
ION CHANNELS, RECEPTORS AND TRANSPORTERS

Human KATP channelopathies: diseases
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Abstract Assembly of an inward rectifier K+ channel pore
(Kir6.1/Kir6.2) and an adenosine triphosphate (ATP)-binding
regulatory subunit (SUR1/SUR2A/SUR2B) forms ATP-
sensitive K+ (KATP) channel heteromultimers, widely dis-
tributed in metabolically active tissues throughout the body.
KATP channels are metabolism-gated biosensors functioning
as molecular rheostats that adjust membrane potential-
dependent functions to match cellular energetic demands.
Vital in the adaptive response to (patho)physiological stress,
KATP channels serve a homeostatic role ranging from
glucose regulation to cardioprotection. Accordingly, genetic
variation in KATP channel subunits has been linked to the
etiology of life-threatening human diseases. In particular,
pathogenic mutations in KATP channels have been identified
in insulin secretion disorders, namely, congenital hyperinsu-
linism and neonatal diabetes. Moreover, KATP channel
defects underlie the triad of developmental delay, epilepsy,
and neonatal diabetes (DEND syndrome). KATP channelo-
pathies implicated in patients with mechanical and/or
electrical heart disease include dilated cardiomyopathy (with
ventricular arrhythmia; CMD1O) and adrenergic atrial
fibrillation. A common Kir6.2 E23K polymorphism has

been associated with late-onset diabetes and as a risk factor
for maladaptive cardiac remodeling in the community-at-
large and abnormal cardiopulmonary exercise stress perfor-
mance in patients with heart failure. The overall mutation
frequency within KATP channel genes and the spectrum of
genotype–phenotype relationships remain to be established,
while predicting consequences of a deficit in channel
function is becoming increasingly feasible through systems
biology approaches. Thus, advances in molecular medicine
in the emerging field of human KATP channelopathies offer
new opportunities for targeted individualized screening,
early diagnosis, and tailored therapy.
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Throughout the lifespan, environmental challenges pose
threats to organismal integrity [78, 108]. Decoding stress
signals is vital to the initiation and execution of the
adaptive response that secures stress tolerance and pro-
motes evolutionary survival [23, 31]. To this end, molecular
biosensors are essential in distress resolution, matching
demand, and ensuring the safeguard of organ function [15,
132]. Failure to respond to stress load, in the context of a
genetic defect and malfunction in sensor proteins, results in
maladaptation and poor outcome highlighting the centrality
of processes responsible for the maintenance of ecogenetic
homeostasis in disease avoidance and species preservation
[11, 83, 134]. A case in point, the adenosine triphosphate
(ATP)-sensitive K+ (KATP) channel—widely represented in
metabolically active tissues throughout the body—controls
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energy expenditure [6] and serves as a molecular coordi-
nator of metabolic well-being [133]. This homeostatic
function identifies KATP channels in the hierarchy of
molecular events underlying propagation of the general
adaptation syndrome in both health and disease.

KATP channels: prototype biosensors

The KATP channel complex, a unique combination of an
inward rectifier K+ channel and an ATP-binding cassette
protein, is a prototypic metabolism-gated biosensor [81, 84,
132]. KATP channels operate as high-fidelity molecular
rheostats adjusting membrane potential-dependent func-
tions to match cellular energetic demands [5, 117]. Under-
scoring the critical role for KATP channels in coupling
metabolic dynamics with transmembrane electrical activity
is the emerging recognition that disruption of channel
function is associated with increased susceptibility to a
range of life-threatening diseases [10, 100, 125].

In humans, dysfunction in KATP channel gating has been
most commonly linked to insulin secretory disorders
(Table 1), namely, congenital hyperinsulinism and neonatal
diabetes [11, 13, 36, 41, 74, 93, 119, 125]. Beyond isolated
failure of pancreatic ß-cells, mutations in KCNJ11, the gene
encoding the pore-forming Kir6.2 subunit of KATP channels
[3, 53], are also pathogenic in the developmental delay,
epilepsy, and neonatal diabetes (DEND) syndrome (Table 1)
[11, 42, 49, 95]. An even broader role in disease
pathogenesis has been realized with the discovery of KATP

channel malfunction in human myopathies. KATP channels
have been reported essential in sustaining endurance [6,
26], and deficit in Kir6.2 of the skeletal muscle KATP

channel has been reported in patients diagnosed with
muscle weakness (Table 1), known as hypokalemic periodic
paralysis [60, 121].

