates to the interconnectivity of the neighborhood of a node with
higher values indicating denser connectivity. The shortest path
length is defined as the minimal number of edges required to con-
nect two nodes on the network. These metrics were calculated for
each protein (degree and clustering coefficient) or pair of proteins
(shortest path).

2.5.2. Biological processes enrichment
Enrichment of biological processes was measured using the

GOATOOLS Python package (version 1.0.2) [49], corresponding to
the GO-term annotation version 1.2. The GOATOOLS package was
run with the following parameters: alpha = 0.05, and count propa-
gation to the parental terms set to true. The enrichment was calcu-
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lated against the human proteome for each bait with a Benjamini-
Hochberg correction to adjust for multiple comparisons. The FDR
was set to 5%.

2.5.3. Edge mapping from STRING database
Known interactions between proteins within the network were

retrieved from the STRING database (version 11.0). Only interac-
tions with a combined score of 0.75 (considered highly confident)
were retrieved.

2.5.4. CORUM complexes overlap
The similarity of networks from different analyses was also con-

sidered via the retrieval of CORUM complexes. Briefly, three sets of
complexes with at least one protein identified in the original study
[8], our analysis, or both, were retrieved from the CORUM database
(version 3.0). The number of subunits identified was then calcu-
lated for each identified complex.

2.5.5. Code and data availability
The AP-MS data was retrieved from the Chorus repository

(www.chorusproject.org, Project ID 1438). The quantitative pro-
teome profiling was retrieved from the PRIDE repository (https://
www.ebi.ac.uk/pride/archive/, PXD014002). The RNA-seq data
was retrieved from the GEO database (https://www.ncbi.nlm.nih.-
gov/geo/, GSE78711). The human genome assembly was retrieved
from the Gencode server (https://www.gencodegenes.org/, v32
primary assembly). Alternative protein and novel isoform
sequences were retrieved from the OpenProt resource (https://
openprot.org/, version 1.5 06–2020). All scripts were written with
Python 3.7 and Networkx 2.4, and are available in GitHub (https://
github.com/MAB-Lab/Zika_Project).
3. Results

3.1. Assessing reproducibility from AP-MS data re-analysis

The most-used technique to build a network of protein interac-
tions is the AP-MS technique [50,51]. ‘‘Bait” proteins are expressed
with a tag which allows purification and subsequent identification
of interacting proteins (‘‘preys”) by MS [3]. Here, we retrieved a
publicly available AP-MS dataset of Zika viral proteins in human
cells [8]. As in the original study, we used the SwissProt database
concatenated with sequences of the Zika proteins as a reference
protein database. However, our analytical pipeline used a different
strategy for the protein identification and interaction scoring
strategies (Fig. 1A). For the protein identification step, we used
the SearchGUI and PetideShaker softwares to take advantage of
multiple search engines [52]. We identified 2,490 unique potential
interactors, from which 1,762 (70.8%) were also identified in the
original study (Suppl. Fig. 1). Out of the 277 proteins found in
the original study but not in our analysis, 4 were not present in
the SwissProt database we used (03–2020) and 196 were found
within protein groups but were not selected as they were not sup-
ported by unique peptides in our hands (Suppl. Fig. 1). These num-
bers demonstrate the importance of databases and protein group
handling in AP-MS analyses.

