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Deltamethrin (DEL) can be introduced into the food chain through bioaccumulation in

Pacific oysters, and then potentially threaten human health. The objective of this study

was to investigate the bioaccessibility of DEL in oysters with different cooking methods

after simulated digestion. DEL content in different tissues of oysters going from high to

low were gills, mantle, viscera, and adductor muscle. Bioaccessibility of DEL in oysters

decreased after steaming (65%) or roasting (51%) treatments compared with raw oysters

(82%), which indicated that roasting can be used as a recommended cooking method

for oysters. In the simulated digestion process, the concentration of DEL in the digestive

juice and the bioaccessibility of DEL were affected by the pH in the gastric phase. And the

transport efficiency of DEL through the monolayer molecular membrane of NCM460 cells

ranged from 35 to 45%. These results can help assess the potential harm to consumers

of DEL in shellfish. Furthermore, it provides a reference for the impact of lipophilic toxins

in seafood.
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HIGHLIGHTS

• The content of deltamethrin is related to the interaction of protein and fat.
• The bioaccessibility of oysters decreased after steaming and roasting.
• Cooking treatment may result in the conversion of deltamethrin isomers.
• The pH of gastric phase will affect the bioaccessibility of deltamethrin in oysters.

INTRODUCTION

Synthetic pyrethroids are broad-spectrum, efficient, and neurotoxic pesticides. Pyrethroid use
markedly increased and became the preferred choice inmany agriculture-based countries in the last
two decades since the implementation of restrictions on the sale of organophosphorus insecticides
(1, 2). Pyrethroids have high insecticidal potency but they have a low toxicity with birds and
mammals (3). With mollusks, previous studies have reported that pyrethroids were more toxic to
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aquatic animals than to mammals because of their lower ability
to degrade pyrethroid pesticides (4, 5). Therefore, pyrethroids
are generally not directly used in aquaculture. However, there are
some reports of pyrethroid pesticide residues in aquatic products
and their habitat (6–8).

Given its widespread and worldwide use, pyrethroid pollution
has become an increasing threat to human health (9). There are
many pathways for the accumulation of pyrethroids in mollusks.
One is through water pollution caused by the use of pyrethroids
to kill water-borne parasites. Another is the run-off from the use
of pyrethroids in agricultural or urban areas (10, 11). Pyrethroids
in the aquaculture environment not only has a negative impact on
aquatic organisms but also threatens consumer’s health (12–15).

Deltamethrin (DEL), a type II synthetic pyrethroid, is
used widely as an insecticide (16, 17). It was used in
agricultural and aquaculture for pest control (18). Some
studies have detected the metabolites of DEL in the urine
of adults, pregnant women, and children (19, 20). Skin
contact and oral intake of DEL-contaminated food are harmful
to human health (21). Several studies found various toxic
effects in humans, such as neurotoxicity, immunotoxicity, and
reproductive toxicity (22–24).

Oysters are becoming more widely consumed because of their
appreciable quantities of proteins, long-chain polyunsaturated
fatty acids, vitamins and minerals, and desirable sweet and
“umami” tastes (25). Oysters are a filter-feeding shellfish.
Because they filter large quantities of water, microorganisms
and other pollutants will accumulate in tissue (25, 26). These
pollutants will enter the human body through consumption.
The maximum residue limit of DEL is 0.5 mg/kg in mammals,
but there are no standards for aquatic products (27). Oysters
are often consumed raw. However, raw oysters may contain
many health-threatening factors including Vibrio cholera and
enteropathogenic bacteria (28–30). Cooking can eliminate or
reduce some harmful substances in oysters (31). But the effect
of cooking on DEL remains unknown. Moreover, the amount
of a contaminant in a food as purchased is not necessarily equal
to how much human body will absorb. After DEL contaminated
food enters the human body, it is digested in the gastrointestinal
tract. Part of the DEL will enter the body with the absorption of
the digestive juices, while the rest if undigested will be excreted
with the digestive residue. There is, however, no previous study
reported on the bioaccessibility of DEL in any food matrix in the
human body. In recent years, in vitro models have been widely
used in the study of bioaccessibility (32, 33). Understanding
the bioaccessibility of DEL in the human body can provide
a preliminary estimate of its bioavailability data, which can
assess the threat of DEL to human health more accurately.
The bioavailability data can also provide a reference for a risk
assessment of DEL in seafood.

