Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Pyridine-4-carbaldehyde-fumaric acid (2/1)

Bhupinder Sandhu,^a Sergiu Draguta,^a Marina S. Fonari,^b* Mikhail Antipin^a and Tatiana V. Timofeeva^a

^aDepartment of Chemistry & Biology, New Mexico Highlands University, 803 University Avenue, Las Vegas, NM 87701, USA, and ^bInstitute of Applied Physics Academy of Sciences of Moldova, Academy str. 5, MD-2028 Chisinau, Republic of Moldova

Correspondence e-mail: fonari.xray@gmail.com

Received 22 March 2013; accepted 15 May 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.001 Å; R factor = 0.033; wR factor = 0.094; data-to-parameter ratio = 14.9.

In the title co-crystal, $2C_6H_5NO \cdot C_4H_4O_4$, two crystallographically different hydrogen-bonded trimers are formed, one in which the components occupy general positions, and one generated by an inversion centre. This results in the uncommon situation of Z = 3 for a triclinic crystal. In the formula units, molecules are linked by $O-H \cdot \cdot \cdot N$ hydrogen bonds.

Related literature

For background to the synthetic procedure, see: Aakeroy *et al.* (2006); Desiraju (2003). For the use of pyridine-4-carboxaldehyde in cytokine suppressive drugs, see: Boehm *et al.* (1996). For adducts of neutral pyridine derivatives and neutral fumaric acid, see: Bowes *et al.* (2003); Aakeroy *et al.* (2002, 2006, 2007); Batchelor *et al.* (2000). For a related structure, see: Liu *et al.* (2003).

Experimental

Crystal data $2C_6H_5NO \cdot C_4H_4O_4$ $M_r = 330.29$

Triclinic, $P\overline{1}$ a = 6.9388 (12) Å

b = 10.1962 (18) Å	Z = 3
c = 17.002 (3) Å	Mo $K\alpha$ radiation
$\alpha = 82.450 \ (3)^{\circ}$	$\mu = 0.11 \text{ mm}^{-1}$
$\beta = 78.615 \ (3)^{\circ}$	T = 100 K
$\gamma = 80.064 \ (3)^{\circ}$	$0.04 \times 0.03 \times 0.02 \text{ mm}$
V = 1155.6 (4) Å ³	
Data collection	
Bruker APEXII CCD	11918 measured reflections
diffractometer	5022 independent reflections
Absorption correction: multi-scan	4351 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2003)	$R_{\rm int} = 0.018$
$T_{\min} = 0.996, \ T_{\max} = 0.998$	
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.033$	H atoms treated by a mixture
$m P(F^2) = 0.004$	independent and constraine

K[T > 20(T)] = 0.055	In atoms treated by a mixture of
$wR(F^2) = 0.094$	independent and constrained
S = 1.06	refinement
5022 reflections	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
337 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} \hline O9-H9A\cdots N3\\ O5-H5\cdots N1\\ O7-H7\cdots N2 \end{array}$	1.030 (19)	1.576 (19)	2.6047 (12)	176.1 (17)
	1.03 (2)	1.57 (2)	2.5952 (12)	172.0 (18)
	1.050 (19)	1.54 (2)	2.5826 (12)	172.9 (18)

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors are grateful for NSF support *via* DMR grant 0934212 (PREM) and CHE 0832622.)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2133).

References

- Aakeroy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425–14432.
- Aakeroy, C. B., Hussain, I. & Desper, J. (2006). Cryst. Growth Des. 6, 474–480.
 Aakeroy, C. B., Hussain, I., Forbes, S. & Desper, J. (2007). CrystEngComm, 9, 46–54.
- Batchelor, E., Klinowski, J. & Jones, W. (2000). J. Mater. Chem. 10, 839-848.
- Boehm, J. C., Smietana, J. M., Sorenson, M. E., Garigipati, R. S., Gallagher, T. F., Sheldrake, P. L., Bradbeer, J., Badger, A. M., Laydon, J. T., Lee, J. C., Hillegass, L. M., Griswold, D. E., Breton, J. J., Chabot-Fletcher, M. C. & Adams, J. L. (1996). J. Med. Chem. 39, 3929–3937.
- Bowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100–117.
- Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. (2003). CrystEngComm, 5, 466-467.
- Liu, Y., Xu, D.-J. & Hung, C.-H. (2003). Acta Cryst. E59, m297-m299.
- Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2013). E69, o940 [doi:10.1107/S1600536813013445]

