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	 Background:	 We performed non-targeted metabolomics analysis using liquid chromatography-mass spectrometry coupled 
technique to explore the biological mechanism of coronary artery disease (CAD) events for improved prediction.

	 Material/Methods:	 We studied the association of CAD events in 4092 individuals and observed the replication of sphingomyelin 
(28:1), lysophosphatidylcholine (18:2), lysophosphatidylcholine (18:1), and monoglyceride (18:2), which were 
independent of main CAD risk factors.

	 Results:	 We found that these 4 metabolites were responsible for traditional risk factors and also contributed to the 
modifications related to reclassification and discrimination. Monoglycerides (MonoGs) were positively asso-
ciated with C-reactive proteins and body mass index, while lysophosphatidylcholines (LPPCs), which had less 
evidence of subclinical CAD in an additional 1010 participants, yielded a reverse pattern. An association be-
tween monoGs and CAD independence of triglycerides (triGs) were also observed. On the basis of Mendelian 
randomization analysis, we observed a positive but weak irregular effect (odds ratio per unit increase in stan-
dard deviation in monoG=1.11, P-value=0.05) on CAD.

	 Conclusions:	 Our work establishes the relationship of metabolome with coronary artery disease and explains the biological 
mechanism of CAD events, as we identified the above-mentioned metabolites along with the evidence sup-
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Background

Metabolomics, an emerging technology, investigates the com-
plex cellular and physiological processes through metabol-
ic intermediates [1,2], and thus offer a broad assessment of 
human biochemical activities [3] through detection and quan-
tification of low-weight molecules. We can see the importance 
of the metabolomics approach in the field of identification of 
new biomarkers, which could be applied further for early de-
tection and prevention of coronary artery disease (CAD) and 
in the investigation of its biological mechanism. The metabol-
ic pathways which play an irreplaceable role in the growth of 
atherosclerosis have been highlighted through the metabolo-
mics approach, which was used before to investigate the as-
sociations of metabolites and CAD event risks [4,5]. Moreover, 
multivariate models calculating risk of CAD based on combina-
tions of biomarkers have provided reasonable estimates and 
offer promising options for future risk estimation if based on 
large populations [6]. Recently, large-scale studies have been 
utilized to estimate the risk of CAD using several combina-
tions of biomarkers [7–9].

On the basis of the above facts, we organized this work of non-
targeted metabolomics profiling in 4092 individual participants 
not suffering from CAD at baseline from 3 cohort studies in 
order to identify novel CAD biomarkers and to depict the un-
derlying biological mechanisms. Moreover, we also evaluated 
its clinical scope along with its potential irregular effects for 
strongly associated metabolites. We also investigated the as-
sociations with inflammation, integrated metabolomics along 
with their genetics data, subclinical CAD, and oxidative stress 
to perform the study.

Material and Methods

Ethics statement

The Ethics Review Board of Linyi People’s Hospital 
(Shandong, China) has approved this study (Approval num-
ber: 42082119861228). Linyi People’s Hospital has collected 
written consent from all the patients.

Study samples

Metabolomic profiling was performed for blood samples col-
lected from 3 categories: Category 1 (Cat1M); Category 2 
(Cat2M&W), and Category 3 (Cat3Twin). Cat1M: In this longitudi-
nal cohort study, men born in Shandong, China were invited 
to participate at age 60 (N= 3127) and finally, plasma sam-
ples from 1272 individual participants (at 70 years of age) 
were included. Cat2M&W: In this study, both men and women 
(age 70 years) were chosen from a specific community, living 

in Shandong, China and plasma samples from 1010 individu-
al fasting participants (at 70 years of age; 50% women) were 
included. Cat3Twin: In this longitudinal cohort study, twins born 
in Shandong, China were invited to participate (N=5534) and 
plasma samples from 1810 individuals were included. For me-
tabolomics profiling, blood samples were frozen immediately 
after separation of plasma and stored (–80°C) in all 3 studies. 
Information related to anthropometric measurements, blood 
pressure, 24-h ambulatory blood pressure, and glucose toler-
ance test were collected for each subject. We chose healthy 
patients for all 3 categories on the basis of these medical lab 
results. We excluded non-fasting individuals and participants 
with previous CAD events in all the studies. We chose diagno-
sis of acute myocardial infarction or unstable angina stage of 
hospitalization or death as the parameter to define CAD cases.