In the heart, Kir6.2 is integral in the make-up of
myocellular KATP channels [54], and targeted disruption
of KCNJ11 generates a Kir6.2-deficient state characterized
by lack of functional KATP channels in ventricular myocytes
[112]. Intact Kir6.2 is required in cardiac adaptation to
physiological and pathophysiological stressors [45, 63, 120,
127, 133, 134], and KATP channel malfunction has been
implicated in the development and progression of heart
disease in both model systems and in patients [51, 66]. In
fact, KATP channels were originally discovered in cardio-
myocytes [86] where they assemble as heteromultimers of
the Kir6.2 pore and SUR2A, the regulatory ATP-binding
cassette sulfonylurea receptor subunit [20, 37, 54, 68, 76,
84]. Integrated with cellular metabolic pathways [1, 21, 33,
38, 59, 107], SUR2A contains nucleotide-binding domains
and intrinsic ATPase activity, endowing this regulatory
KATP channel subunit with the ability to process energetic

signals of distress under conditions of increased workload
[5, 16, 91, 131]. The tandem function of nucleotide-binding
domains confers Kir6.2-gating competence to SUR2A
[135], leading to regulation of pore opening in response
to stress challenge [75, 84, 134]. A deficit in KATP channels
impairs tolerance to sympathetic surge [134], endurance
challenge [64], and hemodynamic load [63, 65, 127].
Genetic disruption of KATP channels compromises the
protective benefits of ischemic preconditioning [46, 113],
while overexpression of channel subunits generates a
protective phenotype [35, 61, 62]. Mutations that perturb
KATP channel proteins have been linked to increased
susceptibility to cardiac pathology in humans. In particular,

Table 1 Human disorders associated with genetic variation in KATP

channel genes

Pathogenic mutations

Congenital hyperinsulinism

ABCC8 Hyperinsulinemic hypoglycemia,
familial, 1; HHF1 (OMIM
#256450)

KCNJ11 Hyperinsulinemic hypoglycemia,
familial, 2; HHF2 (OMIM
#601820)

Permanent neonatal diabetes (OMIM #606176)

ABCC8 and KCNJ11 Diabetes mellitus, permanent
neonatal; PNDM

KCNJ11 DEND syndrome

Transient neonatal diabetes

ABCC8 Diabetes mellitus, transient
neonatal, 2; TNDM2 (OMIM
#610374)

KCNJ11 Diabetes mellitus, transient
neonatal, 3; TNDM3 (OMIM
#610582)

Dilated cardiomyopathy

ABCC9 Cardiomyopathy, dilated, 1O;
CMD1O (OMIM #608569)

Adrenergic atrial fibrillation

ABCC9

Risk-conferring KCNJ11/Kir6.2 E23K polymorphism

Noninsulin-dependent diabetes mellitus (NIDDM; T2DM)

KK genotype Over-represented

Maladaptive cardiac remodeling

KK genotype Increased left ventricular size
under hypertensive stress load

Heart failure

KK genotype Over-represented; blunted heart
rate response to exercise

ABCC8 ATP-binding cassette, subfamily C, member 8 (SUR1);
ABCC9 ATP-binding cassette, subfamily C, member 9 (SUR2); DEND
developmental delay, epilepsy, and neonatal diabetes; KCNJ11
potassium channel, inwardly rectifying, subfamily J, member 11
(Kir6.2); T2DM adult-onset type 2 diabetes mellitus
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dilated cardiomyopathy and adrenergic atrial fibrillation are
now recognized as cardiac KATP channelopathies [17, 66,
89]. Thus, molecular medicine has advanced our under-
standing of KATP channels as conserved regulators of
homeostasis [11, 84, 104, 132]. Recognizing the molecular
basis of a KATP channelopathy provides opportunities for
targeted individualized screening, early diagnosis, and
tailored therapy to address the root cause of a malady.

Molecular identity of KATP channels

The biogenesis of KATP channel complexes expressed in the
plasma membrane relies on co-assembly of the pore-
forming subunit consisting of the inward rectifier K+

channels, Kir6.2 or Kir6.1 [53], with the regulatory
sulfonylurea receptors SUR1, SUR2A, or SUR2B, mem-
bers of the ATP-binding-cassette transporter family [3]. The
human Kir6.2 and Kir6.1 genes—KCNJ11 and KCNJ8—
map to chromosome bands 11p15.1 [53] and 12p11.23 [56],
respectively. SUR genes, SUR1 (or ABCC8) at locus
11p15.1 and SUR2 (or ABBC9) at locus 12p12.1 [25, 119]
each have 39 exons with the last two exons of SUR2
alternatively used as the terminal exon of the two main
SUR2 isoforms, SUR2A and SUR2B [2].