In vitro simulated digestion and NCM460 cell model are two
common in vitromodels. Simulated digestion is used to simulate
the physiological environment of human gastrointestinal tract
to study the physical and chemical changes that may occur in
the process of gastrointestinal digestion after food intake, the
interaction between food and digestive fluid and food in the
process of digestion, the utilization rate of nutrients and the

metabolism of toxic substances (34). The normal human colon-
derived mucosal epithelial cell line (NCM460) is a common cell
model. It can be used to study the absorption and transportation
of nutrients or harmful substances in drugs and food through
the intestine. In this study, the bioaccessibility of deltamethrin
in oyster was studied by simulated digestion and NCM460
cell experiment.

Thus, the purpose of this study was to: (1) investigate
the enrichment of deltamethrin in different tissues of oyster;
(2) assess the bioaccessibility of the DEL in oysters cooked
with different methods (teaming and roasting) after simulated
digestion; (3) study the penetration of DEL through intestinal
epithelial cells.

MATERIALS AND METHODS

Collection of Oysters and Sample
Preparation
Oyster samples were collected from the border of the Bohai and
the Yellow seas (Weihai, Shandong Province, China), and all
the oysters were transported to the laboratory alive. After that,
the oysters were acclimated in artificial seawater (32 g/L) for 24
hrs. The seawater was produced using seawater crystals (Tianjin
Binhai New Area Tanggu Hai Sheng Seawater Crystal Factory,
Tianjin, China) according to Bielmyer et al. (35). Then, the
oysters were exposed to seawater with DEL (2 µg /L) for 72 hrs.
DEL for contamination was obtained from Bayer CropScience
(Hangzhou, Zhejiang Province, China). Salinity (27.0 ± 1.0‰)
and water temperature (18 ± 1◦C) were maintained throughout.
Photoperiod at 12 h light/12 h dark was maintained. To prevent
the residual chlorine in the tap water from affecting the
oyster culture process, the seawater was oxygenated for 48 hrs
before use.

All the artificially contaminated oysters were divided into
four groups, of which three groups were subjected to different
processing methods: raw, steamed (i.e., steaming in an steam
cooker for 5min, until the oyster shell opens), and roasted (i.e.,
in an oven at 200◦C for 20min, only use downfire). Oyster tissue
was taken out and divided into four parts: gill, viscera, mantle,
and adductormuscle. Twenty-five specimens were removed from
the treated oysters. For all samples, the tissue was separated from
the oyster-shell, cleaned with running water. The collected tissues
were then drained and homogenized with a blender (JY-200B,
Zhongshan Jiuyuan Electric Appliance Co. Ltd, Zhongshan,
Guangdong Province, China) until visually homogenized. These
samples were stored at −20◦C for further analyses (maximum 4
weeks of storage).