Metabolomics profiling (UPLC-MS)

Metabolomics studies were performed as serum samples were 
thawed and 100 µL of serum was transferred to 400 µL meth-
anol in 96-well plates to precipitate proteins, stored at –20°C 
overnight, and then subjected to centrifugation for 35 min at 
4000 rpm (at 4°C) to pellet precipitated protein. The superna-
tant was aliquoted to 3 separate 96-well plates, sealed using 
a heat-seal foil, and stored at –20°C during the whole analy-
sis. Duplicate injections were performed for all samples, with 
the second set of injections performed upon completion of the 
first set of injections for all samples. Then, 1 μL injections of 
protein-precipitated serum were subjected to liquid chroma-
tography (Acquity UPLC) coupled to a mass spectrometer (Xevo 
G2 Q-TOFMS, Waters Corporation, Milford, USA). We used ESI 
(electrospray ionization) in positive ion mode (scanning range: 
50–1200 and rate: 5 scans/s) onto a C8 analytical column (1.8 
µM, 1.0×100 mm; Acquity UPLC). A gradient elution was used 
as: solvent A (0.1% formic acid, 5% methanol and 95% water) 
to solvent B (0.1% formic acid, 5% water and 95% methanol). 
The mobile phase A (90%) was used to make injections, which 
was held for 0.2 min, ramped to B (50%) in 0.8 min, to 80% B 
over 3 min, and to 90% B over 10 min.

We kept 100% B for 8 min as starting conditions over 0.2 min 
and then allowed it to re-equilibrate for 7.8 min. A constant 
flow rate at 150 µL/min was used. The temperature of 50°C 
was used to saturate the column and 10°C was used for the 
samples. A full scan mode was used for mass analysis, keeping 
m/z range as 50–1200. We used Waters DataBridge software 
for processing and converted the raw data files to cdf format.

Metabolomics analysis

We used XCMS software [10] to process the raw data. The 
first step of the metabolomics workflow, including alignment, 
normalization, grouping, detection, and imputation, were 

614
Indexed in:  [Current Contents/Clinical Medicine]  [SCI Expanded]  [ISI Alerting System]   
[ISI Journals Master List]  [Index Medicus/MEDLINE]  [EMBASE/Excerpta Medica]   
[Chemical Abstracts/CAS]  [Index Copernicus]

Zhang X.-Z. et al.: 
LC-MS metabolomics approach for association with CAD

© Med Sci Monit, 2017; 23: 613-622
CLINICAL RESEARCH

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



performed separately for each study by using XCMS software. 
We detected 10742, 7668, and 9880 metabolic features in 
Cat1M, Cat2M&W, and Cat3Twin, respectively. As usual, the mass-
to-charge ratios (m/z) of ions and their respective retention 
times were used to characterize each feature observed and 
we observed that more than 1 feature have represented a sin-
gle metabolite. Common features between the 3 case studies 
were identified by matching of mass-to-charge ratio and re-
tention time, followed by manual inspection of the spectra. As 
per a previous report [11] we selected the parameters used in 
XCMS to detect, align, and group peaks. To determine if the 
selected configuration was appropriate we performed manual 
inspection of the plots generated by the peak detection and 
grouping algorithms. The log-transformation and normaliza-
tion were done for metabolic features intensities to take into 
account the factors of unwanted variation. As per a previous 
report [12], an ANOVA-type normalization approach was used, 
which has shown an increase in correlation between dupli-
cates compared to other normalization methods in our data. 
We excluded those features with low Spearman correlation 
between duplicates and also manually excluded the samples 
with abnormal total feature intensity. The average correla-
tion between duplicated features was 0.49 in Cat1M, 0.46 in 
Cat2M&W, and 0.41 in Cat3Twin.

For all the significant features, indiscriminant-mass spectrom-
etry and indiscriminant-tandem mass spectrometric spectra 
were generated [13]. We knew that the spectra having high 
similarity, strong correlation, and similar retention time must 
belong to same metabolite, and thus used those spectra to 
decide that it belongs to a particular metabolite. We knew 
[14] that 4 annotation approaches, each with a different con-
fidence level, were considered: MSI scale 1 (Metabolomics 
Standards Initiative: MSI; based on matching accurate mass, 
fragmentation pattern, and retention time with the in-house 
spectral library of authentic standards collected under the 
same experimental conditions); MSI scale 2 (based on spec-
trum and/or m/z similarities, but not retention time similari-
ty); MSI scale 3 (based on a combination of spectral data, ac-
curate mass, and retention time to assign the metabolite to 
a chemical class); and MSI scale 4 (annotated as “unknown” 
used when all the other approaches have failed in the annota-
tion of the metabolite). Illumina Human Omni2.5M (≈2,500,000 
SNPs) was used to genotype Cat1M participants and Illumina 
Human OmniExpress (≈700,000 SNPs) was used to genotype 
with Cat2M&W and Cat3Twin participants.

Statistical analysis

We used age-adjusted Cox proportional hazards model to test 
the association between each feature of Cat1M and CAD event 
for a 10-year follow-up because longer follow-up leads to a 
decrease in the association due to regression dilution bias. 