Pyridine-4-carbaldehyde-fumaric acid (2/1)

Bhupinder Sandhu, Sergiu Draguta, Marina S. Fonari, Mikhail Antipin and Tatiana V. Timofeeva

Comment

The co-crystallization process is widely used to obtain new solid forms of active pharmaceutical ingredients (API) with enhanced physiochemical properties such as stability, dissolution rate, and solubility without altering their pharmacological behavior (Aakeroy *et al.* 2006; Desiraju, 2003). The pyridine-4-carboxaldehyde and fumaric acid are widely used in the biological and medicinal fields. Pyridine-4-carboxaldehyde is used as a starting material for the preparation of cytokine suppressive drugs to treat arthritis (Boehm *et al.* 1996). Fumaric acid is of interest since it is known to form supramolecular assemblies with N-aromatic bases (Batchelor *et al.*2000) and is generally regarded as safe (GRAS) in the list of pharmaceutically acceptable cocrystal formers. The asymmetric unit of the title compound contains three planar molecules of pyridine-4-carboxaldehyde, and one and a half molecules of fumaric acid. They comprise two crystallographically different H-bonded trimers (C₆H₅NO)₂(C₄H₄O₄), one of which occupies general position, while another resides on an inversion center in the triclinic unit cell as shown in Fig. 1. In the fumaric acid molecules, the C₂₂— O₆, C₁₉—O₄, and C₂₃—O₈ bond distances of 1.220 (3) Å, 1.219 (2) Å, 1.215 (3) Å are much shorter than the C₂₂—O₇, C₁₉ —O₅, and C₂₃—O₉ bond distances of 1.312 (3) Å, 1.318 (2) Å, and 1.317 (2) Å respectively, indicating the neutral carboxyl groups in the crystal structure (Liu *et al.* 2003). However, the carboxylic O—H-atoms are on their way to the pyridine nitrogen atoms as it follows from the increased O—H distances in comparison with the standard values (0.86 Å).

The dihedral angles between the planar pyridine rings and the mean planes of fumaric acid molecules are 19.2° and 22.2° in the first, and of 25.7° in the second formula units in the crystal structure.

In the trimer, the neutral entities are held together *via* two (COOH) H···N (pyridine) hydrogen-bonds forming a complementary ADA array. The slightly corrugated aggregates are packed in stacks as shown in Fig. 2. The crystal packing is further stabilized by the weak C—H···O intermolecular interactions with participation of carbonyl oxygen atoms.

Experimental

Pyridine-4-carboxaldehyde (19.3 μL , 0.20 mmol) was dissolved in 5 ml of ethanol. To this solution was added fumaric acid (0.012 g, 0.10 mmol) in 5 mL of ethanol. The resulting solution was heated until the both compounds were dissolved completely and allowed to stand for slow evaporation. White prisms were obtained after 3 days. mp 215–220°C.

Refinement

The hydrogen atoms of carboxylic groups of O5, O7 and O9 were localized in the difference-Fourier map and refined freely in isotropic approximation. The other hydrogen atoms were placed in calculated positions with C—H = 0.93 Å and refined in the riding model with fixed isotropic displacement parameters $[U_{iso}(H) = 1.2Ueq(C)]$.

Computing details

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The molecular structure of $(C_6H_5NO)_2$ ($C_4H_4O_4$) showing (50%) probablity displacement ellipsoids and the atoms numbering scheme.

Figure 2

Crystal packing showing intermolecular hydrogen bonding interactions, view along c axis.

Pyridine-4-carbaldehyde-fumaric acid (2/1)

Crystal data	
$2C_6H_5NO\cdot C_4H_4O_4$	c = 17.002 (3) Å
$M_r = 330.29$	$\alpha = 82.450 \ (3)^{\circ}$
Triclinic, $P\overline{1}$	$\beta = 78.615 \ (3)^{\circ}$
Hall symbol: -P 1	$\gamma = 80.064 \ (3)^{\circ}$
a = 6.9388 (12) Å	V = 1155.6 (4) Å ³
b = 10.1962 (18) Å	Z = 3

F(000) = 516 $D_x = 1.424 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 15620 reflections $\theta = 2.5-30.8^{\circ}$