To identify highly confident interacting proteins (HCIPs) from
background interactions, we tested 4 filtering protocols: the MiST
algorithm alone [51], the CompPASS algorithm alone [42], the
intersection of MiST and CompPASS calls, and the use of a Naive
Bayes classifier building on MiST and CompPASS scores. Using
MiST alone did not produce enough filtering of our dataset
(1,501 HCIPs called, corresponding to the top 12.1% of interactions
kept), where CompPASS alone sufficiently filtered but yielded a
poor recall (28%) and F1 score (25%) (Suppl. Fig. 1). The intersection
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Fig. 1. Evaluating reproducibility across AP-MS data analysis A. Graphical representation of the pipeline used for affinity-purification mass spectrometry (AP-MS) data
analysis. AP-MS data is interrogated using a combined database of human protein sequences (yellow) and Zika viral protein sequences (green). The pipeline contains a step of
protein identification (blue) using SearchGUI and PeptideShaker, followed by interaction scoring (red) using MiST, CompPASS and a Naïve Bayes classification algorithm, to
produce a list of highly confident interacting proteins (HCIPs). B. Overlap of proteins identified in this study (current analysis) with that of the original study from Shah and
colleagues [8]. Significance of the overlap was evaluated using a Fisher’s exact test. C. Gene ontology (GO) enrichment of interacting proteins (preys) for each viral proteins
(baits – top). The heatmap displays all significant enrichments (FDR < 1%, Benjamini-Hochberg correction). The GO terms highlighted in bold and a star correspond to GO
terms also identified in the original study. D. Network characteristics between the current analysis and that of the original study. Networks are represented with bait proteins
in red (Zika proteins) and interacting proteins in green for the original study and in blue for the current analysis. The plots from left to right correspond to the node degree
distribution, the distribution of local clustering coefficients and the distribution of shortest pair length. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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of both scoring methods improved the F1 score (31%) but still
yielded a poor recall with a stringent filter (274 HCIPs called, cor-
responding to the top 2.2% of interactions kept). The Naïve Bayes
built on the strength of both MiST and CompPASS reaching the
2840
highest F1 score (40%) with a reasonable recall (57%) and calling
a total of 665 HCIPs for a threshold of 0.45 (Suppl. Fig. 1).

Out of these 665 HCIPs, 199 were also identified in the original
study [8] (Suppl. Table 1). Thus, our pipeline was able to identify



S. Leblanc and M.A. Brunet Computational and Structural Biotechnology Journal 18 (2020) 2836–2850
56.7% of the protein–protein interactions identified in the original
study (Fig. 1B). Although this overlap might not seem large, it is
highly significant (Fisher’s exact test, p-value < 10-180). As men-
tioned in the introduction, discrepancies between AP-MS datasets
have been reported previously [3]. We show here that such dis-
crepancies can originate from the computational analysis of the
raw data. That is in part because AP-MS techniques pull on protein
complexes, which often share peptides across subunits or elements
of a complex. The method by which the search algorithm and
downstream analyses handle the protein groups skews the identi-
fication towards particular subunits or members of a protein com-
plex. Hence, to verify the validity of our results we calculated the
enrichment of biological processes from our 665 HCIPs (Fig. 1C).
All GO terms identified have been reported previously in associa-
tion with viral infection, and 14 terms were also reported in the
original study. Interestingly, we noticed that both analyses agreed
on the most significant GO terms (11 out of 16 GO terms with a p-
value below 0.00005, Suppl. Table 2). We hypothesized that our
analysis identified the same biological complexes than those in
the original study, but different proteins within these complexes.
To test this hypothesis, we retrieved the network published by
Shah and colleagues and compared it with the network generated
from our analysis (Fig. 1D). Baits are positioned identically to ease
the visual comparison. We observe that the network from the cur-
rent analysis is more interconnected than that of the original study.
Relatively densely interconnected networks are expected when
looking at protein–protein interactions [44,53,54]. As expected of
naturally occurring networks node degree distributions fitted a
power law. The distribution from the original study however
seemed to deviate more, especially towards higher degrees
(Fig. 1D). Local clustering coefficient distribution from the current
analysis indicated a more coherent subnetwork region of the
human whole interactome likely involved in ZIKV activity. Perhaps
because of excessive stringency, the network from the original
publication may have overlooked peripherally located yet impor-
tant proteins in ZIKV’s effect on system shift towards a regime
geared for its replication. Indeed, the original study reports only
the most densely connected regions of the network and likely
missed protein interactors more relevant to rewire connections
between complexes necessary for viral hijacking of cellular pro-
cesses [54]. The sparsity of the network from the original study
is also visible from the bimodal distribution of the shortest path
between all protein pairs. While the network from the current
analysis still shares a significant homology (i.e. relative number
of preys for each baits) with that of the original study (Fig. 1D),
the more continuous distribution in shortest path lengths shows
structure closer to that expected of typically interconnected pro-
tein networks and may provide a more holistic model of ZIKV
infection. Furthermore, protein complexes from the CORUM data-
base with subunits found in the original study and the current
analysis were recovered more reliably in the current study. 132
complexes were found in both analyses (72.7%), with the current
analysis identifying more subunits within these complexes (Suppl.
Fig. 1).