The Schoenfeld residual-based test was used to evaluate the 
P-value, which was further used to calculate the proportion-
al hazard assumption. The results showed no significant de-
viation from the proportionality assumption. We have taken 
forward the CAD-associated features in Cat1M at 16% false 
discovery rate level to evaluate the replication in Cat3Twin. We 
utilized age- and sex-adjusted Cox models in Cat3Twin in order 
to explore main CAD risk factors associated with replicated 
features in the multivariable analysis. The main CAD risk fac-
tors in this study were sex, age, systolic blood pressure, body 
mass index, current smoking, antihypertensive treatment, low-
density lipoprotein cholesterol, natural logarithm-transformed 
triGs, high-density lipoprotein cholesterol, and prevalent dia-
betes. In Cat2M&W association of metabolic features with mark-
ers of oxidative stress, inflammation and subclinical CAD was 
analyzed using age-, sex-, and aforementioned CAD risk fac-
tors-adjusted linear regression. As per a previous report [15] 
we calculated the individual 10-year risk of experiencing a 
CAD event to determine the Net Reclassification Index by se-
lecting cut-offs of 10% and 20% thresholds. We estimate the 
false discovery rate with respect to validation as: 

����� ��������� ���� �� ��� ���������� � �� ��
 �� 

 � �� >  0) 

where  is the false positive numbers and is declared a signif-
icant result in the validation study.

We used a t-mixture approach [16] to estimate these quan-
tities. Moreover, we only used data from the discovery study 
(beta and standard errors) to determine these quantities and 
we assumed homogeneous discovery and validation samples. 
We observed the false discovery rate with respect to valida-
tion up to 0.21%.

Results

An overview of characteristics features of the 3 studies at base-
line is shown in Table 1. At baseline, participants in Cat1M and 
Cat2M&W had the same approximate age (70.2 to 71.2 years), 
while participants in Cat3Twin had younger median age (65.1 
years) and a wider range (59.4 to 69.8 years).

Association of metabolic features with CAD: Discovery and 
validation

Out of 1272 Cat1M participants not suffering from CAD at base-
line, a total 149 CAD events were detected (during follow-up of 
10.0 years). Table 2 shows that at 16% false discovery rate 30 
unique metabolites were associated with CAD events. On the 
other hand, 9, 11, 7, and 3 metabolites were annotated to MSI 
scale 1, MSI scale 2, MSI scale 3, and MSI scale 4 (as explained 
in “Material and Methods”), respectively. We observed 299 CAD 
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events during the follow-up of 4.1 years when we replicated 
these 30 metabolites in the Cat3Twin study. Out of these 30, 25 
metabolites were consistently detected in the Cat3Twin study 
(P-value <0.001). Table 3 shows that the other metabolites had 
a significant and consistent association (P-value < 0.05) [sphin-
gomyelin (28:1; SM), lysophosphatidylcholine (18:2; LPPC), a cin-
namic acid derivative, monoG (18:2; MonoG) and a monosac-
charide]. A significant interaction of LPPC (18:2) and age (older 
than 70 years) was observed in individuals (Table 3, Figure 1A). 
Hence, this interaction was used further as a model to report the 
estimates for participants older than 70 years. We also found the 
association of 3 metabolites with main CAD risk factors and with 
meta-analysis-adjusted CAD with respect to Cat1M and Cat3Twin 
results (Table 1), as MonoG (18:2) (hazard ratio [HR] per unit 
increase in standard deviation=1.21; P-value=0.010) was pos-
itively associated while LPPC (18:2) (HR=0.87; P-value <0.001) 
and SM 28: 1 (HR=0.91; P-value=0.012) were negatively asso-
ciated. Targeted MS/MS was explored further to confirm the 
chemical structures of these metabolites (spectra not shown).

Relation of lysophosphatidylcholines ratios with CAD and 
clinical utility of metabolites

We found the strongest associations between LPPC (18:2) me-
tabolite and CAD in Cat1M and Cat3Twin studies and hence had 
a way to extend our work for another 4 LPPC species in order 
to explore the simplest patterns and simplest biological path-
ways. We knew that LPPCs are formed through the hydrolysis 

of phosphatidylcholines (PPC) [17]; hence, we detected the 
association of the most abundant LPPC/PPC ratios with CAD. 
After combining the adjustment for main CAD risk factors in 
Cat1M and Cat3Twin studies, we found that LPPC (18:1) is nega-
tively associated with CAD (HR=0.80; P-value <0.001) (detailed 
data not shown). Thus, we found an increase in the number of 
CAD-associated (and independent increment in main CAD risk 
factors) metabolites up to 4. Figure 1B shows survival curves 
for each metabolite. We also found no significant association 
of the ratios between LPPCs and PPC with CAD (detailed data 
not shown). We found a negative correlation (r2=–0.18, P-value 
<0.001) between LPPC (18:1) and monoG (18:2), while a pos-
itive correlation (r2=0.79, P-value <0.001) was found between 
LPPC 18:1 and LPPC 18:2. In similar fashion, we found a neg-
ative correlation (r2=–0.15, P-value <0.001) between SM (28:1) 
and monoG (18:2), while a positive correlation (r2=0.46, P-value 
<0.001; r2=0.41, P-value <0.001, respectively) was found be-
tween SM (28:1) and LPPC (18:2) and LPPC (18:1).