KATP channels are obligatory heteromultimers, which
adopt an octameric conformation demonstrated through
functional analysis [27, 55, 111, 130] and validated by
direct imaging [79] or quaternary structure resolution [92].
Stoichiometry is enforced by intracellular quality-control
checkpoints that keep incomplete channel complexes from
reaching the plasma membrane [125]. To this end, each
Kir6 protein possesses a stretch of three residues, RKR,
within the C-terminus, which acts as a retention signal
[130]. Unless a SUR protein is bound to the Kir6 protein,
this signal is exposed, keeping the channel protein from
exiting the endoplasmic reticulum/Golgi network [125].
Substantial diversity among KATP channels has been
reported given multiple possible octameric combinations.
Yet, primary biophysical properties common to KATP

channels include ion selectivity, rectification mediated
through interaction with cytosolic multivalent cations, and
the trademark inhibition by intracellular ATP imparted by
the Kir6 protein. SUR confers the more complex physio-
logical regulations, including gating by the cellular ener-
getic state [125].

Adenine nucleotide modulation of channel function is a
defining property of KATP channels. The interface between
Kir6.2 subunits, constituted by residues from the N-
terminal of one subunit and from the C-terminal of its
neighbor [7, 34, 94], is critical for ATP-mediated pore
inhibition. SUR-less Kir6.2 channels are blocked, non-
cooperatively, by ATP. Association with SUR decreases the

IC50 by an order of magnitude [29]. Activation by
intracellular adenosine diphosphate (ADP) is conferred by
the SUR subunit and is essential to the function of KATP

channels as metabolic sensors [85]. ADP, in the presence of
Mg2+, stimulates channel activity. It is thought that MgADP
binds preferentially to the nucleotide NBD2 site within
SUR [122], stabilizing a post-hydrolytic conformation of
the SUR catalytic cycle associated with reduced ATP-
induced channel inhibition and promotion of channel
opening [131]. Activation requires Mg2+ and relies on the
integrity of both NBD domains of SUR as it is abolished by
mutations in the conserved folds of NBD1 or NBD2 [32,
44, 110, 135].

KATP channels in health

KATP channels are widely expressed in tissues of the body.
They have been most characterized in pancreatic ß-cells,
skeletal muscle, and cardiac muscle, where they are present
at high density [125]. They are also present less prominently
in smooth muscle and brain. Functional measurements,
tissue mRNA and protein expression data, and analyses of
transgenic animal models have identified SUR1+Kir6.2,
SUR2A+Kir6.2, SUR2B+Kir6.1, and SUR2B+Kir6.2 as
the major ß-cell, cardiac muscle, vascular smooth muscle
nucleotide-diphosphate-dependent (KNDP), and non-vascular
smooth muscle channels, respectively [12, 53, 54, 57, 106,
126]. Neuronal KATP channels are predominantly SUR1+
Kir6.2, although SUR2B+Kir6.1 and SUR2B+Kir6.2 are
also found. KATP channel subunits have been reported as
well within intracellular membranes [125]. This is the case
for the pancreatic ß-cell insulin secretory granules (Kir6.2
and SUR1) [90, 123] and nuclei [99], and the pancreatic
acinar cell zymogen granules (Kir6.1) [69]. Moreover, the
presence of SUR/Kir6 subunits in mitochondria further
highlights the contribution of KATP channel-related structures
in metabolic homeostasis [8, 47, 52, 109, 116].

KATP channels are involved in the maintenance of
normoglycemia mediated by the pancreas and the central
nervous system through complementary mechanisms [125].
The role of KATP channels is best understood in pancreatic
ß-cells that release insulin as a function of glucose levels
[10, 11]. The SUR1+Kir6.2 KATP channels provide the
dominant resting K+ conductance and set the membrane
potential in pancreatic ß-cells. Glucose is shuttled in the
cytosol by the GLUT-2 transporter, enters the glycolytic
cycle, and triggers ATP production from ADP. When
plasma glucose levels increase, the concomitant increase
in ATP (a Kir6.2 inhibitor) and decrease in ADP (a SUR1
activator) lower KATP channel activity and depolarize the
membrane [125]. Depolarization triggers action potential
trains during which voltage-dependent L-type Ca2+ chan-
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nels open, increasing internal Ca2+ and initiating exocytosis
of granules comprised of insulin-zinc co-crystals [125].
Zinc is a potent activator of SUR1+Kir6.2 channels, and its
release could provide a negative feedback mechanism to
limit excessive insulin secretion [97]. Leptin, the product of
the obese (ob) gene, activates KATP channels [70] possibly
through phospholipid-dependent cytoskeleton disruption
[48]. The metabolic-sensing capacities of KATP channels
are also used by the brain to titrate glucose levels. In severe
hypoglycemia, food intake is stimulated, and secretion of
counter-regulatory hormones like glucagon is augmented
under autonomic input [114]. This response is initiated in
hypothalamic glucose-responsive neurons where KATP

channels, as in ß-cells, couple glucose levels to electrical
activity [80].

