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1  | INTRODUC TION

Guizhou province, located in the southwest of China, is character-
ized by typical karst landforms (Cai et al., 2014) and has a subtrop-
ical, humid, monsoon climate with an annual average temperature 
of 14°C–16°C. However, the low-altitude valleys of the Hongshui, 
South Pan (NanPanjiang), and North Pan (BeiPanjiang) rivers, located 
between 24°37′–25°47′N and 104°31′–107°04′E, occupy a warm-
hot zone where the cumulative temperature ≥10°C reaches more 
than 5,000°C (Cen et al., 2015) and is especially suitable for growing 
dragon fruit (Hylocereus spp, syn. pitaya).

Dragon fruit is an important fruit cultivated in tropical and sub-
tropical areas (Wu et al., 2019) and is harvested several times a year; 
in the northern hemisphere from June to November. Because it is 
rich in attractive, red-purple betalain pigments, which have antioxi-
dant properties (Polturak & Aharoni, 2019), the red-fleshed dragon 
fruit (H. polyrhizus) draws attention from food and pharmaceutical 
industries. Dragon fruit has been grown in Guizhou since about 
2000. Three counties, namely Guanling, Luodian, and Zhenfeng, 
along the aforementioned valleys, are the major planting locations 
(Figure 1) and “Zihonglong” is the main cultivar (Wu et  al.,  2019). 
By 2019, the total area planted to dragon fruit in the three counties 
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Abstract
The aim of this study was to identify the locations and harvest months in Guizhou 
province, China, producing the most suitable red dragon fruit (Hylocereus polyrhizus) 
for winemaking. Fruit from Guanling, Luodian and Zhenfeng counties was harvested 
separately from successive fruit cycles in August, September and October, respec-
tively. The key traits measured were fruit weight, pulp yield, soluble solids content, 
and titratable acid. Wine characteristics measured were alcohol content, total car-
bohydrates, titratable acidity, volatile acidity, and betacyanin content. The overall 
suitability of fruit from each location for winemaking was evaluated using a multi-
factor, unweighted, scorecard. On that basis, fruit from Guanling county harvested in 
August was the most suitable. Fruit from Luodian, and Zhenfeng was most suitable 
when harvested in August and September, and September, respectively. These re-
sults provide a preliminary guide for the sourcing of red dragon fruit from Guizhou 
for wine production.
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exceeded 670 hectares (11089 acres) with an annual output of more 
than 7,000  tonnes. Totally, the planted area of Guizhou exceeds 
6,670 hectares (110,388 acres) with an annual output of more than 
50,000 tonnes, placing Guizhou within China's top three provinces 
for dragon fruit production.

In Guizhou, recent research interest in dragon fruit has mainly fo-
cused on the molecular mechanisms of plant abiotic stress tolerance 
(Fan et al., 2014; Li et al., 2019) and betalain metabolism (Wu et al., 
2019, 2020; Zhou et  al.,  2020). There are few reports concerning 
processing of downstream products of dragon fruit. In preliminary 
studies we found that red-fleshed dragon fruit picked in September 
from Guanling was suitable for making high-quality table wine with 
appealing color, typical aroma, and mellow taste.

However, as dragon fruit is also grown elsewhere in Guizhou 
province and develops in several, successive 30-day cycles from 
August to October, we aimed to determine the most suitable dragon 
fruit producing locations and harvest months for winemaking. 
Accordingly, we measured the most important fruit traits and wine-
making attributes of red dragon fruit harvested separately in three 
successive months from three major production areas in Guizhou.

1.1 | Abbreviations

In figures and tables, a combination of letters and numbers indi-
cates the region and month where the dragon fruit was grown and 
harvested. The letters “G,” “L,” and “Z” indicate Guanling, Luodian, 
and Zhenfeng, respectively. The numbers “8,” “9,” and “10” indicate 
“August,” “September,” and “October,” respectively. The letter “F” 
indicates “fruit.” For example, “G8F” indicates the dragon fruit har-
vested in Guanling in August. Similarly, G8 indicates wine fermented 
from the fruit harvested in August from Guanling.