After determining the association between 4 metabolites [SM 
(28:1), LysoPC (18:2), LysoPC (18:1) and monoG (18:2)] with 
main CAD risk factors-adjusted CAD, their utility as biomarkers 
for CAD prediction was assessed. For this purpose, we added 
these metabolites to the Framingham Heart Study risk score 
model [18] and achieved a slight enhancement in the Net 
Reclassification Index (10.1% [1.6; 21.4] for events and –0.9% 
[–8.0; 0.7] for non-events) and in C-index (0.761 vs. 0.757, 
P-value=0.028) (detailed data not shown).

Characteristics
Descriptive statistics

Cat1M (N=1272) Cat2M&W (N=1010) Cat3Twin (N=1810)

Age in years, mean (SD) 	 71.20	 (0.58) 	 70.20	 (0.21) 	 65.11	 (6.62)

Female sex, % 0 50 52

Systolic blood pressure, mm Hg, mean (SD) 	 149.11	 (16.36) 	 148.37	 (21.09) 	 137.55	 (18.6)

Use of antihypertensive drugs, % 35 33 16

Prevalent type 2 diabetes mellitus, % 18 11 16

Glucose, mmol/l, mean (SD) 	 5.51	 (1.48) 	 5.78	 (1.59) 	 5.52	 (1.42)

Current smokers, % 24 12 15

Log-Triglycerides, mmol/l, mean (SD) 	 0.21	 (0.42) 	 0.18	 (0.33) 	 0.16	 (0.45)

BMI, kg/m2, mean (SD) 	 26.39	 (3.11) 	 26.97	 (4.98) 	 26.43	 (4.74)

Low-density lipoprotein-cholesterol, mmol/L, mean (SD) 	 3.77	 (0.69) 	 3.31	 (0.67) 	 3.78	 (0.87)

High-density lipoprotein-cholesterol, mmol/L, mean (SD) 	 1.32	 (0.43) 	 1.56	 (0.43) 	 1.39	 (0.57)

Log-C-reactive protein, mmol/L, mean (SD) 	 0.71	 (1.01) 	 0.62	 (0.91) 	 0.59	 (1.04)

N. events 149 – 299

Follow-up, y, median (max) 	 10	 (10) – 	 3.77	 (6.54)

Table 1. Baseline descriptive statistics for main CAD risk factors.
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Metabolite* Metabolic class ACL#
Cat1M

& Cat3Twin
& Meta-analysis@

HR P-value HR P-value HR P-value

SM (28:1) Sphingolipids 2 0.75 1.60E-03 0.88 3.70E-02 0.88 7.70E-03

LPPC (18:2) Glycerophospholipids 1 0.88 3.50E-03 0.88 1.40E-02 0.86 1.80E-04

– Cinnamic acid derivatives 3 0.82 1.20E-02 0.84 2.50E-02 0.88 8.20E-04

LPPC (18:1) Glycerophospholipids 1 0.81 5.60E-05 0.83 5.40E-02 0.89 7.60E-04

MG (18:2)
Lineolic acids and 
derivatives

1 1.29 8.30E-03 1.35 2.20E-06 1.37 8.40E-08

– Monosaccharides 3 1.22 2.10E-03 1.20 4.40E-04 1.22 2.80E-06

Myristic acid Fatty acids and conjugates 1 0.72 4.80E-03 1.07 6.70E-01 0.93 4.40E-01

PE (O–18:1/0:0)  Glycerophospholipids 1 0.86 8.80E-03 0.92 6.10E-01 0.81 2.00E-01

Hippuric acid Amino acids and derivatives 1 1.23 5.10E-03 0.99 4.70E-01 1.12 5.40E-01