3.2. Zika viral protein interactions reveal viral host-mRNA
translational control

We built a network incorporating our HCIPs and highlighted the
proteins also identified in the original study (for brevity Fig. 2 rep-
resents only proteins with a degree above 1, see Suppl. Fig. 3 for
whole network). For the capsid, NS5 and NS4A viral proteins, both
networks agreed on protein complexes. For some the same pro-
teins have been identified (dashed black edges, Fig. 2, Suppl.
Fig. 3), as it is for the translational termination complex (MRPL9
(Q9BYD2), MRPL20 (Q9BYC9), MRPL23 (Q16540) and MRPL47
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(Q9HD33)) or the spliceosome (AQR (O60306), CWC25 (Q9NXE8),
PRPF38A (Q8NAV1) and SRRM1 (Q8IYB3)). For others different
members of a same complex were identified (solid lines), as it
was for the mitochondrial translational termination complex (in
green on Fig. 2) or the mitochondrial respiratory chain complex
assembly (in pink on Fig. 2). Both networks diverge mostly on pro-
tein identifications for the NS3 and NS2B3 (Fig. 2). In both analyses,
no confident GO term enrichment was found for NS2B3. In the
original study, the NS3 interactome was found enriched for the
GO term ‘‘Spindle formation” driven by a single protein (HSPA2
(P54652)). That protein is also identified in our analysis, however
we filtered out enrichment driven by a single protein. In total,
we identified 14 proteins interacting with NS2B3 and 67 proteins
interacting with NS3 (Suppl. Table 1).

Interestingly, in agreement with the published literature on fla-
viviruses, 35% of GO terms identified in our analysis relate to
mRNA processing, splicing, transport and translational control
(Fig. 2). These associations were mostly linked to the NS5 and cap-
sid viral proteins, as previously reported [7,8,11]. With previous
studies having highlighted pervasive translation and the biological
importance of some alternative proteins upon viral infection
[17,18,20], we hypothesized that Zika viral proteins may also inter-
act with proteins currently missing from protein databases.

3.3. Building a custom database for deeper proteome exploration

One caveat of inclusion of alternative proteins in databases for
proteomics experiments is the consequent increase in the size of
the resulting database. Large databases lead to a decrease in the
specificity and sensitivity of the analysis, resulting in a low number
of confidently identified proteins and a higher rate of false posi-
tives [55,56]. Thus, it is recommended to use adapted pipelines,
such as a stringent 0.001% false discovery rate (FDR), or to limit
the size of the database to a maximum of 100,000 entries
[30,32,57]. Here, we retrieved RNA-seq data to identify transcripts
confidently expressed in Zika-infected cells and build a custom
database tailored to a Zika infection context. Since the Zika virus
leads to alternative splicing of transcripts [58], as supported by
the AP-MS data analysis (in orange on Fig. 2), we used a pipeline
to identify both canonical transcripts and novel splice variants
(Fig. 3A). Most transcripts displayed an expression level below
200 FPKM, with a few highly expressed transcripts (Suppl. Table 3).
The custom database is designed to include any protein (canonical,
alternative protein, novel isoform, and Cuff-Prot – defined in
Table 1) from transcripts detected by RNA-seq above a certain
expression (FPKM) threshold. To select the optimal threshold, we
evaluated the size of the resulting custom database and the pro-
portion of UniProt proteins identified in our previous analysis
(Suppl. Table 1) included in the database (Fig. 3B). We identified
1.5 as the ideal FPKM threshold at which 76% of proteins identified
in our first analysis were included in the resulting database, while
maintaining an overall database size below 100,000 proteins
(Suppl. Data 1).