2  | MATERIAL S AND METHODS

2.1 | Chemicals

All reagents including sugars (sucrose, glucose) were of analytical 
grade and were purchased from a local supplier (Reggie Biology) in 
Guiyang, China.

2.2 | Fruit

Dragon fruit (H. polyrhizus, cv. ‘Zihonglong’) used in this study 
was from Guanling (25°19′–26°05′N, 105°15′–105°49′E, 
105°15′–105°49′E), Luodian (25°04′–25°45′N, 106°23′–107°03′E), 
and Zhenfeng (25°07′–25°44′N, 105°25′–105°56′E) (Figure 1). In 
each location during the 2017 harvest season (August to October), 
a total of 27 fruits at commercial maturity, based on external color 
and size uniformity, were randomly harvested from fruiting cycles 
maturing in August, September and October. After each harvest, 
the fruit was randomly grouped into three replicates of nine and 
manually peeled. Before peeling, the fruit traits were measured. 
Only the pulp was used for winemaking. After determination of 
the titratable acid (TA) and soluble solids content (SSC), the re-
maining must was fermented. Three replicates were used for all 
chemical analyses.

2.3 | Fruit traits

Fruit weight (A) and peel weight (B) were recorded for each fruit be-
fore peeling, and the pulp yield (C) was determined by the formula, 
C = (A − B)/A × 100%.

F I G U R E  1   Location of the study areas, Guanling County, Luodian County, and Zhenfeng County in Guizhou province, China
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SSC and TA were determined according to the methods de-
scribed by Zheng et  al.  (2016). For SSC, pulp juice was placed 
on a digital refractometer (Atago PAL-1, Tokyo, Japan) and the 
Brix value was recorded. For the measurement of TA, the pulp 
juice mixture was filtered with muslin cloth. Ten milliliters of 
juice was diluted to 100 ml with distilled water and transferred 
into a 250 ml beaker, which was placed on a magnetic stirrer and 
stirred continuously. A pH probe was immersed in the solution, 
and 0.1 M NaOH was slowly added until the pH of the solution 
reached 8.1. TA was expressed as grams of malic acid per liter 
of juice (g/L).

2.4 | Winemaking

A 2 L flask fitted with a water-filled air lock was used for fermenta-
tion. The loading volume was about 75% of the flask capacity. After 
overnight treatment with pectinase (Lafazyme CL, Laffort, France), 
20 mg/L, the sugar content of fruit must was adjusted to approxi-
mately 264 g/L with crystalline sucrose, and the pH to 3.6 with tar-
taric acid. Potassium metabisulphite, 50 mg/L, was added to prevent 
microbial spoilage, then the must was inoculated with Saccharomyces 
cerevisiae yeast, Zymaflore X16 (Laffort, France). The fermentation 
temperature was maintained at 16°C–18°C. After alcoholic fermen-
tation (around 15 days), the wine was separated from fermentation 
lees and settled at 4°C. During settling, the wine was racked from 
the residue four times. After about six months, the wine was chemi-
cally analyzed.

2.5 | Wine analysis

2.5.1 | Determination of total carbohydrate content

The total carbohydrate content of the wine was determined by 
anthrone colorimetry using 1 ml samples added to 10 ml of 0.1% 
anthrone solution, comprising 0.1 g anthrone and 1.0 thiourea in 
100 ml of 72% H2SO4, and the absorbance was measured at 620 nm. 
A calibration curve was prepared as follows; first,  0.0 , 0.2 , 0.4 , 0.6 , 
0.8, 1.0 , and 1.2 ml aliquots of glucose standard solution (1.0 mg/ml) 
were placed in separate tubes and each made up to 2 ml with dis-
tilled water. Then, 10 ml of 0.1% anthrone solution, comprising 0.1 g 
anthrone and 1.0 g thiourea in 100 ml of 72% H2SO4, was added to 
each tube, quickly shaken and then placed in a boiling water bath 
and heated for 10 min. The tubes were then cooled to room tem-
perature and placed in the dark for 10 min. The glucose-free solution 
was used as the control. The absorbance of each tube was meas-
ured at 620 nm. All tests were performed in triplicate. The calibra-
tion was established with the absorbance as the ordinate and the 
glucose concentration as the abscissa and the equation of the curve 
was used to calculate the total carbohydrate content of the sample 
expressed as g/L.

