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Simple Summary: Roles of chloride-associated transporters have been raised in various cancers.
Although complicated ion movements, crosstalk among channels/transporters through homeostatic
electric regulation, difficulties with experimental implementation such as activity measurement
of intracellular location were disturbed to verify the precise modulation of channels/transporters,
recently defined cancerous function and communication with tumor microenvironment of chloride
channels/transporters should be highlighted beyond classical homeostatic ion balance. Chloride-
associated transporters as membrane-associated components of chloride movement, regulations of
transmembrane member 16A, calcium-activated chloride channel regulators, transmembrane member
206, chloride intracellular channels, voltage-gated chloride channels, cystic fibrosis transmembrane
conductance regulator, voltage-dependent anion channel, volume-regulated anion channel, and
chloride-bicarbonate exchangers are discussed.

Abstract: The canonical roles of chloride channels and chloride-associated transporters have been
physiologically determined; these roles include the maintenance of membrane potential, pH balance,
and volume regulation and subsequent cellular functions such as autophagy and cellular proliferative
processes. However, chloride channels/transporters also play other roles, beyond these classical
function, in cancerous tissues and under specific conditions. Here, we focused on the chloride
channel-associated cancers and present recent advances in understanding the environments of
various types of cancer caused by the participation of many chloride channel or transporters families
and discuss the challenges and potential targets for cancer treatment. The modulation of chloride
channels/transporters might promote new aspect of cancer treatment strategies.

Keywords: chloride channels; chloride-associated transporters; prognostic marker; metastasis;
migration and invasion

1. Chloride Transport

Electrolytes, such as charged anion chloride, drive cellular electrical shifting en-
ergy, which mediates various cellular processes. Intracellular chloride ions are abundant
(5–40 mM) as are sodium ions [1]. The movement of chloride is considered to regulate
cellular membrane potential, cellular volume, and electrostatic compensation as well as
maintain the pH of cellular or intra-organelles such as lysosomes. In addition to its classical
roles, chloride channels participate in modulation of the cellular fate and motility of cancer
cells. Therefore, the finding that these channels function in malignant conditions beyond
simply transporting chloride is meaningful. This review summarizes the prevalence and
roles of several families of chloride channels/transporters associated with malignant envi-
ronments and might facilitate a better understanding of cancer and aid in the identification
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of potential targeted anticancer agents with scope of chloride channel/transporter-based
tumorigenesis.

2. Membrane-Associated Components of Chloride Movement
2.1. Transmembrane Member 16A

Transmembrane member (TMEM) 16A (calcium-activated chloride channel; anoctamin
1, ANO1) transports chloride and bicarbonate and plays a role in the proliferation and
development of malignant cell types. The expression of TMEM16A has been identified
in a broad range of cancers such as non-small cell lung cancer (NSCLC) [2], pancreatic
cancer [3], prostate cancer [4], breast cancer [5], colorectal carcinoma [6], gastric cancer [7],
glioma [8], glioblastoma [9], esophageal cancer [10], lung cancer [11], hepatocellular car-
cinoma (HCC) [12], liposarcoma [13], leiomyosarcoma [14], salivary gland cancer [15],
and chondroblastoma [16]. Cellular specific mechanism of TMEM16A is extensively re-
viewed and highlighted in various cancers [17,18]. Briefly, TMEM16A positively correlates
with epidermal growth factor receptor (EGFR) expression in tumor development [2], and
both TMEM16A and EGFR are found in NSCLC tissues. Tumor, node, metastasis (TNM)
stage 3 + 4 primary NSCLC is positive for TMEM16A and EGFR [2]. Thus, TMEM16A
is considered as a potential diagnostic marker for lung cancer. Treatment of TMEM16A
inhibitor T16Ainh-A01 or knockdown of TMEM16A inhibits the cellular proliferation and
invasion by attenuating EGFR phosphorylation in H1299 lung cancer cells [19]. Knocking
down TMEM16A attenuates proliferation and migration by inhibiting phosphoinositide
3-kinase/protein kinase B (PI3K/PKB) and mitogen-activated protein kinase (MAPK) path-
ways in HCC, HepG2, and SMMC7721 cells [20]. Colorectal cancer (CRC) and HCT116 and
DLD-1 cells also express abundant TMEM16A, which is a prognostic factor for patients
with CRC [21]. MicroRNA-132 (miR-132) has been identified in nerve tissues of mice,
humans, zebrafish, and cattle [22] and it functions as a tumor suppressor in various cancers
to prevent metastasis and proliferation [23]. Attenuating TMEM16A through miR-132 de-
creases cellular proliferation, invasion, and liver metastasis [21]. In addition, bestrophin-1
is also considered as a putative calcium-activated chloride channel such as TMEM16A in
epithelial cells such as the cystic fibrosis pancreatic duct cell line, CFPAC-1 [24–28] and it
enhances calcium signaling and volume regulation in CRC T-84 cells by participating in pro-
liferation [24]. Bestrophin-1 is also associated with the proliferation of oral squamous cell
carcinoma (OSCC) HST-1 cells [27]. Although bestrophin-1 consists of calcium-activated
chloride channels that are dependent on or independent of other proteins, it interacts with
TMEM16A in normal tissues [29–31].