Data collection

Bruker APEXII CCD	11918 measured reflections
diffractometer	5022 independent reflections
Radiation source: fine-focus sealed tube	4351 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.018$
φ and ω scans	$\theta_{\rm max} = 27.0^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -8 \longrightarrow 8$
(SADABS; Sheldrick, 2003)	$k = -13 \rightarrow 13$
$T_{\min} = 0.996, \ T_{\max} = 0.998$	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.094$	neighbouring sites
S = 1.06	H atoms treated by a mixture of independent
5022 reflections	and constrained refinement
337 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0502P)^2 + 0.2407P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\mu = 0.11 \text{ mm}^{-1}$ T = 100 K

Prism, white

 $0.04 \times 0.03 \times 0.02 \text{ mm}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	v	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
01	0.03877 (12)	0.13984 (9)	0.93015 (5)	0.02957 (19)
O3	0.32546 (12)	0.76849 (8)	0.60910 (4)	0.02667 (18)
O2	0.31931 (13)	0.49716 (8)	-0.26052 (5)	0.02852 (19)
08	0.41401 (12)	0.85465 (8)	0.13133 (4)	0.02579 (18)
O9	0.53088 (12)	1.02613 (8)	0.16686 (4)	0.02420 (18)
H9A	0.497 (3)	0.9765 (19)	0.2235 (11)	0.069 (6)*
O6	0.09363 (12)	0.27889 (8)	0.18081 (4)	0.02574 (18)
O7	0.22987 (12)	0.45738 (8)	0.19320 (4)	0.02386 (18)
O5	0.10344 (12)	0.24097 (8)	0.47468 (4)	0.02441 (18)
H5	0.104 (3)	0.222 (2)	0.5358 (12)	0.076 (6)*
O4	0.24013 (12)	0.41873 (8)	0.48845 (4)	0.02556 (18)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