The resulting custom database contained 98,508 proteins
(Fig. 3C). These included 13,442 canonical proteins, detailed as
13,048 proteins from the full UniProtKB resource [33], 83 proteins
from the Ensembl annotation [34] and 311 from the NCBI RefSeq
annotation [35] not present in the UniProtKB database. The data-
base also contained 80,573 alternative proteins and 4,469 novel
isoforms of canonical proteins from the OpenProt resource [30].
Finally, 19 protein sequences were derived from novel splice tran-
scripts identified in the RNA-seq analysis. Since genome annota-
tions enforce a minimal length criteria of 100 codons, except for
previously characterized examples, this introduced a protein
length bias across the different protein categories (Fig. 3D), as pre-
viously observed [26]. AltProts displayed the lowest median length



Fig. 2. Network of viral-host protein–protein interactions Network of protein interactions for proteins of the Zika virus (indicated as octogonal nodes with thick red borders)
with proteins with a degree higher than 1. The nodes (circle with black borders) correspond to human proteins identified by AP-MS data analysis. Nodes are coloured based on
their associated gene ontology as indicated on the bottom left corner. Edges represent confident interactions between two proteins as follows: solid black lines are
interactions only identified in the current analysis; dashed black lines are interactions shared with the original study (Shah, et al.); and full grey lines are host–host protein
interactions retrieved from the STRING database. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Construction and specifics of the custom database A. Distribution of transcripts identified in the RNA-seq analysis by their estimated level of expression (FPKM).
Annotated transcripts are indicated in black, while novel transcripts are indicated in blue. B. Relation curve between the size of the custom database and the fraction of
UniProt identifications included in the custom database, based on the FPKM threshold from the RNA-seq analysis. The chosen FPKM threshold (1.5) is indicated by a red dot. C.
Composition of the custom database. Proteins are classified as canonical proteins if annotated in UniProt, NCBI RefSeq and/or Ensembl (orange). Proteins are otherwise called
novel isoforms (blue), alternative protein (altProt - green) of CUFF-transcript derived protein (Cuff-Prot - grey). D. Distribution of the protein length for each protein category
defined in panel C. Boxes represent the inter quartile range (IQR) notched at the median and the whiskers are set at 0.5*IQR over and under the 25th and 75th percentiles. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Definition of categories of proteins in the custom database.

Name Full name Description Source

Canonical Canonical protein Protein annotated in current annotations UniProtKB, Ensembl and/or NCBI RefSeq
AltProt Alternative protein Protein currently not annotated with no significant

homology with the canonical protein of the same gene
OpenProt

Novel isoform Novel protein isoform Protein currently not annotated with a significant
homology with the canonical protein of the same gene

OpenProt

Cuff-Prot Cuff-transcript derived protein Predicted protein from an ORF within a novel splice
variant transcript detected by RNA-seq

In silico translation
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(44 amino acids), while novel isoforms and Cuff-Prots displayed a
slightly increased median length (86 and 145 amino acids respec-
tively) although still much shorter than that of the canonical pro-
teins (429 amino acids).