KATP channels regulate vascular tone, and thereby the
delivery of metabolic resources to match demand [28]. This
is accomplished by KATP channel-dependent membrane
hyperpolarization, causing reduction in Ca2+ influx through
voltage-gated Ca2+ channels and intracellular Ca2+ mobili-
zation in smooth muscle [98]. Knockout of KATP channel
subunits promotes vasospasm and hypertension [24, 82].
Conversely, activation of KATP channels controls blood
pressure under conditions of systemic hypertension [58].

Myocardial KATP channels function as high-fidelity
metabolic sensors through tight integration with the cellular
energetic network [5]. This vital function is facilitated via
phosphotransfer enzyme-mediated transmission of control-
lable energetic signals [107]. By virtue of cellular energetic
network coupling and metabolic signal decoding, KATP

channels set membrane excitability to match energy
demand [1, 21]. KATP channels serve a cardioprotective
role against ischemia through channel-mediated shortening
of the cardiac action potential and control of potentially
deleterious calcium influx into the cytosol [45, 84].
Sarcolemnal KATP channel activation is responsible for the
electrical current that underlies the characteristic ST-
segment elevation of transmural ischemic injury [73] and
has been implicated in the endogenous protective mecha-
nism of ischemic preconditioning [46, 113]. Genetic
ablation of the metabolic-sensing KATP channel disrupts
the integrated homeostatic mechanism required in main-
taining energetic myocardial stability under ischemic stress
[66]. More recent experimental data support a wider
interpretation of this channel as a guarantor of metabolic
and ionic homeostasis to diverse stressors [66, 133]. KATP

channels, harnessing the ability to recognize alterations in
the metabolic state of the cell and translate this information
into changes in membrane excitability, provide the link
necessary for maintaining cellular well-being in the face of
stress-induced energy-demanding augmentation in perfor-
mance. Conditions of sympathomimetic challenge [75,
134], physical exertion [6, 64], mineralocorticoid-induced

hypertension [63, 136], transverse aortic banding [9, 127,
128], and septic shock [65] result in cardiac decompensa-
tion in the absence of myocardial KATP channel-mediated
protection. Moreover, stress challenge is pro-arrhythmic in
the KATP channel-deficient myocardium provoking early
afterdepolarizations, triggered activity, and ventricular
dysrrhythmia [75].

KATP channels in disorders of insulin secretion

Diseases of glucose handling that arise from mutations in
KCNJ11 and ABCC8, the genes encoding the Kir6.2 and
SUR1 subunits of the pancreatic KATP channel, respective-
ly, are well documented [42, 125] (Table 1). Loss-of-
function mutations are the most common cause of the rare
disease hyperinsulinemia of infancy (HI), also known as
persistent hyperinsulinemic hypoglycemia of infancy
(PHHI) or congenital hyperinsulinism (CHI). Mutations in
ABCC8 (SUR1) are the most frequent cause of HI and are
responsible for familial hyperinsulinemic hypoglycemia
type 1 (HHF1, OMIM #256450) [10]. Class I mutations
reduce the number of channels at the plasma membrane by
disrupting a step (e.g., synthesis, addressing, and traffick-
ing) in biogenesis of the channel complex, whereas class II
mutations reduce the open probability of correctly formed
and localized channels mainly by abrogating MgADP
activation [10, 85]. Mutations in KCNJ11 (Kir6.2), a less
frequent cause of HI, also result in lower channel activity
recognized in familial hyperinsulinemic hypoglycemia type
2 (HHF2, OMIM #601820) [10]. In rare HI cases where
channels remain functional and responsive to KATP channel
openers, pharmacological treatment with diazoxide-type
openers may partially restore channel activity and reduce
insulin release [36]. Sulfonylureas can also act as chemical
chaperones and correct trafficking deficiencies of SUR1
mutants [129]. Gain-of-function mutations tend to keep
channels open, hyperpolarize ß-cells, and reduce insulin
secretion [41]. These mutations are responsible for rare
forms of diabetes mellitus in neonates (NDM, OMIM
#606176). In these conditions, channels are overactive, and
normal activity can be restored with sulfonylurea blockers
[72]. NDM mutations cluster near the presumed ATP-
binding site of Kir6.2 and reduce the apparent blocking
affinity of ATP [10]. Functionally equivalent mutations in
SUR1 have also been identified [13, 96]. Clinical severity
correlates with the magnitude of shift in ATP affinity and
ranges from mild, in the case of transient NDM, to severe,
for permanent NDM. The later can lead to developmental
and neurological complications and the syndrome of
DEND. Clarification of the molecular etiology has led to
refinement of pharmacogenomic approaches for individu-
alized patient care [93, 104]. Specifically, therapeutic
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management has changed from insulin injections to better-
suited oral sulfonylureas. There are also indications that
KATP channel gene single nucleotide polymorphisms are
associated with the widespread adult-onset type 2 diabetes
(T2DM). In particular, although this has been disputed, the
K allele of the common E23K Kir6.2 gene variant (c.67G>
A; rs5219) has been linked to increased T2DM suscepti-
bility [43, 71]. Functional studies have revealed that K23
increased channel open probability, leading to a slightly
reduced sensitivity to inhibition by ATP [105] and
abnormal gating by long chain acyl CoA esters [103].