N1	0.08206 (13)	0.17896 (9)	0.62885 (5)	0.02060 (19)	
N3	0.44019 (13)	0.91008 (9)	0.31230 (5)	0.02018 (19)	
N2	0.24664 (13)	0.50591 (9)	0.03924 (5)	0.02043 (19)	
C4	0.07788 (15)	0.27059 (11)	0.67926 (7)	0.0227 (2)	
H4	0.0919	0.3598	0.6573	0.027*	
C3	0.05391 (15)	0.24005 (11)	0.76207 (6)	0.0217 (2)	
H3	0.0500	0.3072	0.7964	0.026*	
C2	0.03570 (15)	0.10889 (10)	0.79403 (6)	0.0192 (2)	
C6	0.03953 (15)	0.01376 (10)	0.74200 (6)	0.0204 (2)	
H6	0.0265	-0.0763	0.7622	0.024*	
C5	0.06278 (15)	0.05330(11)	0.65996 (6)	0.0208 (2)	
H5A	0.0652	-0.0115	0.6243	0.025*	
C1	0.01669 (15)	0.06833 (11)	0.88228 (6)	0.0231 (2)	
H1	-0.0145	-0.0185	0.9020	0.028*	
C16	0.40393 (15)	0.97924 (10)	0.37691 (6)	0.0214 (2)	
H16	0.4064	1.0730	0.3689	0.026*	
C15	0.36315 (15)	0.91885 (10)	0.45471 (6)	0.0207 (2)	
H15	0.3347	0.9706	0.4993	0.025*	
C14	0.36431 (14)	0.78107 (10)	0.46684 (6)	0.0184 (2)	
C18	0.40079 (15)	0.70913 (10)	0.40001 (6)	0.0206 (2)	
H18	0.4011	0.6151	0.4064	0.025*	
C17	0.43668 (15)	0.77782 (11)	0.32371 (6)	0.0216 (2)	
H17	0.4596	0.7293	0.2779	0.026*	
C13	0.33112 (15)	0.71201 (11)	0.55014 (6)	0.0211 (2)	
H13	0.3138	0.6205	0.5572	0.025*	
C11	0.23959 (15)	0.40809 (11)	-0.00530 (6)	0.0219 (2)	
H11	0.2156	0.3230	0.0213	0.026*	
C12	0.26613 (15)	0.42703 (10)	-0.08878 (6)	0.0206 (2)	
H12	0.2629	0.3558	-0.1191	0.025*	
C8	0.29763 (14)	0.55274 (10)	-0.12722 (6)	0.0188 (2)	
С9	0.30255 (15)	0.65446 (10)	-0.08099 (6)	0.0203 (2)	
H9	0.3224	0.7413	-0.1059	0.024*	
C10	0.27795 (15)	0.62679 (10)	0.00226 (6)	0.0205 (2)	
H10	0.2835	0.6957	0.0340	0.025*	
C7	0.32694 (15)	0.57964 (11)	-0.21668 (6)	0.0214 (2)	
H7A	0.3529	0.6659	-0.2405	0.026*	
C23	0.48373 (15)	0.95840 (10)	0.11436 (6)	0.0198 (2)	
C24	0.52458 (16)	1.02301 (11)	0.03024 (6)	0.0228 (2)	
H24	0.5885	1.1003	0.0201	0.027*	
C22	0.15105 (15)	0.34887 (10)	0.22167 (6)	0.0192 (2)	
C21	0.13369 (15)	0.31551 (10)	0.31054 (6)	0.0202 (2)	
H21	0.0709	0.2407	0.3347	0.024*	
C20	0.20063 (15)	0.38402 (10)	0.35802 (6)	0.0200 (2)	
H20	0.2633	0.4590	0.3340	0.024*	
C19	0.18294 (15)	0.35002 (10)	0.44683 (6)	0.0193 (2)	
H7	0.231 (3)	0.471 (2)	0.1308 (12)	0.077 (6)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
01	0.0306 (4)	0.0372 (5)	0.0216 (4)	-0.0025 (3)	-0.0053 (3)	-0.0080 (3)
O3	0.0327 (4)	0.0302 (4)	0.0173 (4)	-0.0076 (3)	-0.0034 (3)	-0.0010 (3)
O2	0.0369 (5)	0.0287 (4)	0.0214 (4)	-0.0058 (3)	-0.0054 (3)	-0.0065 (3)