2.2. TMEM206

An acidic milieu is involved in various diseases, such as ischemia, cancer develop-
ment, and inflammation [32]. Acid-sensitive chloride channels (also known as proton-
activated chloride channels, PAC; TMEM206) are expressed in normal and malignant
tissues. Protein profiling has revealed that colorectal, breast, and hepatic cancer cells have
increased amounts of TMEM206, which plays a key role in cellular responses to acidic con-
ditions [32,33]. Consistent with this concept, silencing TMEM206 attenuates acid-mediated
cell death and alleviates acidosis-associated pathologies such as ischemic stroke. The cyto-
plasmic expression of TMEM206 is associated with CRC development and proliferation.
The CRC cell lines SW480 and HCT-116 overexpress TMEM206, which results in enhanced
cellular migration, invasion, and proliferation via AKT/ERK phosphorylation [32]. Al-
though the precise mechanism of action of TMEM206 in other cancerous tissues remains
unknown, TMEM206 could be considered as a diagnostic marker for CRC.

2.3. Calcium-Activated Chloride Channel Regulators

Calcium-activated chloride channel regulators (CLCAs) modulate chloride in epithe-
lia, play critical roles in transporting electrolytes including chloride, modulate function
of TMEM16A and its adhesion molecules, and negatively regulate cancer development.
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Nasopharyngeal, breast, and colorectal cancers have low levels of CLCAs [34–38]. The
CLCA1 protein is primarily expressed in the small intestine, colon, and appendix. The
expressions of CLCA1 and CLCA4 are decreased in intestinal tissues from patients with
CRC, the CRC cell lines SW620 and LOVO, and in hormone receptor-positive breast cancer
cell line MCF7 cells [35,37,38]. CLCA1 is negatively involved in the differentiation of
intestinal Caco-2 cells [38]. Low levels of CLCA2 mRNA and protein have been identified
in nasopharyngeal carcinoma (NPC) S18 and 5-8F cells, whereas overexpressed CLCA2
inhibits FAK/ERK signaling in these cells [34]. Transduction with p53 induces increased
CLCA2 and inhibits the proliferation of breast cancer MCF10A and BT549 cells [36]. Over-
expressed CLCA4 inhibits the epithelial-mesenchymal transition (EMT), which is involved
in the migration and invasion of CRC cells, whereas CLCA4 depleted by shRNA enhances
cellular migratory and invasive ability through enhanced EMT in human mammary epithe-
lial cells [35,37]. Although further evidence is needed, CLCA levels could be considered as
potential diagnostic biomarkers.