Atrial fibrillation: a KATP channelopathy

Atrial fibrillation is an electrical disorder characterized by
chaotic atrial activation, defined on the electrocardiogram
as replacement of sinus P waves by rapid oscillations or
fibrillatory waves associated with an irregular ventricular
response. A growing epidemic in the aging population with
structural heart disease, atrial fibrillation also presents as an
earlier-onset, apparently idiopathic (lone) condition in a
subset of patients and is increasingly recognized as a
heritable disorder [30, 39] attributable to monogenic
defects. The paradigm of a genetic basis for atrial
fibrillation is exemplified by reports of familial disease
attributed to gain-of-function or loss-of-function mutations
in ion channel genes predicted to accelerate or slow
repolarization [40, 77]. In these cases, channel malfunction
creates an arrhythmogenic milieu of re-entry or triggered
activity caused by reduced electrical refractoriness or after-
depolarization, respectively. A case in point was the identifi-
cation of a loss-of-function mutation inKCNA5, encoding the
voltage-dependent Kv1.5 channel [88]. In contrast to
initially identified mechanisms for channelopathy-based
atrial fibrillation, predicted to shorten action potential
duration and cause proarrhythmogenic reduction in refrac-
tory period [22, 40], Kv1.5 channelopathy provided an
alternative mechanism for atrial fibrillation. Namely,
increased propensity for prolongation of action potential
duration provides a substrate for triggered activity in the
human atrium.

A possibly equivalent mechanism has been reported in
the case of a KATP channel mutation conferring risk for
adrenergic atrial fibrillation originating from the vein of
Marshall [89] (Table 1). The mutation was identified in a
middle-aged patient with long-standing atrial fibrillation in
the absence of identifiable risk factors, which was precip-
itated by activity and refractory to medical therapy. In this
patient with early onset atrial fibrillation and an overtly
normal heart, adrenergic stress as a possible trigger was
investigated using a candidate gene approach and invasive
electrophysiologic testing under sympathomimetic challenge

[89]. The focal source of rapidly firing electrical activity was
mapped to the vein of Marshall, a remnant of the left
superior vena cava rich in sympathetic fibers and a
recognized source for adrenergic atrial fibrillation. Although
this potentially arrhythmogenic venoatrial interface is present
in the population at large, it does not trigger arrhythmia in
the majority of individuals despite comparable environmen-
tal stress exposure. It was postulated that the patient was
vulnerable to adrenergic atrial fibrillation due to an inherent
defect in electrical stability.

Molecular genetic investigation demonstrated a missense
mutation in ABCC9, encoding the regulatory subunit of
cardiac KATP channels [89] (Table 1). Identified in exon 38,
specific for the cardiac splice variant of SUR2A, this
heterozygous c.4640C>T transition caused substitution of
the threonine residue at amino acid position 1547 with
isoleucine (T1547I). Protein alignments revealed that the
missense substitution altered the amino acid sequence of
the evolutionarily conserved carboxy-terminal tail. Homol-
ogy modeling mapped the defect adjacent to the signature
Walker motifs of the nucleotide-binding domain, required
for coordination of adenine nucleotides in the nucleotide-
binding pocket. Removal of the polar threonine (T1547)
and replacement with the larger aliphatic and highly
hydrophobic isoleucine, as would occur in this patient,
predicted compromised nucleotide-dependent KATP channel
gating.