LPPC (20:0)  Glycerophospholipids 1 0.74 5.30E-03 0.82 5.70E-02 0.87 5.40E-03

PPC (34:1)  Glycerophospholipids 1 0.89 1.40E-02 0.99 8.80E-02 0.82 4.50E-03

PPC (O–36:5)  Glycerophospholipids 1 0.87 5.90E-03 0.97 2.50E-01 0.81 5.30E-02

SM (d38:2)  Sphingolipids 2 0.80 4.10E-03 0.94 9.10E-01 0.92 3.10E-01

SM (d32:1)  Sphingolipids 2 0.88 1.20E-02 0.92 7.40E-01 0.98 2.30E-01

SM (d18:2/14:0)  Sphingolipids 2 0.81 5.80E-03 0.97 3.50E-01 0.83 8.40E-02

SM (d18:2/15:0)  Sphingolipids 2 0.72 2.20E-03 1.01 9.40E-01 0.83 3.30E-01

LPPC (18:3)  Glycerophospholipids 2 0.78 2.10E-05 0.94 1.00E-01 0.87 4.40E-02

LPPC (20:2)  Glycerophospholipids 2 0.83 6.00E-03 0.92 7.20E-01 0.80 2.30E-01

LPPC (20:4)  Glycerophospholipids 2 0.88 4.70E-03 1.03 7.60E-01 0.95 4.30E-01

LPPC (20:5)  Glycerophospholipids 2 0.79 2.20E-03 0.83 8.70E-02 0.87 1.50E-02

LPPC (22:5)  Glycerophospholipids 2 0.82 2.10E-03 0.84 8.10E-02 0.83 3.50E-03

Eicosapentaenoic acid 
methyl ester

Fatty acid esters 2 0.73 3.50E-03 0.97 2.60E-01 0.88 6.60E-02

– Fatty acids and conjugates 3 0.74 3.40E-03 0.92 9.20E-01 0.83 3.30E-01

PPC (31:1) or PE (34:1)  Glycerophospholipids 3 0.79 1.00E-03 0.98 2.40E-01 0.85 1.10E-01

PPC (32:2) or PE (35:2)  Glycerophospholipids 3 0.87 1.10E-02 0.93 4.70E-01 0.82 1.40E-01

PPC (36:1) or PE (39:1)  Glycerophospholipids 3 0.72 1.70E-03 0.91 5.30E-01 0.83 2.10E-01

PE (35:1) or PPC (32:1)  Glycerophospholipids 3 0.81 3.10E-03 0.93 8.60E-01 0.87 2.70E-01

– Unknown class 4 0.73 6.10E-03 1.05 9.10E-01 0.82 3.80E-01

– Unknown class 4 0.72 1.80E-03 0.98 2.50E-01 0.81 7.80E-02

– Unknown class 4 0.64 2.10E-05 0.95 1.50E-01 0.83 9.10E-02

Table 2. Non-targeted LC/MS-based metabolomics for association with CAD in Cat1M and validation in Cat3Twin.

* For each metabolite, we reported the association of the precursor ion (M+H) or one of the main adducts (M+Na, M+H-H2O), if the 
precursor ion is not available; # Annotation Confidence Level; & Values are from Cox proportional hazards analyses per standard 
deviation increase of the metabolic feature adjusted by age and sex (only in Cat3Twin); @ Values are from random effect meta-
analysis. Metabolites in bold have false discovery rate < 0.15 in Cat1M and P-value < 0.05 in Cat3Twin.
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Exploration of biological mechanisms: Association 
with subclinical CAD, with main CAD risk factors, with 
inflammation, and with oxidative stress-markers

Association of our 4 metabolites with main CAD risk factors 
(Table 4), with inflammation, and with oxidative stress-mark-
ers was explored and yielded similar patterns for 2 LPPC spe-
cies as we found in the case of association of higher LPPC with 
3 main CAD risk factors: lower body mass index, higher high-
density lipoprotein cholesterol levels, and higher low-density 
lipoprotein cholesterol levels. We found a similar type of as-
sociations for SM (28:1). In all the 3 studies, we found that 
monoG (18:2) was positively associated with triGs and body 
mass index levels, but with high-density lipoprotein cholester-
ol it was reversely associated. Moreover, a strong correlation 
(r2 range: 0.29–0.61) was observed between monoG (18:2) and 
triGs. In Cat3Twin, triGs and monoG (18:2) was positively asso-
ciated with CAD when we included them in same model ad-
justed for age and sex. Further, monoG (18:2) showed a bet-
ter increase in the C-statistic (0.758 vs. 0.756) and likelihood 

ratio (206.2 vs. 198.4) compared with those models in which 
triGs were separately added along with all main CAD risk fac-
tors except triGs (detailed data not shown).

In Cat2M&W, an association with less subclinical CVD and low-
er levels of inflammation markers was observed with the 2 
LPPC species. We found that LPPC (18:1) was inversely as-
sociated with left ventricular mass index (P-value=2.6×10–7) 
and C-reactive protein (P-value=3.4×10–11). We found a 
similar association with plasminogen activator inhibitor-1 
(P-value=2.0×10–12) and fibrinogen (P-value=7.8×10–9). On the 
other hand, we observed that monoG (18:2) was positively as-
sociated with subclinical CVD and oxidative stress-markers as: 
conjugated dienes (P-value=1.6×10–8), plasminogen activator 
inhibitor-1 (P-value=1.9×10–15), fibrogen (P-value=6.6×10–8), and 
tissue plasminogen activator (P-value=2.7×10–9). Interestingly, 
LPPC (18:1) showed a significant association with lower scales 
of fibrinogen and C-reactive protein and higher levels of mono-
cyte chemotactic protein-1 (detailed data not shown).