3.4. AP-MS data analysis with a custom database retrieves confident
canonical interactions

We re-analysed the AP-MS dataset from Shah and colleagues [8]
with our custom database concatenated with the Zika viral protein
sequences. Prior to HCIP filtering, we identified across all replicates
2843
for all baits 18,258 interactions with canonical proteins, 81 with
altProts, 472 with novel isoforms and 25 Cuff-Prots (Fig. 4A). How-
ever, as usual in standard MS-based proteomics, the concept of
peptide unicity is inherent to the database used. Here, we want
to report novel proteins only if the peptide cannot be explained
by a canonical protein, including those not present in the custom
database (i.e. due to low transcript abundance). Thus, we enforced
a second peptide unicity check against the whole OpenProt data-
base (version 1.5). This left us with 18,258 interactions with a
canonical protein and 16 with an altProt (Fig. 4A). It is to note that
such peptide assignation rules create a bias against the detection of



Fig. 4. AP-MS data analysis features with the custom database A. Count of proteins identified in the protein identification step of the analysis for each protein category
(canonical, altProt, novel isoforms and Cuff-Prots). The light purple corresponds to the counts prior to the peptide unicity additional filter. The dark purple corresponds to the
counts after filtering for peptide unicity across the whole proteome. B. Overlap of proteins identified with the custom database or the SwissProt database (see Fig. 1).
Significance of the overlap was evaluated using a Fisher’s exact test. C. Gene ontology (GO) enrichment of interacting proteins (preys) for each viral proteins (baits – top)
identified with the custom database. The heatmap displays all significant enrichments (FDR < 1%, Benjamini-Hochberg correction). The GO terms highlighted in bold and a
star correspond to GO terms also identified with the SwissProt database. D. Network characteristics between the current analysis and that of the original study. Networks are
represented with bait proteins in red (Zika proteins) and interacting proteins in blue for the analysis with SwissProt and in purple for the current analysis. Alternative proteins
are indicated in yellow. The plots from left to right correspond to the node degree distribution, the distribution of local clustering coefficients and the distribution of shortest
pair length. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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novel proteins, although the detections are more confident. After
parsing for detection in at least two replicates, we obtained a list
of 1,954 identified proteins, corresponding to 9,770 potential inter-
actions, which included 7 altProts.
2844
598 HCIPs were ultimately identified using the custom database
(Fig. 4B, Suppl. Table 4). Out of these 598 HCIPs, 471 were also
identified in the analysis with the SwissProt database. Thus, the
pipeline was able to identify 70.8% of the proteins identified with
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the SwissProt database. This overlap is both highly significant
(Fisher’s exact test, p-value < 10-30) and underestimated: since
only 76% of the SwissProt protein entries identified in the first
analysis were included in the custom database based on the
RNA-seq analysis, the overlap is of 93.1%. Furthermore, the GO
enrichment analysis revealed a strong overlap with the analysis
using the SwissProt database (30 of the 37 terms – Fig. 4C, Suppl.
Table 5). The new terms found with the custom database are par-
ticularly relevant to viral infection. Notably, the custom database
identified proteins involved in SNAREs-mediated membrane fusion
events (USE1 (Q9NZ43), BET1 (O15155), COG3 (Q96JB2) and
GOSR2 (O14653)) as interactors of the viral NS4A protein. These
proteins were identified in the analysis with the SwissProt data-
base but scored just under the threshold of the Naïve Bayes (Suppl.
Table 1). This relates to studies in other flaviviruses that found
NS4A to be implicated in the formation of replication factories,
organelle-like membranous structures resulting from drastic re-
organization of ER membranes [14,59]. Furthermore, proteins asso-
ciated with the nuclear chromatin were enriched amongst Capsid
interactors (YY1 (P25490), HIST2H2BE (Q16778), BAZ2A
(Q9UIF9), and SMARCD2 (Q92925)). Interestingly, all of these have
been found interacting with the sirtuin protein (SIRT1), and sirtuin
inhibitors were reported to block Zika virus infection downstream
of viral entry [60]. These proteins were not identified in the analy-
sis with the SwissProt database (apart from BAZ2A with a Naïve
Bayes score of 0.44). Overall, the HCIPs identified with our custom
database included the most confident HCIPs from the analysis done
with the SwissProt database, but also highlighted novel interac-
tions, creating a filtered yet interconnected network (Fig. 4D).
Comparing the networks generated with the SwissProt or our cus-
tom database, this latest network displayed very similar character-
istics with a degree distribution consistent with that of known
protein–protein networks and retained interconnectivity
(Fig. 4D). The network displayed a similar distribution of shortest
path lengths (average of 3.21 as for the network with the SwissProt
database), and maintained an even distribution of clustering coef-
ficients. This suggests that using targeted custom protein data-
bases allows for specific enrichment of protein complexes.
3.5. Deeper ORF annotation highlights novel interactors of viral
proteins