2.5.2 | Determination of alcohol content

Alcohol content of the wine was determined according to the na-
tional standard GB 5009.225-2016 published by the Standardization 
Administration of China (SAC), using the GC method described by Lu 
et al. (2020) with minor modification comprising a column temperature 
of 157℃ and split ratio 20:1. GC analysis was performed with a Trace 
1310 chromatograph (Thermo Fisher Scientific, USA) with flame ioniza-
tion detector and a TG-WAXMS column (60 m × 0.25 mm × 0.25 μm). 
The result was expressed as alcoholic content (%vol).

2.5.3 | Determination of titratable acidity and 
volatile acidity

Titratable acid concentration was determined according to the SAC 
national standard GB/T15038-2006, using potentiometric titration as 
described by Liu et al. (2015). TA was expressed as grams of malic acid 
per liter of wine. Volatile acidity was also determined according to GB/
T15038-2006 using titration with sodium hydroxide after distillation. 
Volatile acid content was expressed as grams of acetic acid per liter 
of wine.

2.5.4 | Determination of betacyanin content

The content of betacyanin in dragon fruit wine was measured using the 
spectrometric method described by Tumbas Saponjac et al. (2016). The 
wavelengths 537 nm and 600 nm was used for betacyanin detection, 
and correction, respectively. Phosphate buffer was used as the blank. 
Absorbances of betanin were calculated using the following equation: 

where a is absorbance at 537 nm, b is absorbance at 600 nm, and x 
is absorbance of betanin corrected for colored impurities. Betanin in 
wine was calculated using the equation: 

where F is dilution factor and A1% is absorbance coefficient (1,120 for 
betanin). The betacyanin content was expressed as milligram betanin 
equivalents per liter of sample.

2.6 | Determination of fruit suitability 
for winemaking

Overall fruit suitability for winemaking was determined from a 
multi-factor scorecard based on the analytical data. In the absence 
of further information regarding their relative impacts, individual pa-
rameters received no differential weighting (Table 1).

x = 1.095 × (a − b)

C (mg∕100 mL) = x × F × 1000∕A1%
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2.7 | Statistical analysis

All data was expressed as the mean ± standard deviation of three 
replicates. Statistical analysis was performed using SPSS v 23.0 soft-
ware (SPSS Inc., Chicago, IL, USA). Significant differences among the 
samples were calculated using one-way ANOVA followed by Tukey's 
comparison tests at the 5% level (p <.05).

3  | RESULTS

3.1 | Key traits of dragon fruit for winemaking

The key wine-related traits of dragon fruit harvested in three suc-
cessive months in the three major production locations in Guizhou 
are shown in Table 2.

3.1.1 | Fruit weight

Over the three harvest months, the mean weight of fruits ranged from 
264.73  to 338.74 g, within which the fruit from Guanling ranged from 
264.73   to 327.46  g, from Luodian, 290.00   to 338.74  g, and from 
Zhenfeng, 294.71  to 324.00 g. In each location, across the three har-
vest months, the mean weight of fruit from Luodian and Zhenfeng, 
310.61 and 304.91 g, respectivey, was markedly higher than that from 

Guanling, 295.25 g. The weights of Guanling fruit harvested in August, 
Luodian fruit harvested in September and October, and Zhenfeng fruit 
harvested in October were significantly higher than those of the others 
but there were no significant differences within that group.