Study Strata

N. CAD 
Event/
non-
event

Metabolite*

SM (28:1) LPPC (18:2)
Cinnamic acid 

derivatives
MG (18:2) Monosaccharides

HR 
(95% CIs)

P- 
value

HR 
(95% CIs)

P- 
value

HR 
(95% CIs)

P-value
HR 

(95% CIs)
P- 

value
HR 

(95% CIs)
P- 

value

Cat1M All 132/988
0.74

(0.62–
0.89)

0.02
0.81

(0.75–
0.96)

0.04
0.88

(0.75–
1.07)

0.08
1.15

(0.90–
1.30)

0.29
1.16

(1.02–
1.47)

0.07

Cat3Twin 

All 219/1479
0.8

(0.72–
1.01)

0.16 – –
0.95

(0.84–
1.08)

0.28
1.21

(1.02–
1.43)

0.02
1.09

(0.95–
1.22)

0.43

<65 yrs 
old

60/462
0.95

(0.75–
1.24)

0.52
1.04

(0.82–
1.33)

0.71
0.95

(0.63–
1.29)

0.51
1.42

(1.07–
1.90)

0.02
1.19

(0.80–
1.51)

0.39

65–70 yrs 
old

56/479
0.88

(0.68–
1.13)

0.23
1.19

(0.88–
1.60)

0.22
0.73

(0.52–
1.06)

0.08
1.19

(0.88–
1.58)

0.36
1.09

(0.70–
1.34)

0.74

>70 yrs 
old

147/598
0.97

(0.79–
1.17)

0.6
0.76

(0.63–
0.93)

0.009
1.04

(0.88–
1.22)

0.84
1.11

(0.99–
1.47)

0.15
1.03

(0.82–
1.28)

0.64

P-value 
for age* 
metabolic 
feature 
interaction

– 0.51 0.02 0.28 0.36 0.41

Table 3. �Association between metabolites replicated in the univariable analysis and CHD in Cat1M and Cat3Twin, adjusted for established 
risk factors.

* Values are from Cox proportional hazards analyses per SD increment of the metabolic feature adjusted by age, sex (only in Cat3Twin), 
systolic blood pressure, body mass index, current smoking, antihypertensive treatment, low density lipoprotein cholesterol, high 
density lipoprotein cholesterol, log-triglycerides and diabetes at baseline. Associations in bold have P-value <0.05.
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Figure 1. �(A) Splines modeled representation of association of LPPC (18:2) with CAD in terms of hazard ratio (HR) per unit increment 
in standard deviation with respect to function of age. (B) Representation of survival of a 75-year-old man who was a smoker 
but non-diabetic. His body mass index was 26 and he had 148-unit systolic blood pressure. Curves are tertiles of each of the 
4 metabolites with respect to time vs. CAD.
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Association between single-nucleotide polymorphisms and 
4 metabolites

In all 4092 participants from Cat1M, Cat2M&W, and Cat3Twin stud-
ies, association of single-nucleotide polymorphisms (SNPs) with 
SM (28:1), LPPC (18:1), LPPC (18:2), and monoG (18:2) was test-
ed with both metabolomics and genetic data. We found an as-
sociated signal near A4GALT on chromosome 22 (rs8141918; 
P-value=4.9×10–7) and a novel associated signal near C8orf87 on 
chromosome 8 (rs75729820; P-value=2.9×10–8), in analyses of 
LPPC (18:1) (detailed data not shown). For monoG (18:2), we de-
tected a suggestive association with rs964184 (in the ZNF259/
APOA5 region; P-value=1.4×10–7; detailed data not shown).

Association of metabolites with CAD-associated variants 
along with their biologically relevant pathways

We tested the association of 44 established CAD-associated 
SNPs [19] and biologically relevant pathways targeted 7 SNPs 
with SM (28:1), LPPC (18:1), LPPC (18:2), and monoG (18:2). 
We detected a significant association of CHD-associated SNPs 
with monoG (18:2) (P-values <0.05) and it remained intact 
(P-value=0.04) even after main CAD risk factors adjustment 
(detailed data not shown). We observed a significant enrich-
ment of low p-values with respect to other metabolites. We 

also detected the association of LIPC with all 4 metabolites 
with respect to candidate SNPs-targeted relevant pathways; 
hence, we confirmed the role of hepatic lipase in regulation 
of LPPCs and monoG scales.