Patch-clamp recording demonstrated that the T1547I
substitution compromised adenine nucleotide-dependent
induction of KATP channel current [89]. Mutant T1547I
SUR2A, coexpressed with the KCNJ11-encoded Kir6.2
pore, generated an aberrant channel that retained ATP-
induced inhibition of potassium current but demonstrated a
blunted response to ADP. A deficit in nucleotide gating,
resulting from the T1547I mutation, would compromise the
homeostatic role of the KATP channel required for proper
readout of cellular distress and maintenance of electrical
stability.

The pathogenic link between channel malfunction and
adrenergic atrial fibrillation was verified, at the whole
organism level, in a murine knockout model deprived of
operational KATP channels. Compared with the normal
atrium, resistant to arrhythmia under adrenergic provoca-
tion, vulnerability to atrial fibrillation was recapitulated in
the setting of a KATP channel deficit. Thus a lack of intact
KATP channels, either due to a naturally occurring mutation
affecting channel regulation or a targeted disruption of the
channel complex, is a substrate for atrial electrical
instability under stress and a previously unrecognized
molecular risk factor for adrenergic atrial fibrillation. Once
the vein of Marshall had been isolated by radiofrequency
ablation, atrial fibrillation could no longer be provoked by
programmed electrical stimulation and burst pacing with or
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without isoproterenol infusion [89]. This case demonstrates
that vulnerability to arrhythmia can be caused by an
inability of mutant KATP channels to safeguard against
adrenergic stress-induced ectopy. The apparently curative
outcome was achieved by disrupting the gene-environment
substrate for arrhythmia conferred by the underlying KATP

channelopathy.
While the case underscores heritable channel dys-

function in lone atrial fibrillation, KATP channel deficit
could play a broader role in the pathogenesis of electrical
instability. Gene expression and electrophysiological
studies in patients with atrial fibrillation demonstrate
altered atrial ion channel mRNA transcription and post-
translational activity, including downregulation of the
KATP channel pore and associated current [14, 19].
Moreover, metabolic and mechanosensitive gating of KATP

channels [118] might become compromised with structural
heart disease and atrial dilation, precipitating suboptimal
repolarization reserve, and providing a substrate for the
more common acquired form of atrial fibrillation.

Dilated cardiomyopathy with tachycardia (CMD1O):
a ventricular KATP channelopathy

Cardiomyopathy is an intrinsic, progressive disorder of the
myocardium with a spectrum of underlying pathological
presentations, resulting in impaired function of the heart as a
circulatory pump and increased propensity to electrical
instability. The clinical entity of dilated cardiomyopathy is
characterized by ventricular dilation and reduced contractile
function, precipitating congestive heart failure, arrhythmia,
and death. Age-dependent onset of symptoms typically
portends advanced myocardial disease and end-stage organ
failure, accounting for dilated cardiomyopathy as the most
common indication for cardiac transplantation [115]. Idio-
pathic dilated cardiomyopathy is increasingly recognized as
a heritable disorder, exhibiting Mendelian inheritance in 25–
50% of cases [87]. This has provided the impetus for human
genetics investigations to uncover the molecular basis and
corrupted pathways in disease and ultimately improves
prediction, prevention, and treatment for each individual
patient [125]. Advances in high-throughput DNA analysis
applied to phenotypically well-characterized patient cohorts,
families, and populations have led to discovery of mutations
in over 25 distinct genes linked to the pathobiology of
dilated cardiomyopathy [4, 50]. The ontological spectrum of
dilated cardiomyopathy-associated mutant gene products has
encompassed the fundamental components of excitation-
contraction coupling such as contractile, cytoskeletal, and
myocellular ion regulatory proteins. More recently, human
molecular genetic studies have linked KATP channel defects
and aberrant homeostatic stress response in the pathogenesis

of the disease. These defects, identified in the regulatory
KATP channel subunit, disrupt catalysis-dependent gating and
impair metabolic decoding, establishing a previously unrec-
ognized mechanism of channel malfunction in human
cardiomyopathy.