3.1.2 | Pulp yield

Overall, pulp yield ranged from 67 to 78% within which the pulp 
yield from Guanling, Luodian and Zhenfeng fruit ranged from 71 to 
78%, 67 to 73% and 68 to 71%, respectively. The mean pulp yield of 
fruit from Guanling (75%) was significantly higher than that of fruit 
from both Luodian (70%) and Zhenfeng (70%).

The pulp yields of Guanling harvested in August and October 
were significantly higher than the others.

3.1.3 | Soluble solids content (SSC)

Overall, SSCs ranged from 10.21 to 13.3%, within which the SSC 
of fruit from Guanling, Luodian and Zhenfeng ranged from 11.12 to 
13.30, 10.21 to 13.18, and 11.46 to 12.30%, respectively. The mean 
SSC of fruit from Guanling (12.5%) was significantly higher than that 
of fruit from Luodian (11.72%) and Zhenfeng (11.9%).

Generally, SSCs in August and September were higher than in 
October, except for fruit from Zhenfeng in which SSC in September 
and October was higher than in August.

3.1.4 | Titratable acidity (TA)

Overall, The TA of the fruit ranged from 1.18  to 2.59 g/L (malic acid 
equivalents). The TA of fruit from Guanling, Luodian and Zhenfeng 
ranged from 1.18  to 2.07, 1.79  to 2.59, and 1.88  to 2.57 g/L, re-
spectively. Overall, the mean TA of fruit from Luodian (2.21 g/L) 
and Zhenfeng (2.20 g/L) was significantly higher than that from 
Guanling (1.57 g/L). The TA of Zhenfeng and Luodian fruit harvested 
in October was significantly higher than that of the other fruit with 
the exception of Luodian fruit harvested in August.

3.2 | Wine characteristics

Key indicators of the quality of the finished dragon fruit wine, includ-
ing alcohol, total carbohydrate content, titratable acidity and volatile 
acidity, and betacyanin content were as follows:

3.2.1 | Alcohol

Overall, the alcohol content of the wines ranged from 10.3 to 12% 
vol (Figure 2a). The alcohol contents of wines from Guanling fruit 
harvested in September and Zhenfeng fruit harvested in October 

TA B L E  1   Scoring standards for traits of red-fleshed dragon fruit 
for winemaking and the resultant

Items Range

Fruit

Fruit weight (g) 200–250 251–300 301–350

Score 1 2 3

Pulp yield (%) 65–70 71–75 76–80

Score 1 2 3

SSC 10–11.2 11.3–12.4 12.5–13.6

Score 1 2 3

Titratable acidity (g/L) 1.0–1.5 1.6–2.0 2.1–2.6

Score 1 2 3

Wine

Total carbohydrate (g/L) ≤4 4.1–12 ≥12.1

Score 3 2 1

Alcohol (% vol) 8–10 10–12 12–14

Score 1 2 3

Titratable acidity (g/L) 9–20 21–30 31–40

Score 3 2 1

Volatile acidity (g/L) 0–0.6 0.61–1.2 >1.2

Score 3 2 0

Betacyanin (mg/L) 10–20 21–30 >31

Score 1 2 3
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were significantly higher than those of Guanling and Luodian fruit 
harvested in August and October, respectively.

3.2.2 | Total carbohydrate

The residual carbohydrate content of all wines was lower than 4 g/L 
(Figure 2b).

3.2.3 | Titratable acid

The titratable acidity of the wine made from each region was high-
est from fruit harvested in October (20–27 g/L) and significantly 
higher than that from fruit harvested in September (Ca 10 g/L) 
(Figure 3a).

3.2.4 | Volatile acid

There were no significant differences in volatile acid content of the 
wines, and with the exception of wines made from fruit harvested 
in October, all values were less than 1.2 g/L. The volatile acidity of 
wines made from fruit harvested in October was markedly higher 
and more variable (as indicated by standard deviation) than the oth-
ers (Figure 3b).

3.2.5 | Betacyanin

The betacyanin contents of wines made from the different loca-
tions are shown in Figure 4. Wine from fruit from Zhengfeng had the 
highest content (90 mg/L) and significantly more betacyanin than 
the others. In general, within each location, wine made from fruit 
harvested in September had the highest betacyanin content but the 
betacyanin contents of each wine made from Guanling fruit were 
not significantly different.