08	0.0331 (4)	0.0260 (4)	0.0196 (4)	-0.0131 (3)	-0.0037 (3)	0.0027 (3)
09	0.0328 (4)	0.0262 (4)	0.0154 (4)	-0.0109 (3)	-0.0047 (3)	0.0004 (3)
O6	0.0345 (4)	0.0251 (4)	0.0205 (4)	-0.0114 (3)	-0.0067 (3)	-0.0005 (3)
O7	0.0316 (4)	0.0245 (4)	0.0168 (4)	-0.0131 (3)	-0.0033 (3)	0.0033 (3)
O5	0.0333 (4)	0.0244 (4)	0.0171 (4)	-0.0126 (3)	-0.0042 (3)	0.0029 (3)
O4	0.0322 (4)	0.0261 (4)	0.0211 (4)	-0.0108 (3)	-0.0063 (3)	-0.0016 (3)
N1	0.0189 (4)	0.0237 (5)	0.0186 (4)	-0.0052 (3)	-0.0027 (3)	0.0017 (3)
N3	0.0197 (4)	0.0228 (4)	0.0178 (4)	-0.0044 (3)	-0.0031 (3)	-0.0001 (3)
N2	0.0187 (4)	0.0232 (5)	0.0188 (4)	-0.0047 (3)	-0.0024 (3)	0.0009 (3)
C4	0.0221 (5)	0.0190 (5)	0.0273 (5)	-0.0056 (4)	-0.0058 (4)	0.0024 (4)
C3	0.0231 (5)	0.0199 (5)	0.0237 (5)	-0.0049 (4)	-0.0055 (4)	-0.0036 (4)
C2	0.0161 (5)	0.0222 (5)	0.0191 (5)	-0.0041 (4)	-0.0022 (4)	-0.0017 (4)
C6	0.0209 (5)	0.0185 (5)	0.0214 (5)	-0.0056 (4)	-0.0022 (4)	0.0002 (4)
C5	0.0216 (5)	0.0220 (5)	0.0191 (5)	-0.0052 (4)	-0.0019 (4)	-0.0035 (4)
C1	0.0215 (5)	0.0268 (5)	0.0196 (5)	-0.0030 (4)	-0.0021 (4)	-0.0006 (4)
C16	0.0233 (5)	0.0190 (5)	0.0222 (5)	-0.0054 (4)	-0.0039 (4)	-0.0011 (4)
C15	0.0217 (5)	0.0215 (5)	0.0198 (5)	-0.0052 (4)	-0.0031 (4)	-0.0041 (4)
C14	0.0161 (5)	0.0222 (5)	0.0175 (5)	-0.0056 (4)	-0.0029 (4)	-0.0006 (4)
C18	0.0218 (5)	0.0194 (5)	0.0214 (5)	-0.0047 (4)	-0.0040 (4)	-0.0030 (4)
C17	0.0219 (5)	0.0241 (5)	0.0197 (5)	-0.0041 (4)	-0.0033 (4)	-0.0050 (4)
C13	0.0205 (5)	0.0226 (5)	0.0202 (5)	-0.0060 (4)	-0.0033 (4)	0.0005 (4)
C11	0.0210 (5)	0.0201 (5)	0.0252 (5)	-0.0062 (4)	-0.0054 (4)	0.0023 (4)
C12	0.0214 (5)	0.0194 (5)	0.0227 (5)	-0.0052 (4)	-0.0058 (4)	-0.0022 (4)
C8	0.0161 (5)	0.0221 (5)	0.0182 (5)	-0.0032 (4)	-0.0032 (4)	-0.0017 (4)
C9	0.0216 (5)	0.0184 (5)	0.0208 (5)	-0.0048 (4)	-0.0035 (4)	-0.0002 (4)
C10	0.0213 (5)	0.0209 (5)	0.0192 (5)	-0.0038 (4)	-0.0027 (4)	-0.0028 (4)
C7	0.0226 (5)	0.0226 (5)	0.0188 (5)	-0.0040 (4)	-0.0038 (4)	-0.0008(4)
C23	0.0186 (5)	0.0229 (5)	0.0174 (5)	-0.0036 (4)	-0.0029 (4)	-0.0002 (4)
C24	0.0281 (5)	0.0230 (5)	0.0185 (5)	-0.0109 (4)	-0.0035 (4)	0.0022 (4)
C22	0.0185 (5)	0.0200 (5)	0.0179 (5)	-0.0036 (4)	-0.0019 (4)	0.0008 (4)
C21	0.0211 (5)	0.0207 (5)	0.0180 (5)	-0.0060 (4)	-0.0019 (4)	0.0024 (4)
C20	0.0210 (5)	0.0194 (5)	0.0188 (5)	-0.0058 (4)	-0.0018 (4)	0.0022 (4)
C19	0.0183 (5)	0.0200 (5)	0.0188 (5)	-0.0039 (4)	-0.0022 (4)	0.0006 (4)