We reconstructed the viral-host protein interaction network
from the analysis using our custom database (Fig. 5, Suppl.
Fig. 4). For the capsid, NS5 and NS4A viral proteins, our tailored
analysis identified proteins for the vast majority also identified
with the SwissProt database (67.2%, 81.5% and 82.4% respectively).
Interestingly, we identified four novel proteins (purple nodes,
Fig. 5) confidently interacting with viral proteins. Two alternative
proteins (IP_209094 and IP_148668, accessions from the OpenProt
resource) were found interacting with capsid, and two others
(IP_086141 and IP_058843) were found interacting with NS4A.

The alternative protein IP_209094 originates from messenger
RNAs (mRNA) from the COL2A1 gene. According to the OpenProt
resource, this protein is 54 amino acids long and has been detected
in two proteomics studies on NCI-60 cancer cell line panel. One
study looked at the global proteome (PRDB000035), while the
other looked at extracellular vesicles (PXD005479). The protein is
conserved across 3 species (IP_209094). We confidently identified
this alternative protein with the unique peptide MVKLENLEKLVK
(Suppl. Fig. 5A), not shared with any other known protein.
Although this protein does not contain any predicted functional
domain on OpenProt, the DeepGOPlus tool found similarities with
proteins involved in viral processes and ribosome biogenesis [61].
This is in line with other proteins interacting with the capsid in our
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analysis and others who reported known ribosomal proteins inter-
acting with the capsid [7,8,11].

The IP_148668 alternative protein also interacts with the cap-
sid. The protein originates from a ncRNA associated with
AL109918.1 (or LOC730101), a gene annotated as non-coding and
associated with cancer [62]. This alternative protein displays both
MS-based and ribosome profiling-based evidence on the OpenProt
resource (MS score of 2 and translation score of 3). We confidently
identified this alternative protein with the unique peptide
CLTLPFVSPMNQSWDTSKK, not shared with any other known pro-
tein. Although OpenProt does not list any identified predicted func-
tional domain, the latest CDD annotation identifies a RNA
recognition motif (accession cd12757) [63].

The alternative protein IP_058843, interacts with the NS4A viral
protein. This alternative protein was confidently identified with a
unique peptide, QSVVLLSSSRR (Suppl. Fig. 5B). Interestingly, this
protein is encoded in the 30 untranslated region (UTR) of the
UBIAD1 gene. The protein is 80 amino acids long, is conserved in
the chimpanzee (Pan troglodytes), and has already been detected
once according to the OpenProt resource.

The alternative protein IP_086141 interacts with the NS4A viral
protein. This alternative protein was confidently identified with a
unique peptide (Suppl. Fig. 5C). Interestingly, this protein origi-
nates from the ANTXR1 gene and its ORF overlaps the ANTXR1
canonical ORF in a different reading frame (Suppl. Fig. 5D). The pro-
tein is 78 amino acids long and is conserved between chimpanzee
(Pan troglodytes), mouse (Mus musculus), cow (Bos Taurus), and
sheep (Ovis aries) (Suppl. Fig. 5E). It has been detected once by
MS according to the OpenProt resource (PXD011929) and was also
detected in a study in HeLa cells nuclei [64].

As demonstrated here, deeper ORF annotation and the use of
transcriptomic-informed database allow for the identification of
novel proteins interacting with Zika viral proteins.