3.3 | Scoring of winemaking traits of dragon 
fruit and wine composition

Based on scores derived from the analytical results and assigned 
to each fruit batch and the resultant wines (Table 3), fruit from 
Guanling harvested in August was the most suitable for winemaking, 
compared to fruit from the other locations. Within the other loca-
tions, fruit from Luodian harvested in August and September and 
fruit from Zhenfeng harvested September, scored most highly.

Fruit Fruit weight (g) Pulp yield (%) SSC (%) TA (g/L)

G8F 327.46 ± 31.12ad 76.06 ± 4.00ab 13.13 ± 0.17a 2.06 ± 0.15bc

G9F 264.73 ± 46.77b 71.00 ± 11.00bcd 13.30 ± 0.26a 1.47 ± 0.12cd

G10F 293.55 ± 32.50bc 78.00 ± 4.00a 11.12 ± 0.75cd 1.18 ± 0.14d

L8F 290.00 ± 34.35bc 67.00 ± 5.00d 13.18 ± 0.23a 2.26 ± 0.04ab

L9F 302.87 ± 29.24cd 71.00 ± 4.00cd 11.77 ± 0.47bc 1.79 ± 0.20c

L10F 338.74 ± 69.81cd 73.00 ± 4.00bc 10.21 ± 0.31d 2.59 ± 0.30a

Z8F 294.71 ± 35.76c 68.00 ± 5.00d 11.46 ± 0.31c 2.15 ± 0.13b

Z9F 296.83 ± 22.26c 71.00 ± 3.00bc 12.30 ± 0.43b 1.88 ± 0.35bc

Z10F 324.00 ± 16.94d 70.00 ± 5.00cd 12.01 ± 0.21b 2.57 ± 0.22a

Note: The presented values are mean ± standard deviation (SD) of N = 27 observations. Different 
lowercase letters (p <.05) indicate significant differences between means.

TA B L E  2   The fruit traits

F I G U R E  2   Alcohol and total carbohydrate content. The 
presented values are mean ± standard deviation (SD) of triplicate 
samples. Different lowercase letters indicate significant differences 
between means (p <.05)
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4  | DISCUSSION

The current study, is part of a program that is exploring the poten-
tial of red dragon fruit grown in Guizhou for the production of high-
quality wine. The study aimed to identify the most suitable sources 

of the fruit and the ideal harvest time. Recognizing that wine quality 
is directly related to the composition of the fruit, our evaluation was 
based on measurements of fruit, viz. fruit weight, pulp yield, soluble 
solids content, and titratable acidity, as well as direct analyses of the 
resultant wine for alcohol content, residual carbohydrate, titratable 
acidity, volatile acidity and betacyanin.

The range of fruit weight in this study (264-338 g•FW) was 
within the previously reported range of red-fleshed dragon fruit 
(200–375 g•FW) (Alam Patwary et al., 2013). However, pulp yield 
(67–78%) was lower than that reported in that study (92%). Fruit 
size may affect the pulp yield through a reduction in the skin to pulp 
weight ratio as size increases. Notably, we found that, although the 
fruit from Guanling had the lowest weight, its pulp yield was much 
higher than that of fruit from the other locations (Table 2). This is 
likely due to differences in specific skin weight and possibly related 
to latitude. Guanling is located at a higher latitude than Luodian and 
Zhenfeng (Figure 1) and we speculate that as result of a latitude-
related factor, e.g. temperature or daylength, the skin of Guanling 
fruit may have been thinner.