In vitro Digestion Model
The bioaccessibility of DEL in oysters was assessed using an in
vitro digestion INFOGEST procedure previously described by
Brodkorb et al. (36) with proper modifications. In short, the
simulated human digestion methodology was carried out in three
different phases (oral, gastric, and intestinal) using four digestive
enzymes: pepsin (Aladdin, P110927), lipase (Aladdin, L299012),
trypsin from swine (Sigma, P7545) and cow bile (Solarbio,
B8210). And each oyster sample was digested in triplicate. For
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each sample, 5 g of oyster tissue was digested at 37◦C using
a constant temperature water bath shaker (JieRuiEr THZ-82;
Changzhou, Jiangsu Province, China). The simulated digestion
was done using the following protocol: oral phase (the tissue is
diluted 1:1 with simulated salivary fluid at pH 7 ± 0.2; 2min),
gastric phase (the oral bolus is diluted 1:1 with simulated gastric
fluid; 150min), and intestinal phase (the gastric chyme is diluted
1:1 with simulated intestinal fluid at pH 7 ± 0.2; 120min).
Studies have shown that the pH in the gastric phase is constantly
changing during the digestion process (37). To better simulate
the real physiological environment during the gastric digestion
process, the pH is continuously reduced by adding hydrochloric
acid (the total amount of hydrochloric acid added is 2mL, 0.4mL
is added at the beginning of the gastric phase, and then 0.2mL
is added every 15min) during the experiment. The change of
pH in the gastric phase is shown in Figure 1. Each simulated
digestion fluid was prepared just before simulated digestion to
avoid the loss of enzymatic activity. At the end of the simulated
digestion, the pH of gastric samples was adjusted to 8.0 ± 0.2
and the intestinal samples were heated in the water bath at 95◦C
for 10min to stop the digestion process. After that, the digested

samples were centrifuged at 2,930× g at 4◦C for 5min to separate
the bioaccessible and non-bioaccessible fractions.

Considering that the content of DEL in the digestive phase
is changing, the steamed oyster group (one of the most
common cooking method of oysters) was selected to study
the concentration changes of DEL in cooked oysters during
digestion. Samples were taken every 30min during the simulated
digestion process for DEL analysis.

DEL Analysis
Reagents
All reagents used for DEL extraction and analysis were
of analytical grade or higher. Acetonitrile (p.a. ≥99.9%)
and N-hexane (GC grade) were obtained from Aladdin.
The QuEChERS kits (MQ3-3) were obtained from
Shandong Qingyun Experiment Material Co., Ltd. (Yantai,
Shandong, China); and glacial acetic acid (p.a. ≥99.9%)
was obtained from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Ultrapure water was obtained using a
Milli-Q Reference system from Millipore (Billerica, MA,
USA). A certified reference standard solution of DEL

FIGURE 1 | Change of gastric pH during simulated digestion. The solid line is the fitted curve obtained for the pH varied group.
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was purchased from ANPEL Laboratory Technologies
Inc. (Shanghai, China), which had been provided by the
Agro-Environmental Protection Institute, Ministry of
Agriculture and Rural Affairs of China. Calibration curves
of deltamethrin-1 and deltamethrin-2 were prepared at different
concentrations ranging between 1 and 40, and 10 and 400 ng
mL−1, respectively.

DEL Extraction
The DEL was extracted using QuEChERS kits. The kits consisted
of an extraction tube (a 50mL plastic centrifuge tube with
white solid powder), salt bag (for removing moisture and
reducing some interferences), and a purification pipe (for further
purifying the sample and further reducing the interferences).
For solid samples (oyster tissue), each sample (10 g) was
placed in an extraction tube and mixed with ultrapure water
(5mL), and then homogenized for 1min. Subsequently, 15mL
of acetonitrile (containing 1% glacial acetic acid) was added,
followed by shaking for 1min. Then the salt bag was added,
followed by shaking for 3min and centrifuged at 2,930 ×

g for 5min (at 4◦C). An 5mL aliquot of the supernatant
was transferred into a QuEChERS purification pipe. After
shaking for 1min and concentrating, a 3mL aliquot was
taken and flushed with nitrogen at 45◦C to dryness with
a nitrogen flushing instrument (Tubes Heater L-129P and
Auto-Sample Concentrator L-148, Laiheng, Beijing, China) and
redissolved with 2mL n-hexane. For liquid samples (gastric
and intestinal digestive fluids), sample and acetonitrile (with
1% glacial acetic acid) were placed in an extraction tube (v:v
= 1:1). For DEL analysis, the gastric and intestinal digestive
phases were concentrated 2 and 4 times, respectively, with
nitrogen flushing and redissolved with n-hexane as for the
solid samples.

