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Gastric cancer (GC) is one of the most common malignant tumors
with poor prognostic results. Endoscopic examination is mainly uti-
lized for early detection, while pathological confirmation and CT
scanning are suggested for further treatment. Machine learning and
deep learning methods have been widely applied to explore auto-
matic GC diagnosis and prognosis analysis. Endoscopic images based
deep learning models for early GC detecting have achieved a perfor-
mance equal with experienced endoscopists [1] and radiomic meth-
ods on CT images have proposed clinically significant imaging
biomarkers with diagnostic and prognostic values [2�4]. In this arti-
cle of Ebiomedicine, Huang et al. [5] proposed a simple multi-
instance learning (MIL) approach for GC diagnosis and prognosis
analysis on whole slide imaging (WSI) pathological images. Experi-
ments on three datasets achieved good performances for both tasks.

The researchers collected a total of 2508 pathological images from
1128 patients and cropped the images into small tiles (224£ 224 pix-
els). Image-level diagnosis by pathologists was treated as labels for
tiles. RegNetY, an improved model from ResNet, extracted features
from each tile, followed by aggregation models to fuse features from
the most significant tiles. They adopted a recurrent neural network
(RNN) to merge features from different tiles for the diagnostic model,
achieving an accuracy of 0.976 and 0.920 in the internal and external
validation datasets, respectively. Multi-layer perception (MLP) was
trained and validated for prognosis with a C-index of 0.671 and
0.657. Besides, the predicted risk was a strong predictor for survival
prediction.
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The traditional diagnosis of pathological images, relying on path-
ologists’ visual observation, is time-consuming and labor-intensive.
Multiple explorations for GC prediction on pathological images have
emerged nowadays. In practice, the WSI image is cropped into small
tiles and trained via a weakly supervised training method to deal
with its large size. During training, the challenges are as follows:
extracting features from tiles and merging these tile-level features to
make image-level predictions. For GC detection [6,7], researchers
applied ResNet for feature extraction at tile-level and semantic seg-
mentation models to detect GC regions at image-level, which
requires delineating the margins of the tumor region on WSIs by
pathologists. Muti et al. [8] used ShuffleNet for tile-level prediction
and the fraction of predicted positive tiles as the patient-level predic-
tion score for GC classification. Besides, Wang et al. [9] developed a
framework including segmentation, classification, and risk quantifi-
cation to predict the prognosis of GC using lymph node pathological
images. Compared with previous related works, Huang et al. adopted
a relatively simple MIL strategy with RNN and MLP but demonstrated
powerful performance in GC diagnosis and prognosis analysis.

Determining the best practice of MIL in pathological images is still
an open question. There are semantic segmentation models such as
DeepLab to detect tumor regions, the fraction of predicted positive
tiles for molecular subtyping, merge top-k features using sequential
models or other simple models, and advanced MIL approaches [10].
Choosing the MIL strategy for pathological images is task-determi-
nant, requiring previous experience and explorative experiments.
Huang et al. used RNN for diagnosis but MLP for prognosis analysis.
As explained by the researchers, a sequential model is more applica-
ble to eliminate the effect of outliers, while MLP could be more effi-
cient in the prediction based on all tiles. Interestingly, when
researchers tried RNN algorithms in prognosis, the model could
hardly converge, resulting in poor performance with a nearly 0.5 C-
index. These results are consistent with the intuitive idea that the
general observation on most tiles could predict diagnosis, but prog-
nosis might require considering extreme tiles. Moreover, the results
showed the potential of simple models to achieve good performance,
guiding us to reconsider the model design for MIL practices in WSI
images.

The research of Huang et al. provided a new solution for diagnosis
and prognosis analysis of GC based on pathological images, and also
raised several open questions for future research. First, the number k
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of selected top-k significant tiles could largely influence model per-
formance. However, it lacked a determined method for choosing this
value. There is a trade-off between sufficient coverage and superflu-
ous insignificant tiles. Generally, it relates to the tumor type, WSI
magnification, tile size, fusion model, and specific tasks, thus no one-
fit-all solution exists. Comparative experiments and discussions for
different parameter settings might provide a deeper insight into the
problem. Also, it could be treated as a tuning parameter to be selected
by cross-validation. Second, RNN for diagnosis and MLP for prognosis
analysis were applied in the research. Nevertheless, its power in
other datasets and tasks is open for exploration. What about the gen-
eral ability of the approach to other datasets and tasks? Can it outper-
form advanced MIL techniques? What are the similarities or
differences between the tasks that facilitate or hinder the utilization?
These explorations might guide rethinking the complexities and gen-
erality of the model in the MIL scenario, and may also provide more
insights into tumor diagnosis and prognosis.
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