During fermentation, Saccharomyces yeast converts glucose and 
fructose into ethanol and CO2 (Thesseling et al., 2019). However, 
as dragon fruit, like most other fruits, does not have sufficient glu-
cose or fructose to generate ethanol within the normal wine range, 
10-14%, sugar adjustment of the must, an internationally accepted 
means of producing fruit wines (Joshi et al., 2016), is necessary. 
Accordingly, the natural sugar content of the juice, as approximated 
by SSC, is a useful indicator of both fruit ripeness and the required 
amount of sugar addition. The maximum SSC content of the fruit in 
this study, 13.3o Brix (or %), was lower than that measured by Nerd 
et al. (1999), 17.5%, in greenhouse-grown red dragon fruit in Israel. 
However, in a study of red dragon fruit growing in Malaysia, Sew 
et al. (2013) found that as SSC increased from 11.3 to 12.97o Brix, 
juice yield increased nearly three-fold to almost a maximum. While 
juice yield was not considered in our study, the mean SSCs of fruit 
from each of our locations were within the seemingly optimal range 
for that parameter.

The titratable acidity of fruit is an indicator of fruit maturity and 
potential wine taste. The levels of TA (expressed as malic acid) re-
corded in this study (1.18–2.59 g/L) were much lower than that of 
the previously reported range, 3.14–4.8 g/L (Stintzing et al., 2003, 
Sew et al., 2013). In order to achieve an acceptable acid and pH bal-
ance, the must was acidified before fermentation. Tartaric acid was 
chosen for TA adjustment because it is one of the most microbiolog-
ically stable of the naturally occurring carboxylic acids found in fruit. 
It also limits the ability of Fe to catalyze wine oxidation (Danilewicz, 
2014) and is a widely used additive in the food and beverage indus-
tries (Jia et al., 2019).

After sugar and acid adjustment, fermentation of all the musts 
was completed within about 15 days. The alcohol content was 
within the projected range of 10–12% together with the low re-
sidual carbohydrate content indicates complete fermentation of 
glucose, fructose, and sucrose; the major reducing sugars — both 
natural and added — present in the must. Thus, indicating the broad 

F I G U R E  3   Titratable acid and volatile acid content. The 
presented values are mean ± standard deviation (SD) of triplicate 
samples. Different lowercase letters indicate significant differences 
between means (p <.05)
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suitability of dragon fruit from each location and harvest month for 
wine production.

Titratable acid present in wine is primarily important for the per-
ception of sour taste (Boulton et al., 1999). Changes in TA during 
fermentation are generally due to changes in the organic acid profile 
of the must due to depletion (e.g., of malate and citrate) and excre-
tion (e.g., of succinate, acetate and lactate) which accompanies yeast 
metabolism. Tartaric acid is not metabolized by wine yeast (Mendes 
Ferreira and Mendes-Faia, 2020) but may decrease by precipitation 
of potassium bitartrate. The large increases in TA, measured after 
fermentation, from initial fruit contents are largely attributable to 
the addition of tartaric acid. Similarly, the wide range of wine TA is 
chiefly attributable to differences in the organic acid contents of the 
fruit and differences in the amount of tartaric acid adjustment.

The volatile acidity of wine is a measure of the portion of total 
acidity that is volatile, viz. acetic acid and related compounds. In 
amounts greater than ca 1.2 g/L it is an indicator of microbial spoil-
age. The high mean level of volatile acidity of wines made from fruit 
harvested in October is a concern. It is not clear if this was a result 
of microbial spoilage of the fruit but the high soluble solids content 
of the fruit, indicates over-ripeness and that microbial activity was 
likely.

The betacyanins, (betanin and isobetanin) are red-violet colored 
betalain compounds present in red dragon fruit (Choo et al., 2018) 
and which impart their distinctive color and antioxidant properties 
to wine. The higher concentrations of betacyanin in wine from fruit 
grown in Zhengfeng and Luodian, both at similar latitudes, together 
with the observation that in all three locations fruit harvested in 
September imparted the most betacyanin, strongly indicates a 
latitude-related influence of daylength and/or temperature on this 
feature of the fruit.