Geometric parameters (Å, °)

01—C1	1.2089 (14)	C16—C15	1.3810 (14)	
O3—C13	1.2109 (13)	C16—H16	0.9500	
O2—C7	1.2089 (13)	C15—C14	1.3917 (15)	
O8—C23	1.2155 (13)	C15—H15	0.9500	
O9—C23	1.3175 (13)	C14—C18	1.3909 (14)	
O9—H9A	1.030 (19)	C14—C13	1.4898 (14)	
O6—C22	1.2199 (13)	C18—C17	1.3890 (14)	
O7—C22	1.3119 (12)	C18—H18	0.9500	

O7—H7	1.050 (19)	С17—Н17	0.9500
O5-C19	1.3171 (12)	С13—Н13	0.9500
O5—H5	1.03 (2)	C11—C12	1.3866 (15)
O4—C19	1.2191 (13)	С11—Н11	0.9500
N1—C5	1.3388 (14)	C12—C8	1.3921 (14)
N1—C4	1.3415 (14)	C12—H12	0.9500
N3—C17	1.3408 (14)	C8—C9	1.3897 (14)
N3—C16	1.3418 (13)	C8—C7	1.4892 (14)
N2—C10	1.3403 (14)	C9—C10	1.3888 (14)
N2—C11	1.3419 (14)	С9—Н9	0.9500
C4—C3	1.3846 (15)	C10—H10	0.9500
C4—H4	0.9500	C7—H7A	0.9500
C3—C2	1,3928 (14)	C23—C24	1.4888 (14)
C3—H3	0.9500	C_{24} $C_{24^{i}}$	1.309 (2)
$C^2 - C^6$	1 3896 (14)	C24—H24	0.9500
$C^2 - C^1$	1 4890 (14)	C^{22} C^{21}	1 4900 (14)
C6-C5	1 3856 (14)	C_{21} C_{20}	1.1900(11) 1.3280(15)
С6—Н6	0.9500	C21—H21	0.9500
C5—H5A	0.9500	C_{20} C_{19}	1 4897 (14)
C1H1	0.9500	C_{20} H_{20}	0.9500
C1—III	0.9500	C20—1120	0.9300
С23—О9—Н9А	108 3 (10)	O3-C13-C14	122.26 (10)
C22—O7—H7	107.3 (11)	03—C13—H13	118.9
C19 - 05 - H5	109.4 (11)	C14—C13—H13	118.9
C5-N1-C4	118.60 (9)	N2-C11-C12	122.25 (9)
C17 - N3 - C16	118 84 (9)	N2-C11-H11	118.9
C10 - N2 - C11	119 23 (9)	C12—C11—H11	118.9
N1-C4-C3	122.46 (10)	$C_{11} - C_{12} - C_{8}$	118 55 (9)
N1-C4-H4	118.8	C11—C12—H12	120.7
C3—C4—H4	118.8	C8-C12-H12	120.7
C4-C3-C2	118 67 (10)	C9-C8-C12	119 17 (9)
C4—C3—H3	120.7	C9-C8-C7	119.64 (9)
C2-C3-H3	120.7	$C_{12} = C_{8} = C_{7}$	121 19 (9)
C_{6} C_{2} C_{3}	119.03.(9)	C10-C9-C8	118 76 (9)
C6-C2-C1	119.55 (9)	C10-C9-H9	120.6
C_{3} C_{2} C_{1}	121 37 (9)	С8—С9—Н9	120.0
C_{5}	121.37(9) 118 45 (9)	N_{2} C_{10} C_{9}	120.0 122.02(9)
$C_{5} = C_{6} = C_{2}$	120.8	$N_2 = C_{10} = C_2$	110.0
$C_2 C_6 H_6$	120.8	C_{0} C_{10} H_{10}	119.0
N1 C5 C6	120.0 122.70(0)	$C_2 = C_1 = 1110$	113.0 123.27(10)
N1_C5_H5A	122.79 (9)	$O_2 = C_7 = C_3$	123.27 (10)
м—сэ—нэх се сэ нэх	118.6	$C_2 - C_7 - H_7 A$	118.4
$C_0 = C_2 = HSA$	123 58 (10)	C_{0} C_{23} O_{0}	124 76 (9)
01 - 01 - 02	125.58 (10)	$08 - C_{23} - C_{24}$	124.70(9) 122.67(0)
$C_2 = C_1 = H_1$	118.2	00 - 023 - 024	122.07 (9)
$N_{2} = C_{1} = 111$	110.2	$C_{24} = C_{24} = C_{24}$	112.37(9) 100.08(10)
N3_C16_H16	122.23 (10)	$C_{24} = C_{24} = C_{23}$	122.20 (12)
$C_{15} = C_{16} = U_{16}$	110.7	$C_{24} = C_{24} = 1124$ $C_{23} = C_{24} = 1124$	110.7
C_{13} C_{10} C_{10} C_{10} C_{14}	110.7	$C_{23} - C_{24} - \Pi_{24}$	124 52 (0)
010-013-014	117.04 (7)	00 - 022 - 07	124.32 (9)

C16—C15—H15	120.5	O6—C22—C21	120.91 (9)
C14—C15—H15	120.5	O7—C22—C21	114.57 (9)
C15—C14—C18	118.86 (9)	C20—C21—C22	123.99 (9)
C15—C14—C13	120.32 (9)	C20—C21—H21	118.0
C18—C14—C13	120.81 (9)	C22—C21—H21	118.0
C17—C18—C14	118.51 (10)	C21—C20—C19	123.71 (9)
C17—C18—H18	120.7	C21—C20—H20	118.1
C14—C18—H18	120.7	С19—С20—Н20	118.1
N3—C17—C18	122.46 (9)	O4—C19—O5	124.32 (9)
N3—C17—H17	118.8	O4—C19—C20	121.40 (9)
С18—С17—Н17	118.8	O5—C19—C20	114.27 (9)

Symmetry code: (i) -x+1, -y+2, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H··· <i>A</i>
09—H9A…N3	1.030 (19)	1.576 (19)	2.6047 (12)	176.1 (17)
O5—H5…N1	1.03 (2)	1.57 (2)	2.5952 (12)	172.0 (18)
O7—H7…N2	1.050 (19)	1.54 (2)	2.5826 (12)	172.9 (18)