DEL Determination Using GC-ECD
DEL was determined with an Agilent Technologies 7890B GC
coupled to an ECD detector. The quantitative analysis was done
on an HP-5 column (30m× 0.320mm× 0.25µmfilm thickness,
Agilent J&W GC columns). The oven temperature program was
ramped from 100◦C (2min hold time) to 270◦C at 6◦C/min with
a hold time of 10min. The injection and detector were at 250
and 300◦C, respectively. The nitrogen carrier gas was maintained
at a flow rate of 1.0 mL/min. A sample of 1 µL was injected in
splitless mode.

Percentages of DEL in the bioaccessible fraction (%)
were calculated as follows: BIO × 100/BD, where BIO
is the DEL amount detected in the bioaccessible fraction
and BD is the DEL amount detected in the same sample
before digestion.

Cell Culture and Transport Assay
Cell culture and transport assay were done using the
methodologies previously described by Xu et al. (38) with
modification. Briefly, NCM460 cells were spread onto a
Transwell polyester permeable membrane support at a density
of 1.0 × 105 cells/cm2. The cells were grown at 5% CO2 and
37◦C in a humidified atmosphere in DMEM medium (DMEM:

serum:double antibody = 9:1:0.1). The medium was changed
every other day to allow the cells to differentiate for at least
21 days. For toxicity assay, cells were incubated with PBS
containing DEL (0, 5, 10, 17.5, 30 ng/mL) at 37◦C for 24 h. Then,
the fluorescence was measured at 450 nm using a Microplate
Photometer (Multiskan FC, Thermo Fisher Scientific Inc.,
Shanghai, China).

The transport assays of DEL were done in a Transwell
membrane. NCM460 cell monolayers were incubated with
0.5mL phosphate-buffered saline buffer (PBS, containing 1
mmol/L Ca2+ and 0.5 mmol/L Mg2+ ions) containing DEL (0,
2, 10, 30 ng/mL) on the apical side and 1.5mL PBS on the
basolateral side of the monolayers for 2 h and culture medium
collected from both sides for GC-ECD. The transepithelial
electrical resistance (TEER) of the monolayer was measured to
ensure its value was >400 �/cm2.

Statistical Analysis
Statistical analysis was done using the IBM Statistical Package
for the Social Sciences, SPSS Statistics 26 (IBM Corp., Armonk,
NY, USA). One-way ANOVA followed by Duncan’s multiple
range tests were used to determine the statistical significance.
Spearmans’ correlation (non-parametric bivariate correction)
was established between nutritious substance and DEL levels.
Differences were considered significant at p < 0.05.

RESULTS

Toxin Analysis of DEL in Different Tissues
of Oyster
DEL levels in different oyster tissues are shown in Figure 2. DEL
toxicity ranged from 677 to 2,750 µg /Kg in different tissues
of oysters. The gill sample had the highest levels of DEL. The
lowest DEL concentrations were in the adductor muscle samples.
The concentration of DEL in the mantle was higher than in
the viscera. Statistically significant differences (p < 0.05) were
observed in the concentration of DEL in the different tissues. The
content of DEL in the whole oyster had no significant difference
with the content in viscera.

In addition to DEL, the proximate composition (crude
protein, fat, total carbohydrate, and ash) in various tissues were
also measured (Figure 2). The highest protein content and the
lowest fat content were found in adductor muscle. A statistical
correlation of DEL levels and tissue proximate composition gave
a positive (r = 0.729) and highly significant correlation with ash
content. No significant correlations were observed between DEL
and crude protein (r = −0.200, p = 0.475), fat (r = 0.318, p =

0.248) and carbohydrate (r = 0.325, p= 0.237).