With some exceptions due to excessive acidity (titratable and 
volatile), most wines met analytical criteria of acceptability in terms 
of alcohol content, residual carbohydrate, titratable acidity, vola-
tile acidity and color. Accordingly, this study confirms that dragon 
fruit produced in Guizhou is suitable for winemaking and has sound 
development prospects. Based on our scorecard, fruit harvested in 
August from Guanling was the most suitable for dragon fruit wine-
making. The scorecard approach also indicated the most suitable 
months of harvest in Luodian and Zhenfeng. However, with exten-
sion of similar research over a greater number of seasons and greater 
understanding of the relative importance of individual parameters in 
meeting wine quality specifications, and weighting the parameters 
accordingly, the utility of this approach is likely to be improved.

In the course of this study, we have recognized several technical 
aspects of dragon fruit winemaking that are worthy of further atten-
tion. Two matters seem particularly important, viz. the selection of 
indigenous yeasts, and the instability of betacyanins.

The fermentation of fruit must into wine is an ecologically com-
plex process, in which yeasts play a fundamental role (Suranska et al., 
2016). In common with most other fruit winemaking, in this study 
our fermentation relied on yeast originally selected from grape and 
used predominantly for making white grape wines. Notably, we have TA
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found only one report concerning the influence of different yeasts 
on the physicochemical and oenological properties of red dragon 
fruit wine (Jiang et al., 2020). Certainly, there is no specific yeast 
isolated from local dragon fruit for wine fermentation. Yet, even in 
the highly advanced grape winemaking, the systematic selection of 
indigenous yeasts is an ongoing activity.

The selection of indigenous yeast adapted to survive with dragon 
fruit, appears particularly important because its fermentation for 
quality wine production presently relies on yeasts adapted to grape 
which, apart from having about twice the sugar content, has a dis-
tinctly different metabolic profile. Accordingly, systematic selection 
of yeasts from local dragon fruit plantings on the Yunnan-Guizhou 
Plateau represents an opportunity for improved fermentation effi-
ciency and quality of dragon fruit wine at both natural and adjusted 
must sugar levels.

Potential instability of betacyanins is another issue. Betacyanins, 
with their attractive color and many health functions (Timoneda 
et al., 2019), are an important feature of red-fleshed dragon fruit 
wine. However, direct exposure to light, pH, dissolved oxygen and 
high temperature can all cause betacyanins to discolor (Amjadi et al., 
2018; Esatbeyoglu et al., 2015). Unless these influences are care-
fully managed, in our experience, the shelf life of dragon fruit wine is 
around only two months.

Although the addition of ascorbic acid is reported to stabilize 
betacyanin content in red-fleshed dragon fruit (H. polyrhizus) juice 
and concentrate (Wong and Siow et al., 2015), we have observed that 
ascorbic acid added to dragon fruit wine has little effect on the stabil-
ity of betacyanin during storage at room temperature. Furthermore, 
while satisfactory stability of betacyanin in a low alcohol (1.5%vol) 
dragon fruit beverage during eight weeks storage at 4℃ has been 
demonstrated in a laboratory study (Choo et al., 2018), that result is 
yet to be confirmed in large scale production. Consequently, while 
the mechanisms behind the instability of betacyanin remain unclear 
(Kumorkiewicz et al., 2019), further study is needed to understand 
this phenomenon; especially in regard to dragon fruit wine-related 
factors.

5  | CONCLUSIONS

In Guizhou, geographic factors and month of harvest strongly influ-
ence key physicochemical attributes of red dragon fruit H. polyrhizus, 
cv. Zihonglong, for winemaking. Based on a multi-factor, unweighted 
scorecard, we conclude that within the valleys of the Hongshui, 
South Pan, and North Pan rivers of south-western Guizhou prov-
ince, red dragon fruit grown in Guanling and harvested in August is 
the most suitable for winemaking. Within Luodian, fruit harvested 
in August and September is more suitable for winemaking than 
fruit harvested in November. Within Zhenfeng, fruit harvested in 
September is the most suitable. However, weighting of individual 
factors to meet particular wine specifications are likely to improve 
the utility of this approach. Further study in other seasons will be 
required to confirm these findings.
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