The cardiomyopathic-arrhythmia syndrome character-
ized by the triad of dilated cardiomyopathy, ventricular
arrhythmia, and ABCC9 KATP channel mutations has been
designated CMD1O (OMIM #608569; Table 1). This entity
was reported in middle-aged patients with marked left
ventricular enlargement, severe systolic dysfunction, and
ventricular tachycardia [17]. In these patients, heterozygous
mutations were identified in exon 38 of ABCC9, which
encodes the C-terminal domain of the SUR2A channel
subunit, specific to the cardiac splice variant. DNA
sequencing of a mutated allele identified a 3-bp deletion
and 4-bp insertion mutation (c.4570-4572delTTAinsAAAT),
causing a frameshift at L1524 and introducing four
anomalous terminal residues followed by a premature stop
codon (Fs1524). Another mutated allele harbored a missense
mutation (c.4537G>A) causing the amino acid substitution
A1513T. The identified frameshift and missense mutations
occurred in evolutionarily conserved domains of SUR2A,
and neither mutation was present in unrelated control
individuals [17] (Table 1).

The identified missense and frameshift mutations were
mapped to domains bordering the catalytic ATPase pocket
within SUR2A. Structural molecular dynamics simulation
showed that the residues A1513 and L1524 flank the C-
terminal β-strand in close proximity to the signature Walker
A motif required for coordination of nucleotides in the
catalytic pocket of ATP-binding cassette proteins [17].
Replacement of A1513 with a sterically larger and more
hydrophilic threonine residue or truncation of the C-
terminus caused by the Fs1524 mutation would disrupt
folding of the C-terminal β-strand and, thus, the tertiary
organization of the adjacent second nucleotide-binding
domain (NBD2) pocket in SUR2A. Indeed, ATP-induced
KATP channel gating was aberrant in channel mutants,
suggesting that structural alterations induced by the
mutations A1513T and Fs1524 of SUR2A distorted ATP-
dependent pore regulation [17]. Thus, the mutations
A1513T and Fs1524 compromise ATP hydrolysis at
SUR2A NBD2, generating distinct reaction kinetic defects.
Aberrant catalytic properties in the A1513T and Fs1524
mutants translated into abnormal interconversion of discrete
conformations in the NBD2 ATPase cycle. Alterations in
hydrolysis-driven SUR2A conformational probability in-
duced by A1513T and Fs1524 perturbed intrinsic catalytic
properties of the SUR2A ATPase, compromising proper
translation of cellular energetic signals into KATP channel-
mediated membrane electrical events. Traditionally linked
to defects in ligand interaction, subunit trafficking, or pore
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conductance, human cardiac KATP channel dysfunction
provoked by alterations in the catalytic module of the
channel complex establishes a new mechanism for channel-
opathy. Indeed, salient phenotypic traits of malignant
dilated cardiomyopathy are reproduced in KATP channel
knockout models under imposed stress load [127] and
rescued following stem cell therapy [128].

KATP channel polymorphism predisposes to altered
cardiac structure and function

Susceptibility or resistance to heart failure, despite appar-
ently similar risk load, is attributable to individual variation
in homeostatic reserve [18]. Following identification of
mutations within a KATP channel gene in patients with
dilated cardiomyopathy [17], the relationship between the
common Kir6.2 E23K polymorphism (rs5219) and subclin-
ical heart disease was investigated [102] (Table 1). A
community-based cross-sectional cohort of 2,031 predom-
inantly Caucasian adults was utilized, for which detailed
clinical and prospective echocardiographic data were
available. Genotype frequencies were in Hardy–Weinberg
equilibrium (EE=44%; EK=47%; KK=9%) and similar to
previously reported control populations [103]. In the group
at large, there was no significant association between
genotypes and measures of cardiac structure/function
(left ventricular dimensions, mass, and ejection fraction),
electrical instability (atrial and ventricular arrhythmias),
or metabolism (fasting glucose, diabetes, and body mass
index) at enrollment. However, among individuals with
documented hypertension at the time of echocardiogra-
phy (n=1,187), the KK genotype was significantly
associated with greater left ventricular dimension and
volume in both diastole and systole. A synergistic effect
on left ventricular size of KK genotype and left ventricular
mass, a marker of chronic cardiac stress load, further
validated the impact of Kir6.2 E23K on cardiac structure
in hypertension. From a public health perspective, hyper-
tension is the most common risk factor for congestive
heart failure, and left ventricular enlargement is an
established precursor of symptomatic ventricular dysfunc-
tion [67, 124]. The Kir6.2 K23 allele, present in over half
the population, is thus implicated as a risk factor for
transition from hypertensive stress load to subclinical
maladaptive cardiac remodeling. These findings, consis-
tent with previous human and animal studies [63, 89],
uncover an interactive KATP channel gene-environment
substrate that confers cardiac disease risk. Determining the
overall impact of Kir6.2 E23K across ethnic groups and
on long-term clinical outcome, i.e., progression to left
ventricular enlargement and clinical heart failure, will
require further study.