3.6. Deeper ORF annotations highlight novel differentially expressed
proteins

Additionally, as it has been demonstrated before with other
viruses, the translational changes upon Zika virus infection could
lead to differentially expressed novel proteins [17,18,20]. We
retrieved a publicly available dataset of quantitative proteome pro-
filing upon Zika virus infection in monocytes [9]. We used the same
pipeline as in the original study but queried the MS data with our
custom database (Fig. 6A). When compensating for multiple com-
parisons, the original study adjusted the p-value for a FDR between
1% and 5%, while we fixed the FDR at 5% or 1%. Using the FDR set to
5%, we identified 793 differentially expressed proteins between the
control and the Zika-infected samples (Fig. 6B). Out of these, 322
proteins were also identified as differentially expressed in the orig-
inal study (Suppl. Table 6). This corresponds to a highly significant
overlap of 59.1% (Fisher’s exact test, p-value < 10-287). With the
FDR set to 1%, we identified 380 differentially expressed proteins
(DEPs), from which 235 were also identified in the original study.
This 1% FDR filtering thus corresponded to a highly significant
overlap of 43.2% with the original dataset (Fisher’s exact test, p-
value < 10-287, Suppl. Table 6). For downstream analyses, we used
this more confident set of DEPs filtered at a 1% FDR. We identified a
total of 138 up-regulated proteins and 242 down-regulated pro-
teins (Fig. 6C).

We confidently identified 12 alternative proteins (IP_068551,
IP_070279, IP_074954, IP_139806, IP_157897, IP_195829,
IP_216771, IP_232994, IP_233268, IP_240469, IP_265139, and
IP_276654 - https://openprot.org/p/savedSearch/lCa). One of these
proteins, IP_265139, encoded in an ORF overlapping that of the
ATP5F1A protein, was found significantly up-regulated in Zika-
infected samples (Fig. 6C).

https://openprot.org/p/savedSearch/lCa


Fig. 5. Network of viral-host protein–protein interactions built from the custom database Network of protein interactions for proteins of the Zika virus (indicated as
octogonal nodes with thick red borders) with proteins with a degree higher than 1. The nodes correspond to canonical human proteins (circle with black borders) or
alternative proteins (purple circle) identified by AP-MS data analysis. Nodes of canonical proteins are coloured based on their associated gene ontology as indicated on the
bottom right corner. Edges represent confident interactions between two proteins as follows: solid black lines are interactions only identified in the current analysis; dashed
black lines are interactions shared with the original study (Shah, et al.); and full grey lines are host–host protein interactions retrieved from the STRING database. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Proteome profilingwith the customdatabase identifies novel proteins A. Graphical representation of the pipeline used for quantitative proteome profiling analysis.Mass
spectrometry (MS) data is interrogated using the custom database defined in Fig. 3. The pipeline contains a step of protein identification (blue) using MaxQuant, followed by
protein quantification (red) using ProStaR, to produce a list of differentially expressed proteins (DEPs). B. Overlap of proteins identified in this analysis (custom database) with
that of the original study from Ayala-Nunez and colleagues [9]. Significance of the overlap was evaluated using a Fisher’s exact test. C. Volcano plot of differentially expressed
proteins during Zika virus infection. Proteins found significantly upregulated in the Zika-infected conditions are indicated in red,while those found significantly down-regulated
are indicated in blue. Novel proteins are highlighted in yellow with a black edge. D. Gene ontology (GO) enrichment of significantly differentially expressed proteins. All
significant enrichments (FDR < 1%, Benjamini-Hochberg correction) are listed across both analyses. The dot size relates to the number of proteins supporting this GO term
enrichment, while the color relates to the p-value. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Furthermore, our analysis with a custom database identified a
majority of GO terms enriched in the original analysis (5 out of 9,
Fig. 6D). Although, we did not identify GO terms relating to oxida-
tion–reduction or nucleotide binding enriched, we did identify
terms relating to vesicle formation and granule lumen that were
not reported in the original study (Suppl. Table 7). This suggests
that the use of a custom database might identify enrichment of
more specific terms.
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4. Discussion