Bioaccessibility of DEL With Different
Cooking Methods
The DEL GC spectrum from oyster meat is shown in Figure 3.
There were 2 peaks with retention times of 37.5min (DEL-1) and
38.2min (DEL-2). However, there were significant differences
between the peak areas of DEL-1 and DEL-2 in oyster meat with
different processing methods, and the proportions of DEL-1 was
6.2% (raw), 24.6% (steamed), and 20.4% (roasted).
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FIGURE 2 | Concentrations of DEL and proximate composition in different tissues of oyster. Lowercase letters represent differences in DEL concentration between

tissues (gill, viscera, mantle, muscle, and whole meat) of oyster (ANOVA, p < 0.05).

Total DEL of oyster meats with the various digestion phases
(gastric initial and final and intestinal initial and final) with the
different cooking methods are shown in Figure 4. There was a
similar trend among the three processing methods. The content
of DEL at the end of the gastric phase was higher than that
at the beginning of the gastric phase, and the content of DEL
at the end of the intestinal phase was higher than that at the
beginning. The total amount of DEL in the digested liquids was
always lower than that in the undigested oyster meat (p < 0.05).
And the amount of DEL in the raw group was higher than that
in the other two groups at each digestive stage. At the end of the
simulated digestion, the content of DEL in the raw, steamed, and
roasted samples were 2,300 ± 300, 2,020 ± 80, and 1,360 ± 40
ng, respectively.

High percentages of bioaccessible DEL were found with all
the cooking methods using the in vitro model: 82 ± 10, 65
± 6, and 51 ± 3% of the total DEL was released into the
digestive juice with the raw, steam, and roasting, respectively
(Figure 5). There was a significant difference between these
cooking methods (p < 0.05) and a reduction of bioaccessibility
was observed after cooking. No significant difference was
found between the steamed and roasted samples, but the

bioaccessibility of the roasted group was slightly lower than the
steamed group.

The Change of DEL Concentration During
Simulated Digestion
The digestion using the different gastric pH vs. a pH constant
group. A total of 2mL HCl was added in the gastric phase. Two
hundred microliter HCl was added every 15min in the pH varied
group, and 2mL HCl was added directly at the beginning of the
gastric phase in the pH constant group. As shown in Figure 6,
a significant increase in DEL levels was seen in the pH varied
group, whereas a significant decrease was observed in the pH
constant group during the gastric digestive stage. At the end of
the gastric phase, the concentration of DEL in the pH varied
group was significantly higher than that in the pH constant
group. The switch to intestinal digestion led to an immediate
decrease in DEL concentration. At this stage, the concentration
of DEL in the pH varied group was higher than in the pH
constant group. Furthermore, there were significant differences
in the bioaccessibility of DEL between the two groups during
gastrointestinal digestion (p < 0.05).
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FIGURE 3 | Chromatograms (GC-ECD) of DEL from oyster meat with different processing methods. Chromatograms of DEL are separately in (A) Raw oyster; (B)

Steamed oyster; and (C) Roasted oyster. DEL retention time was 37.5 (DEL-1) and 38.2min (DEL-2). Peak areas of DEL-1 and DEL-2 were 85.4 and 1,280 for raw

oysters, 483 and 1,480 for steamed oysters, and 312 and 1,210 for roasted oysters, respectively.

Cellular Absorption of DEL
As shown in Figure 7A, after treatment with 5, 10, 17.5, and
30 ng/mL DEL for 24 h, there was no significant difference in the
cell viability between control, 5, 10, and 17.5 ng/mL, whereas a

significant reduction of cell viability was found at 30 ng/mL (p
< 0.05). It was assumed that no harm came to the cells used
in the transport study because the transport time used was 2 h,
much shorter than 24 h for DEL toxicity. Figure 7B shows the
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FIGURE 4 | Total content of DEL of oyster meat using three cooking methods at different stages of digestion. Uppercase letters represent differences of DEL content

in each digestion stage between different cooking methods (ANOVA, p < 0.05). Lowercase letters represent differences of DEL in the digestion process between the

same cooking methods (ANOVA, p < 0.05).

linear curve of cell viability with DEL concentration at 24 h. As
the concentration of DEL increases, cell viability continues to
decrease. The linear equation obtained was y = 102.1–0.69 x,
and the Pearson correlation coefficient was −0.97. Transport of
DEL across NCM460 cell monolayers is shown in Figure 7C. The
concentration of DEL in the 2 h group was slightly higher than
that in the 0.5 h group.