The translational significance of the Kir6.2 E23K
polymorphism in human cardiac physiology was more
recently explored in a cohort of patients with heart failure
who underwent comprehensive exercise stress testing [101]
(Table 1). The frequency of the minor K23 allele was found
over-represented in the 115 subjects with congestive heart
failure compared to the 2,031 community-based controls
described above (69% vs. 56%, P<0.001). Moreover, the
KK genotype, present in 18% of heart failure patients, was
associated with abnormal cardiopulmonary exercise stress
testing. In spite of similar baseline heart rates at rest among
genotypic subgroups, subjects with the KK genotype had a
significantly reduced heart rate increase at matched work-
loads. Molecular modeling of the tetrameric Kir6.2 pore
structure revealed the E23 residue within the functionally
relevant intracellular slide helix region [101]. Substitution
of the wild-type E residue with an oppositely charged,
bulkier K residue would potentially result in a significant
structural rearrangement and disrupted interactions with
neighboring Kir6.2 subunits, providing a basis for altered
high-fidelity KATP channel gating, particularly in the
homozygous state. Blunted heart rate response during
exercise is a risk factor for mortality in patients with heart
failure, establishing the clinical relevance of Kir6.2 E23K
as a biomarker for impaired stress performance and under-
scoring the essential role of KATP channels in human
cardiac physiology.

Systems biology and KATP channels: role in predictive
medicine

Beyond discrete molecular defects underlying disease
pathobiology, the modern approaches of systems biology
and network medicine enable comprehensive resolution of
proximal and distal interactive pathways on a global scale.
Decoding maladaptive signatures prior to onset of overt
disease permits a rational forecast of individual suscepti-
bility. Indeed, the tenets of predictive medicine offer a
paradigm shift from managing symptoms toward proactive
interventions tailored to prevent disease progression or even
cure the root cause of disease.

To this end, subclinical signatures predictive of heart
disease manifestation have been most recently unmasked in
a model system of KATP channel deficit using an unbiased
profiling approach for large-scale identification [9, 136].
Although KATP channel coupling with cellular metabolism
is known to contribute to stress tolerance, a broader
understanding of the channel's relationship with the
intracellular milieu and its implication on disease predis-
position was revealed through high-throughput proteomic
cartography and network analysis. In the absence of stress,
ontological annotation stratified the KATP channel-
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dependent protein cohort into a predominant bioenergetic
module, with additional focused sets ranging from signaling
molecules, oxidoreductases, chaperones, to proteins in-
volved in catabolism, cytostructure, transcription, and
translation. Protein interaction mapping, in conjunction
with expression level changes, localized a KATP channel-
associated subproteome within a non-stochastic scale-free
network. Global assessment of the KATP channel-deficient
environment demonstrated a primary impact on metabolic
pathways and revealed overrepresentation of markers
associated with cardiovascular disease at an otherwise
asymptomatic state [9].

Experimental imposition of stress precipitated exaggerated
structural and functional myocardial defects in the KATP

channel knockout, decreasing survivorship and validating
the forecast of disease susceptibility [9]. Further iterative
systems interrogation of the proteomic web extracted from
KATP channel knockouts under stress prioritized adverse
outcomes, exposing cardiomyopathic traits [136]. Phenotyp-
ing documented aggravated myocardial contractile perfor-
mance, massive interstitial fibrosis, and exaggerated left
ventricular size, all prognostic indices of poor outcome.
Proteomic profiling-enabled bioinformatic forecasting is thus
a powerful tool to predict the consequences of a deficit in
KATP channel function.

Conclusions

Much progress has been made in the understanding of the
structure and function of KATP channels catalyzing the most
recent advances in molecular medicine that increasingly
recognized the vital homeostatic role of this metabolic
sensor in health and disease. Indeed, life-threatening human
conditions ranging from disorders of insulin secretion to
cardiomyopathies are now classified as bona fide KATP

channelopathies. Future research will be required to
determine the overall mutation frequency within KATP

channel genes and the spectrum of genotype–phenotype
relationships in individual patients and populations. Beyond
constitutive KATP channel subunits, patient stratification
and forecast of outcome in the setting of KATP channel
dysfunction will facilitate a personalized approach to
diagnosis and individualized management.
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