2.4. Chloride Intracellular Channels

Chloride intracellular channel 1 (CLIC1; also known as NCC27) belongs to the highly
conserved CLIC family of chloride ion channels [39]. It can reside in the cytoplasm and
temporarily in plasma and internal cell membranes [40]. CLIC1 participates in various
cellular functions, including the maintenance of pH homeostasis, cell survival, cell cycle
regulation, cell volume regulation, membrane potential modulation, and organelle acidi-
fication [40–48]. This channel is upregulated in various cancer type such as prostate [46],
gallbladder (GBC) [48], colon cancer [47], gastric [49], clear cell renal cell carcinoma [50], and
glioblastoma stem cells [51,52]. Overexpressed CLIC1 in patients with HCC [53] positively
correlates with HCC proliferation and metastasis [54]. CLIC1 participates in hypoxia-
induced colonic carcinoma metastasis via the MAPK/ERK pathway [45]. Moreover, CLIC1
is recruited to the plasma membrane in response to chemotaxis, such as directional treat-
ment with epidermal growth factor (EGF) and mechanotaxis and its ectopic expression of
CLIC1 enhances migratory apparatus such as lamellipodia and invadopodia [54]. Hypoxia-
induced tumor cells possess irregular microvascular networks and blood flow [55] and can
be transformed to promote cancer metastasis [56]. Mechanistically, limited blood perfusion
or altered flow due to hypoxic conditions might contribute to the migration and invasion of
cancer cells [57]. Upregulated CLIC1 expression correlates with lymph node metastasis and
lymphatic invasion [49] as well as lung cancer migration and invasion [40]. Cell growth is
promoted by CLIC1 via the MAPK/ERK pathway in prostate cancer [46] and CLIC1 is ex-
pressed in pancreatic ductal adenocarcinoma (PDAC) [58] where it plays an important role
in promoting cancer cell survival, proliferation, and invasion [46,59]. In various regulatory
processes involving CLIC1, small interfering (si)RNAs of CLIC1 induce the downregu-
lation of cell proliferation, growth, and invasiveness of pancreatic cancer cell lines such
as PANC-1 and MIAPaca-2 compared with control cells [58,60]. Furthermore, CLIC1 is
associated with proteasome activator 28 β (PA28 β), and its specific siRNA downregulates
CLIC1 in gastric cancer [61]. A regulatory volume decrease (RVD) is a critical process in
cancer cell motility, such as migration and invasion [62]. The CLIC1 inhibitors IAA94 or
CLIC1-specific siRNAs ameliorate the RVD and decrease the migration and invasion of
CRC LOVO and HT-29 cell lines [45]. The expression of CLIC1 at the mRNA and protein
levels is downregulated by miR-124 transfection in the hepatic cancer cell line HepG2 and
by hsa-miR-372 transfection in the GBC cell lines G-415, OCUG-1, and SGC-996 [63,64]. The
downregulation of CLIC1 reduces cell migration and invasion [63]. The siRNA of CLIC1
enhances expression of the tumor metastasis-related genes annexin A7 and gelsolin, the
knockdown of which increases CLIC1 expression in mouse HCC Hca-F and Hca-P cell
lines, suggesting that CLIC1 interacts with annexin A7 and gelsolin, and mediates tumor
cell migration, invasion, and metastasis [65]. In addition, biguanide-related drugs such as
metformin, morocydine, and proguanil inhibit CLIC1 current and dysregulate prolifera-
tion and invasiveness in glioblastoma stem cells [66]. Cells and tumors expressing Rab25
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have abundant CLIC3 that co-localizes with active integrin α5β1 in ovarian cancer A2780
cells [67]. High CLIC4 expression in PDAC together with Indian hedgehog is a proposed
metastatic marker of PDAC [68]. In contrast, CLIC2 is expressed in non-cancerous masses
and is a potent regulator of tight junctions. The expression of CLIC2 and tight junction
proteins is upregulated in non-cancer, compared with cancer cells, and CLIC2 regulates
the formation of tight junction proteins such as claudin 1, claudin 5, zonula occludens-1,
and occludin [69]. CLIC1 and other types of chloride channels could be potential treatment
strategies for cancer and should be considered as novel diagnostic and therapeutic targets
for prostate, gastric, gallbladder, colon, pancreas, lymphatic, and lung cancers.