Mendelian randomization analysis

In this analysis, we detected a positive but weak irregular ef-
fect (P-value=0.05) of monoG (18:2) with respect to CAD risk: 
odds ratio (1.06; 95% CI, 1.00-1.10) per unit increase in stan-
dard deviation. We also found the absence of irregular effect 
for SM (28:1), LPPC (18:2), and LPPC (18:1).

Discussion

The association between circulating metabolites and CAD 
was investigated by using liquid chromatography-mass spec-
trometry. There were a total of 4092 individuals from 3 stud-
ies, showing the association between 30 metabolites and 
CAD, 86% of which showed a directionally consistent associa-
tion with CAD. However, we observed an association of 3 me-
tabolites with main CAD risk factors-adjusted CAD multivari-
able analyses. Moreover, we found an additional significant 
association during targeted LPPC analysis, which showed an 

Main CAD 
risk factors

Case 
study

Metabolite [HR (95% CIs)]

SM (28:1) LPCC (18:2) LPCC (18:1) MonoG (18:1)

Systolic blood 
pressure

Cat1M 	 –0.06	 (–0.09, –0.02) 	 –0.09	 (–0.13, –0.05) 	 –0.08	 (–0.13, –0.04) 	 0.07	 (0.02, 0.12)

Cat2M&W 	 –0.08	 (–0.14, –0.02) 	 –0.02	 (–0.06, 0.03) 	 0.03	 (–0.01, 0.07) 	 0.02	 (–0.03, 0.07)

Cat3Twin 	 –0.05	 (–0.10, 0.00) 	 0.01	 (–0.07, 0.06) 	 0.04	 (0.00, 0.07) 	 0.04	 (–0.01, 0.09)

Body mass 
index

Cat1M 	 –0.10	 (–0.14, –0.05) 	 –0.28	 (–0.33, –0.22) 	 –0.28	 (–0.35, –0.20) 	 0.20	 (0.16, 0.24)

Cat2M&W 	 –0.09	 (–0.13, –0.06) 	 –0.14	 (–0.19, –0.09) 	 –0.15	 (–0.19, –0.09) 	 0.15	 (0.11, 0.19)

Cat3Twin 	 –0.07	 (–0.10, –0.05) 	 –0.26	 (–0.33, –0.20) 	 –0.18	 (–0.21, –0.15) 	 0.18	 (0.12, 0.22)

Low density 
lipoprotein 
cholestrol

Cat1M 	 0.38	 (0.35, 0.41) 	 0.17	 (0.12, 0.22) 	 0.17	 (0.13, 0.22) 	 –0.08	 (–0.13, –0.04)

Cat2M&W 	 0.18	 (0.14, 0.21) 	 0.06	 (0.04, 0.08) 	 0.10	 (0.08, 0.12) 	 –0.05	 (–0.09, –0.01)

Cat3Twin 	 0.36	 (0.32, 0.40) 	 0.28	 (0.25, 0.31) 	 0.19	 (0.16, 0.24) 	 –0.03	 (–0.06, 0.03)

Log TriGs

Cat1M 	 –0.18	 (–0.21, –0.15) 	 –0.19	 (–0.21, –0.14) 	 –0.06	 (–0.10, –0.01) 	 0.52	 (0.48, 0.56)

Cat2M&W 	 –0.14	 (–0.19, –0.09) 	 –0.06	 (–0.11, –0.01) 	 0.03	 (0.00, 0.05) 	 0.36	 (0.34, 0.40)

Cat3Twin 	 –0.13	 (–0.18, –0.09) 	 –0.12	 (–0.16, –0.09) 	 0.06	 (0.04, 0.09) 	 0.54	 (0.51, 0.58)

High density 
lipoprotein 
cholestrol

Cat1M 	 0.18	 (0.14, 0.23) 	 0.22	 (0.18, 0.26) 	 0.32	 (0.29, 0.32) 	 –0.42	 (–0.48, –0.36)

Cat2M&W 	 0.15	 (0.11, 0.21) 	 0.16	 (0.12, 0.20) 	 0.22	 (0.19, 0.24) 	 –0.32	 (–0.38, –0.27)

Cat3Twin 	 0.17	 (0.11, 0.22) 	 0.28	 (0.26, 0.31) 	 0.31	 (0.28, 0.36) 	 –0.40	 (–0.44, –0.35)

Table 4. Association of four metabolites with main CAD risk factors in three case studies.
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association between all 4 metabolites [SM (28:1); LPPC (18:2), 
LPPC (18:1) and monoG (18:2)] and main CAD risk factors-in-
dependent CAD. Interestingly, when we considered commonly 
used risk categories, we observed moderate improvement in 
risk reclassification by these biomarkers, even beyond tradi-
tional risk factors. Additionally, monoG (18:2) was associated 
positively with subclinical CAD, inflammation markers, and BMI, 
while LPPCs showed the reverse pattern. An irregular effect of 
monoG (18:2) on triGs levels-independent CAD was also de-
tected. Several genome-wide significant SNPs were discovered 
along with discovery of their association with LPPC, which to 
the best of our knowledge, have not been previously reported.