The degradation of DEL was not observed within the
cell, as evidenced by no significant differences (p > 0.05)
between the total amount of DEL toxin added and the sum
of this toxin found in the apical and the basolateral sections
after 2 h.

DISCUSSION

Occurrence and Profiles of DEL in Oysters
After a short exposure experiment, the content of DEL was the
highest in the gills of oysters, followed by the mantle and viscera,

and the lowest in the muscle. The digestive pathway of DEL in
oysters is from gills to internal organs and then to muscles. The
mantle is a membrane that wraps the internal organs and tissues.
The high content of DEL in mantle may be due to the direct
contact between the mantle and water, and the lipophilicity of
DEL allowed it to be absorbed in the mantle. In addition, the
concentration of DEL and the proximate composition in whole
meat was basically the same as the average value in each organ.
Whole oyster meat is normally consumed. According to the
data in Figure 4, there was no significant difference in the total
content of DEL in raw, steamed, and roasted oysters. However,
the concentration of DEL in steamed and roasted oysters was
higher than that in raw oysters because the steaming and roasting
process will cause water loss. This was consistent with the studies
by Hess et al. (39), who suggested that the concentration of
azaspiracids (AZA) in cooked shellfish was 2-fold higher than
the uncooked shellfish. And Wiech et al. (40) also show the
similar result.
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FIGURE 5 | Bioaccessibility (%, mean ± SD) of total DEL content of oyster samples using different cooking methods. Lowercase letters represent differences in

bioaccessibility of deltamethrin under different cooking methods (ANOVA, p < 0.05).

The occurrence and profiles of DEL in oysters may not only
be related to the tissue and cooking method, but also related
to the structural characteristics of DEL itself. DEL contains 3
chiral centers, indicating that it has 8 stereoisomers (41, 42).
Corcellas et al. (43) showed that the cis isomers of pyrethroids
were easier to enrich than trans isomers in organisms. But the
degradation rate of trans isomers was faster than cis isomers
(44). Usually, there were two peaks in the deltamethrin gas
chromatogram (45). As shown in Figure 3, there was a higher
accumulation of DEL-1 in steamed or roasted oyster compared
to raw oyster, whereas DEL-2 was the predominant toxin
accumulated. However, the structure of DEL-1 is not understood.
DEL-1 and DEL-2 may be two different stereoisomers of DEL
and the conversion of DEL-2 to DEL-1 may have occurred due
to heating. Therefore, more research regarding enantioselective
accumulation and enantiomeric toxicology is needed to establish
which enantiomers have a greater health risk.

DEL Bioaccessibility and Changes After in
vitro Digestion and Cell Monolayers
Compared to other pyrethroids, DEL has a higher toxicity, which
makes it important to study its bioaccessibility. The in vitro
digestion model indicated that the DEL was gradually released
from oysters during digestion. The simulated digestion, showed

a lower concentration of DEL with intestinal digestion than in the
prior gastric digestion. This may be due to the dilution of DEL by
intestinal digestive juice such as bile.

The results observed in the present study show that DEL
bioaccessibility in steamed oysters was around 65%, and in
roasted oysters was around 51%, which is significantly lower
than in raw oysters (82%). These results were consistent with
the previous observations that the bioaccessibility values of AZA
were lower in mussels after steaming (46). The hydrophobic
peptides become exposed with surface denaturation. Since AZA
are lipophilic, a weak binding between AZA and a 45 KDa
protein was observed during cooking. DEL is also lipophilic, and
this binding force might explain the lower bioaccessibility after
heating. Considering the high bioaccessibility, some studies have
shown that the content of harmful substances in food can be
reduced by washing and soaking (47). Before eating oysters, we
can try to reduce the harm of harmful substances to human body
by washing and soaking.