2.5. Voltage-Gated Chloride Channels

Voltage-gated chloride channel 3 (CLC-3; also known as CLCN3) is expressed in cell
membranes and intracellular vesicles where it exchanges chloride for hydrogen. CLC-3
protein is expressed in prostate carcinoma [70], nasopharyngeal [62], neuroendocrine [71],
and brain cells [72] and is significantly overexpressed in HCC, compared with normal
control tissues [73]. Moreover, upregulated CLC-3 is associated with HCC tumor size
and prognosis [73]. Overexpressed CLC-3 protein participates in cell proliferation and
migration. The regulation of cell volume by CLC-3 is involved in the development and
metastasis of NPC and prostate cancer [62,70,74]. Signaling by Wnt/β-catenin contributes
to metastasis and adhesion by regulating the EMT process in tumorigenesis [75,76]. The
expression of CLC-3 is more abundant in tissues at the late stage of CRC and in the CRC
LOVO and SW620 compared with that in normal cells. SiRNA-CLC-3 (siCLC-3) inhibits
CRC cell viability, proliferation, and metastasis by inhibiting Wnt/β-catenin signaling,
whereas the Wnt/β-catenin activator lithium chloride rescues the effect of siCLC-3 [77].
CLC-3 could be a prognostic marker for HCC, CRC, NPC, and prostate cancer. Patients with
breast cancer are treated with tamoxifen, a non-steroidal anticancer agent [78] that inhibits
the migration, chloride current, and volume regulatory mechanisms in HCC MHCC97H
cells in vitro [79]. The activator of protein kinase C (PKC) phorbol-12-myristate-13 acetate
(PMA) inhibits PKC expression in the presence of tamoxifen and reduces the migration
of cells with CLC-3 knockdown, suggesting that CLC-3 is involved in the mechanism
of anticancer drug and cellular volume regulation [80]. CLC-4 is expressed on the cell
surface and intracellular endosomal membranes in the CRC cell lines RKO and LS174 [81].
The migration and invasion of CRC cells is reduced by CLC-4 siRNA or shRNA [82].
Incomplete glucose metabolism results in increased intracellular proton concentrations
driven by CLC-4, which maintains a neutral intracellular pH and the essential proton
extrusion mechanism [83]. The regulation of pH by CLC-4 in the endosomal compartment
might participate in promoting invasive ability. Active acidification of large intracellular
endosomal vesicles by a vacuolar H+-ATPase promotes proteolysis of the extracellular
matrix, activates pro-cathepsin D which is activated when acidic condition is triggered, and
facilitates proteolytic function on the basement membrane [82,84]. pH regulation in the
cytosol and intracellular organelles in RKO cells overexpressing CLC-4 results in resistance
to acid-induced cytotoxicity, which is similar to an acidic tumor microenvironment and the
enhanced ability of colon cancer cells to migrate [82].

2.6. Cystic Fibrosis Transmembrane Conductance Regulator

Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated
chloride channel that regulates the balance of electrolytes in the respiratory and endocrine
systems, exocrine glands, and other tissues. Malfunctioning and/or abnormal expression
of CFTR have been found in various types of cancer. The upregulated expression of CFTR
is associated with an invasive phenotype in cervical and ovarian carcinomas [85,86]. Con-
versely, the mRNA and protein expression of CFTR are reduced in NPC 5-8F, 6-10B, and
HNE-1, compared with normal cells, whereas CFTR knockdown increases NPC cell mi-
gration and invasion [87]. Enhanced CFTR protein expression in NPC 5-8F cells increases
epithelial markers such as occludin and E-cadherin, and attenuates the mesenchymal
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marker smooth muscle actin [87]. In addition, protein expression of CFTR is decreased in
CRC, compared with normal tissues [88]. However, CFTR mRNA overexpression decreases
cell proliferation, migration, and invasion in the CRC cell lines HCT116 and CaCo-2 [88].
The results of studies on the roles of CFTR in cancer have been contradictory. Enhanced
CFTR expression inhibits various cancerous processes such as EMT in breast carcinoma [89],
lung cancer [90], NPC [87], endometrial carcinoma cells [91], prostate cancer [92], and in-
testinal carcinoma [93]. Cisplatin increases CFTR expression and enhances chemoresistance
and the cell viability of prostate cancer tissues compared with chemo-sensitive prostate
cancer tissues in vivo and LNCaP cells in vitro [94]. Nicotine is a potential cause of lung
cancer and a progressive enhancer of adenocarcinoma cells that inhibits the CFTR protein
expression in A549 cells [95]. Although the CFTR gene could act as a tumor suppressor, its
roles in various cell types and cancer cells need to be defined.