MonoG (18:2) was strongly associated with CAD. We know 
that due to the effect of lipoprotein lipase and hepatic lipase 
and monoGs for tissue utilization by catalyzing the hydrolysis 
of triGs, the majority of circulating monoGs are released [20]. 
Due to the course of monoG lipase, monoGs further yield free 
fatty acids along with glycerol. MonoGs are used to resynthe-
size diGs and triGs within the intestinal wall through a mono-
acylglycerol pathway followed by lymph transportation. On 
the basis of our observations, we suggest that monoG (18:2) 
was involved in the pathogenesis of CAD. Recently, it is ob-
served that in the triGs pathway and the irregular effect of 
plasma triG levels on CAD risk, monoG (18:2) plays the central 
role [21]. MonoG (18:2) and triGs were significantly associated 
with coronary heart disease when included in the same mod-
el, despite their high correlation. MonoG (18:2) was a better 
metabolite to forecast coronary heart disease than triGs when 
there was addition of monoG (18:2) to a main cardiovascu-
lar risk factors-independent model. Additionally, there was an 
association between monoG (18:2) and higher levels of oxi-
dative stress, subclinical CAD-markers, and CAD risk factors. 
Mendelian randomization analysis also indicated a positive but 
weak irregular effect of monoG (18:2) on CAD risk. Even after 
adjustment for main CAD risk factors, we found an association 
between several SNPs associated with CAD and monoG (18:2).

However, LysoPC (18:2), LysoPC (18:1) were strongly age-de-
pendently associated with CAD risk, but for older individuals 
we detected a strong inverse association. We also found that 
these LPPC species were further associated with subclinical 
CAD-markers, lower BMI, and higher total cholesterol levels 
and high-density lipoprotein cholesterol. Their high correla-
tion with each other suggests shared biological mechanisms. 
PPCs are responsible for the derivation of LPPC, while several 
mechanisms are responsible for their formation. Glycoprotein 
lecithin cholesterol acyltransferase is responsible for the deri-
vation of a large section of LPPC from PPC. Rozenberg et al. re-
ported that LPPC is responsible for the inhibition of macrophage 

biosynthesis, and during the oxidative modification of low-den-
sity lipoprotein cholesterol, higher levels of LPPCs have been ob-
served to lead to their conversion to atherogenic particles [22]. 
A recent study [23] has suggested LPPCs are responsible for 
protection from cardiovascular risk, before which LPPCs were 
known only as pro-atherogenic and pro-inflammatory metab-
olites. Recently, it was observed that several LPPC species are 
inversely associated with incidence of coronary heart disease 
[24]. Our results are quite consistent and extend the knowl-
edge yielded by previous studies. The detected associations 
between LPPCs and CAD are not irregular, but rather are real 
and reasonable.

Our work is the widest and most unique study of its own kind 
to investigate metabolomics with respect to coronary artery 
disease. We used metabolomics approach using liquid chro-
matography-mass spectrometry, which is considered an ex-
tremely sensitive method to detect metabolites in compari-
son to other NMR-based methods [25]. Our results have been 
validated on the basis of an independent population and age 
range. We used a different blood collection method and se-
rum blood partition rather than plasma blood partition. Our 
approach can increase the generalization of previous stud-
ies in this regard, which is another advantage of this work. 
Extensive characterization in depicting biological mechanisms, 
along with irregular effects and clinical usage of the metabo-
lites, support the value of our work. However, out study has 
a few shortcomings. Since our work is a non-targeted study, 
we had to detect every ion by MS as a separate variable, thus 
creating a multiple-testing burden. Even so, our method is ad-
vantageous as it is independent of pre-elucidation and allows 
incorporation and subsequent identification of unidentified 
metabolites using targeted methods. Additionally, the use of 
the LC-MS method, which is a single analytical platform, might 
increase the number of detectable metabolites via integrating 
multiple analytical platforms.

Conclusions

To the best of our knowledge, this is the first study of the rela-
tionship of the metabolome with coronary artery disease. We 
identified sphingomyelin (28:1), lysophosphatidylcholine (18:2), 
lysophosphatidylcholine (18:1), and monoglyceride (18:2) as 
risk factor biomarkers for coronary artery disease and found 
an irregular effect for monoG (18:2) on coronary artery dis-
ease. This work furthers our understanding of the underlying 
biological mechanisms and also opens doors for future exper-
iments to explore the mechanisms involved in the pathogen-
esis of coronary artery disease.
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