In this study, we explored publicly available datasets of
pathogen-host interactions to further analytical methods aimed
at the production of more powerful models of these biological sys-
tems. We demonstrated the importance of protein groups handling
when comparing MS datasets and protein interaction networks.
Furthermore, using a custom database we were able to retrieve
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biologically relevant protein complexes, and discover alternative
proteins as novel interactors of Zika viral proteins. Although more
bench work is needed to functionally characterize the identified
alternative proteins and validate the interactions with viral pro-
teins, this study lends support to the use of transcriptomic-
informed databases in proteomics. The computational framework
presented here highlights the biological insights gained from using
deeper ORF annotations [17,19–21,65,66]. The application of this
framework on published proteomics dataset might shed light on
cellular processes previously not considered [26,30,32,67]. Such
proteogenomics-like endeavour is facilitated by existing reposito-
ries of experimentally supported yet non-annotated ORFs, such
as the OpenProt resource or the sORFs repository [28,30].

The discovery of unannotated ORFs as differentially expressed
proteins (DEPs) or highly confident interacting proteins (HCIPs)
upon viral infection has previously been shown with the human
cytomegalovirus, retroviruses and flu lysates [17,19,20]. Some of
the identified alternative proteins originated from pseudogenes,
which should be re-classified as paralogs. Various pseudogenes
were previously shown to produce functional proteins, and many
have been involved in human diseases [68–71]. Moreover, the evo-
lutionary arms race in which virus and host are involved imposes
pressure for constant evolution of immune evasion or interaction
strategies. Thus, the evolution strategies of viral-host protein inter-
actions involve gene duplication (paralogy) [72–74]. Although
mostly studied in the viral genome, this paralogy strategy is not
exclusive to the virus [74]. This suggests that many alternative pro-
teins from pseudogenes might be important in viral-host protein
interaction networks.

Furthermore, using publicly available RNA-seq datasets, a cus-
tom protein database can be created which enriches biologically
relevant identifications. Both the sORFs repository and the Open-
Prot resource allow custom downloads of novel ORFs [30,75].
The use of customized databases optimized for the size of the
search space and the biological relevance of included proteins
have been shown to outperform standard database strategies
[76,77]. The results presented in this study show that biologi-
cally relevant information can be gained from the use of a cus-
tom protein database. Although the most confident protein
identifications were reported by analyses with both the Swis-
sProt database and the custom database, the latter provided
additional identifications leading to an enrichment in GO terms
relevant for viral processes and supported by previous experi-
mental evidence [14,78,79].

Notably, we retrieved an enrichment in proteins known to asso-
ciate with the nuclear chromatin in the capsid interactors (Fig. 4).
These are proteins involved in the neuronal development [80–84].
Interestingly, the capsid is the only Zika viral protein reported to
associate with proteins involved in the neuronal development
[3]. These proteins represent important interactors to better
understand ZIKV-mediated microcephaly. Interestingly, in the
original study and other datasets, nucleolin (NCL) was identified
as strong capsid interactor [3,7,8]. However, in our analysis, NCL
was indeed identified but did not pass filters due to a lack of speci-
ficity and low abundance (Suppl. Table 5).

Our strategy identified biologically relevant canonical proteins
and novel proteins. However, the RNomics and proteomics data-
sets in this study were not paired and displayed differences in cel-
lular background and infection stage. This might prevent the
identification of other biologically relevant proteins; on the other
hand, it also indicates that the identified interactors show a high
degree of conservation across cellular backgrounds. Using paired
data might lead to other protein identifications, although maybe
more specific to a cellular background, experimental design or
infection stage [3]. Furthermore, the AP-MS dataset used here
over-expressed viral proteins individually which may prevent the
2848
detection of biologically relevant protein that necessitate the com-
bined effect of all viral proteins.
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