2.7. Voltage-Dependent Anion Channels

The expression of voltage-dependent anion channels (VDACs) on the mitochondrial
membrane of all eukaryotes, including mammals [96], is increased in various tumor tissues,
such as carcinoma of the breast [97], colon [98], thyroid gland [99], lung [100], pancreas [101],
and liver [102] compared with that in normal tissues. The VDAC1, 2, and 3 isotypes of these
channels play different roles; VDAC1 and VDAC2 participate in pore formation within the
mitochondrial membrane [96] and VDAC3 participates in the regulation of mitochondrial
membrane potential [103]. The expression of VDAC is associated with neurodegenerative
disorders and muscular and myocardial diseases including various types of cancers [104].
The progression of tumorigenesis is decreased in HeLa cells with depleted VDAC1 [105].
The expression of VDAC1 is more abundant in cancer, A549, and HeLa cells, than in normal
WI-38 fibroblasts derived from lung tissue [106], HCC tissues, HepG2 and SMMC7721 cells,
as well as lung adenocarcinoma tumors [107]. Small interfering RNA-VDAC1 and miR-7
downregulate cell growth, proliferation, migration, and invasion in HCC tissues [102], lung
cancer A549 cells [100], and cervical cancer HeLa cells [105]. Furthermore, miR-490-3p is
significantly associated with the carcinogenesis of various cancers [98], and it can regulate
the growth and EMT of HCC cells [108] and the invasiveness of triple-negative breast cancer
cells, MDA-MB-231, and MDA-MB-436 [109]. MiR-490-3p downregulates VDAC1 through
the mammalian target of rapamycin (mTOR) pathway in CRC tissues and cell lines [98].
The expression of VDAC2 is upregulated in melanoma cells and HCC cell lines such as
HepG2 [110] but downregulated in glioma stem cells [111] and it plays an anti-apoptotic
role in primary cultured mouse embryonic fibroblasts. Although its different role of VDACs
is defined, precise roles of VDAC family in different cancers remain unresolved and await
identification in future studies.

2.8. Volume-Regulated Anion Channel

Volume regulation is critical function to maintain cellular fate. Volume-regulated
anion channels (VRACs; also called volume-sensitive organic osmolyte anion channel or
swelling-induced chloride current IClswell) are considered as regulatory channels of cellular
volume [112]. VRAC is involved in the RVD and regulates proliferation of nasopharyngeal
carcinoma cell [113–115], OSCC HST-1 cells [27], and gastric cancer [116]. Inhibited VRAC
by 4-(2-Butyl-6,7-dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid (DCPIB) reduces
proliferation, migration, and invasion of glioblastoma U251 and U87 cells [117]. Leucine-
rich-repeat-containing 8A (LRRC8A, also called SWELL1) is component protein of VRAC.
LRRC8A expresses in HCC tissues and induced cellular proliferation and migration in HCC
SMMC-7721, Sk-hep-1, Huh7, and HCCLM3 cells [118]. Moreover, survival of cisplatin-
resistant A549 cells or A2780 cells is modulated by the LRRC8A [119,120]. Although
dual function of VRAC components LRRC8A and LRRC8D on drug resistance has been
addressed [121], VRACs may be associated with chemo-resistant mechanism and are
needed to verify its precise mechanism in various cancers.
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2.9. Chloride-Bicarbonate Exchangers

Chloride-bicarbonate (CB) exchangers consist of solute carrier (SLC) families, includ-
ing anion exchangers (AEs) and SLC26As. The CB exchangers mediate the electroneutral
or electrogenic exchange of bicarbonate for chloride (respective stoichiometry of chloride:
bicarbonate, 1:1 or 1:2) and are associated with the regulation of intracellular pH. The anion
exchangers AE1, AE2, AE3, and AE4 [122–125] are expressed in various tissues and localize
in the plasma membrane. Both AE1 and AE2 are involved in cancer whereas other AEs
are unknown. Histologic findings have shown that AE1 is expressed in the cytoplasm of
gastric cancer cells [126,127]. Knockdown of AE1 induces the release of p16INK4A and
inhibits gastric cancer growth [126,128]. The expression of AE1 positively correlates with
cancer size and metastasis [127]. Although the modulation of AE1 expression is poorly
verified, miR-24-mediates AE1 attenuation in gastric cancer cells [129]. The expression of
AE1 is associated with tumor progression through crosstalk with MAPK and hedgehog
signaling pathways in esophageal carcinoma [130]. Although AE2 is expressed in most
tissues, it has been addressed that the AE2 gene is highly expressed in HCC cells, gastric,
and colorectal cancers [131–135]. An antisense oligonucleotide of AE2 inhibits HCC pro-
gression [135]. AE2 is also expressed in ovarian cancer and it participates in tumorigenesis
through activation of the mTOR/p70S6K1 pathway [136]. AE2a that is localized in the
Golgi apparatus is involved in the malignancy of SW-48 CRC cells [137]. We previously
found that the anti-alcoholism agent disulfiram exerts anticancer effects and attenuates
the membrane expression of AE2 and the supportive enzyme carbonic anhydrase XII
through disturbed homeostatic pH regulation in lung cancer cells [138]. Our Western
blotting findings in vitro also showed that disulfiram attenuated AE2 protein expression
and CB exchanging activity in the breast cancer cell lines MDA-MB-231 and MCF-7 [138].
Although anti-cancer effect of disulfiram is addressed, the clinical relevance of AE2 in these
cancers and the clinical effects of disulfiram should be verified more precisely in other
types of cancer. The role of the SLC26 family in cancerous tissues or mechanisms is not
well understood. Chondrodysplasias, chronic chloride diarrhea, and deafness in humans
are linked to SLC26A2, SLC26A3, and SLC26A4, respectively [139]. SLC26A3 participates
in chloride homeostasis and interactions with CFTR [140]. The expression of SLC26A3 is
downregulated and modulated by the stomach-specific 18 kDa antrum mucosal protein in
gastric cancer cells [141]. Analyses of gene sets and protein-protein networks have revealed
a relationship between SLC26A6 and HCC [142]. However, further detailed investigation
is needed to reveal whether any members of the SLC26A family have potential to serve as
diagnostic or prognostic markers in cancerous tissues.