The DEL content decreased significantly after intestinal
digestion, which might be explained two ways. One is
that DEL was present in the biologically unavailable parts
(materials not digested), and the other is that the presence
of pancreatin and bile salts in the digestive juice of the
intestine hydrolyzed or degraded DEL. Previous studies showed
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FIGURE 6 | Concentration changes of DEL in digestive juice during simulated digestion with different pH.

that some pyrethroids including DEL may undergo significant
transformations in the intestinal fluid (48). Carboxyl ester lipase
has an important role in lipid metabolism and is synthesized
primarily in the pancreas (49). Crow et al. (50) also observed a
correlation between carboxylesterase and pyrethroids, indicating
trans-permethrin were effectively cleaved, while DEL and
bioresmethrin were not metabolized. The degree of hydrolysis
varied for different pyrethroids. Carboxylesterase may therefore
hydrolyze pyrethroids during simulated digestion in vitro. The
degree of hydrolysis may also be related to the concentration
of carboxylesterase. And the toxicity of the hydrolysate may be
higher or lower than that of its parent compound (17). Thus,
the hydrolytic metabolites and their potential biological activity
should be investigated in future research.

The difference between the in vitro simulated digestion model
and the existing static in vitro model is mainly reflected in the
pH of gastric phase. The importance of pH values with in vitro
simulated digestion in the bioaccessibility has been previously
suggested (51, 52). Gastric pH is not a constant parameter
and its value changes continuously during digestion (37). The
concentration of DEL in the constant pH group was lower
than the variable pH group for most stages of digestion as was
its bioaccessibility.

In vitro simulated digestion experiments are simpler and
more convenient than in vivo experiments partly because only

specific enzymes are used in vitro. There are many in vitro
digestion models, and the bioaccessibility data obtained by
different digestion models may be different (53). Other factors
when studying the bioavailability of pyrethroids such as the
diversity of small intestinal microbiome and microbial diversity,
as well as other enzymes and biosurfactants in digestive juices
should be considered (48).

To reduce the influence of the complex components in the
simulated digestive juice on the cell viability during cell transport,
a standard solution of DEL with a similar concentration instead
of intestinal digestion chyme was used. The transmembrane
transport efficiency of DEL by NCM460 cells were 35, 45,
and 43% at 2, 10, and 30 ng/mL, respectively. After simulated
digestion, the concentration of DEL was about 10 ng/mL. Using
a trans-transport efficiency of 45%, the bioaccessibility of DEL
after passing through small intestinal epithelial cells were 37%
(raw), 29% (steamed), and 23% (roasted). Shellfish like oysters,
most often consumed raw, are the most hazardous, while foods
consumed soon after heat treatment have fewer hazards (25).

The bioaccessibility of DEL with simulated digestion should
help provide further information for the risk assessment of
pyrethroids. However, there are some differences between
bioavailability and bioaccessibility. The NCM460 cells were was
used to study bioaccessibility, but the relationship between it and
bioavailability still needs further study.
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FIGURE 7 | Toxicity of DEL on the viability of NCM460 cells and transport efficiency. (A) Effect of DEL on the viability of NCM460 cells. The cell viability was

significantly decreased after treatment with 30mM DEL for 24 h. The data are expressed as the means ± SD (n = 9). Values with different letters are significantly

different (p < 0.05). (B) Linear curve of cell viability (% of control) with DEL concentration. (C) Transport of DEL across NCM460 cell monolayers. The letter D

represents the lower chamber of the Transwell, and the letter U represents the upper chamber of the Transwell. The concentration in the lower chamber shown in the

figure is 3 times the actual concentration.
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CONCLUSIONS

The results should help to evaluate potential dietary exposure
to some pesticide toxins through the consumption of seafood.
The bioaccessibility of DEL from raw, steamed, and roasted
oyster samples were 82, 65, and 51%, respectively, during
gastrointestinal digestion. Roasting is the recommended method
of oyster cooking to lower DEL bioaccessibility.
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