3. Perspectives

The modulation of chloride channels/transporters in cancers has been considered as
challenging issues. Complicated ion movements, crosstalk among channels/transporters,
difficulties with experimental implementation, and/or compensation of unidentified mech-
anisms hamper investigations into ion channels/transporters. For example, studies of
intracellular ion channels, not plasma membrane-associated channels, have struggled with
technical limitations in terms of verifying physiological roles [143].

Recently, advanced therapeutic candidates of chloride transport were reviewed in
various organ diseases such as inflammatory lung disease, osteoporosis, dry eye disorders,
hypertension, polycystic kidney disease, and kidney stone [112]. Although approved
drugs or preclinical trials of chloride transporters are suggested [112], approaches in
multiple cancers remain mostly unknown. Thus, this review would be beneficial to expand
developed application of trials through an overview of chloride channel/transporter-
associated cancers. Interestingly, several chloride channels/transporters are involved in
at least two types of cancer (Figure 1 and Table 1). Although shared chloride channels
might not reflect similarity among types of cancer, multiple facets should be considered
to verify the roles of transporters and convergent regulation in normal and cancer tissues.
Moreover, identifying crosstalk among cancers through shared chloride channels might
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provide valuable clues to metastatic cancer. Although accumulating information about
chloride channels and transporters provides both challenges to investigator and potential
therapeutic targets against cancer, mechanism of channels and transporters requires further
verification. In addition, application of developed chloride transport modulators for
cancers should be beneficial to verify off-target effect and toxicity on normal tissue for
cancer treatment.
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Table 1. Diseases-related chloride channels/transporters and their functions.

Diseases Chloride
Channels/Transporters Function Reference

Lung cancer

TMEM16A

Cell proliferation and development to
malignant tumor

Positive correlation between TMEM16A
and EGFR

[2,11,19]

TMEM206 Enhanced cellular migration, invasion, and
proliferation [32]

CLIC1 Enhanced cellular migration and invasion [40]

CFTR Inhibited various cancer-related processes,
such as EMT [90,95]

VDAC1 Cell growth, proliferation, migration,
and invasion [100,107]

Pancreatic cancer

TMEM16A Cell proliferation and development to
malignant tumor [3]

CLIC1 Cell proliferation, growth, and
invasiveness [58,60]

CLIC4 Proposed metastatic marker [68]
VDAC1 Cell growth, invasion, and migration [101]
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Table 1. Cont.

Diseases Chloride
Channels/Transporters Function Reference

Hepatic cancer

TMEM16A Cell proliferation and development to
malignant tumor [12,20]

CLIC1 Promoted cancer cell survival,
proliferation, and invasion [53,54,59,63,65]

CLIC2 Correlated with the tight junction [69]

CLC3
Related to tumor size and

prognosis marker
Cell volume regulation

[73,79,80]

VDAC1
Regulated cell growth and EMT

Cell growth, proliferation, migration,
and invasion

[102,108]

VDAC3 Regulation of mitochondrial
membrane potential [103]

AE2 Inhibited proliferation and viability of
cancer cells [131,135]

SLC26A6 Diagnostic or prognostic biomarker
for cancer [142]

Nasopharyngeal cancer

CLCA2 Negatively regulate cancer development
Regulate FAK/ERK signaling [34]

CLC3 Correlation between cell volume regulation
and cancer development and metastasis [62,74]

CFTR Enhanced cell migration and invasion
Regulate EMT [87]

VRAC Regulates proliferation [115]

Breast cancer

TMEM16A Cell proliferation and development to
malignant tumor [5]

CLCA2 Negatively regulate cancer development [36]

CLCA4 Negatively regulate cancer development
Decreased EMT [37]

CFTR Inhibited various cancer-related processes,
such as EMT [89]

VDAC1 Promoted cell proliferation [97]

Colorectal cancer

TMEM16A Cell proliferation and development to
malignant tumor [6,21]

Bestrophin-1 Involved in cellular proliferation [24]
CLCA1 Negatively regulate cancer development [38]

CLCA4 Negatively regulate cancer development
Decreased EMT [35]

CLIC1 Enhanced cellular migration and invasion [45,47]

CLC3 Regulate cell viability, proliferation, and
metastasis [77]

CLC4 Regulate invasion, migration, and pH of
cytosolic and intracellular organelles [81,82]

CFTR Decreased cell proliferation, migration,
and invasion [88]

VDAC1 Regulate apoptosis, proliferation,
migration, and invasion [98]

AE2
Contributed to progression of cancer

Promote tumor cell malignancy
Responsible for elevated Golgi resting pH

[132,137]
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Table 1. Cont.

Diseases Chloride
Channels/Transporters Function Reference

Prostate cancer

TMEM16A Cell proliferation and development to
malignant tumor [4]

CLIC1 Promoted cancer cell survival,
proliferation, and invasion [46]

CLC3 Correlation between cell volume regulation
and cancer development/ metastasis [70]

CFTR
Inhibited various cancer-related processes,

such as EMT
Enhanced chemo-resistance

[92,94]

Gallbladder cancer CLIC1 Enhanced cellular migration and invasion [48,64]

Gastric cancer

TMEM16A Cell proliferation and development to
malignant tumor [7]

CLIC1 Enhanced cellular migration and invasion [44,49,61]

AE1

Involved in release of p16INK4A and
cell growth

Positive correlation with cancer size
and metastasis

[126–129]

AE2 Contributed to progression of cancer [133,134]
SLC26A3 Interact with AMP18 [141]

VRAC Regulates proliferation [116]

Brain tumor

TMEM16A Cell proliferation and development to
malignant tumor [8,9]

CLC3 Enhanced cell invasion [72]

VDAC2 Regulator for the metabolic
reprogramming [111]

Clear cell renal cell
carcinoma CLIC1 Cell invasion [50]

Neuroendocrine tumor CLC3 Enhanced resistance to anticancer drug [71]

Esophageal cancer

TMEM16A Cell proliferation and development to
malignant tumor [10]

AE1
Related with tumor progression through
the crosstalk with MAPK and hedgehog

signaling pathways
[130]

Liposarcoma TMEM16A Cell proliferation and development to
malignant tumor [13]

Leiomyosarcoma TMEM16A Cell proliferation and development to
malignant tumor [14]

Salivary gland cancer TMEM16A Cell proliferation and development to
malignant tumor [15]

Chondroblastoma TMEM16A Cell proliferation and development to
malignant tumor [16]

Hydatidiform moles CLIC1 Enhanced cellular migration and invasion [43]

Ovarian cancer cells
CLIC3 Co-localized with active integrin α5β1

Cell migration and invasion [67]

CFTR Enhanced cell invasion and migration [85]

AE2 Involved in tumorigenesis through
activation of the mTOR/p70S6K1 pathway [136]

Cervical cancer
CFTR Enhanced cell invasion and migration [86]

VDAC1 Regulate progression of tumorigenesis [105]
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Table 1. Cont.

Diseases Chloride
Channels/Transporters Function Reference

Endometrial cancer

CFTR Inhibited various cancer-related processes,
such as EMT [91]

VDAC1

Pore-forming role in mitochondrial
membrane

Cell growth, proliferation, migration, and
invasion

[96]

Oral squamous cell
carcinoma

Bestrophin-1 Involved in proliferation
[27]VRAC Regulates proliferation
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