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In cancer, somaticmutations occur continuously, causing cell populations to evolve. These
somatic mutations result in the evolution of cellular gene expression patterns that can also
change due to epigenetic modifications and environmental changes. By exploring the
concordance of gene expression changes with molecular evolutionary trajectories of cells,
we can examine the role of somatic variation on the evolution of gene expression patterns.
We present Multi-Omics Concordance Analysis (MOCA) software to jointly analyze gene
expressions and genetic variations from single-cell RNA sequencing profiles. MOCA
outputs cells and genes showing convergent and divergent gene expression patterns
in functional genomics.
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1 INTRODUCTION

Cancer cells in tumors harbor extensive genetic and gene expression heterogeneity (Gray and
Collins, 2000; Russnes et al., 2011; Zhang et al., 2013; Dentro et al., 2021). Genetic heterogeneity
is due to somatic mutations that create new cell genotypes that experience neutral, adaptive, or
purifying selection (Merlo et al., 2006; Gerlinger et al., 2012; Greaves and Maley, 2012; Davis
et al., 2017; McGranahan and Swanton, 2017). Somatic mutations can also cause changes in gene
expression, with epigenetic modifications and environmental factors also contributing to the
heterogeneity of gene expressions (Burrell et al., 2013; Deshmukh and Saini, 2020; Mbemi et al.,
2020). Single-cell RNA sequencing (scRNA-seq) is now widely used to interrogate the expression
of genes in large numbers of cells (Shalek et al., 2013; Trapnell et al., 2014; Baron et al., 2016;
Haque et al., 2017). Also, it has begun to be used to assess genetic variation and reconstruct
cellular phylogeny (Ramazzotti et al., 2020; Zhou et al., 2020; Moravec et al., 2021), albeit with
high rates of missing data and false-negative detection of mutant variants (Fasterius et al., 2019;
Liu et al., 2019). Therefore, in principle, the evolution of cell expression and genetic architecture
can be inferred from scRNA-seq.

We have developed a tool for Multi-Omics Concordance Analysis (MOCA) of scRNA-seq
datasets to test whether gene expression and genetic evolution show concordance patterns. MOCA
classifies cells based on somatic variants (genetic ancestry) and gene expression profiles (expression
state), captured in scRNA-seq. MOCA analysis reveals cells whose expression type matches their
ancestry relationships (divergent expression evolution) and those in the same expression state
despite being from genetically distinct ancestry (convergent expression evolution). We present
multiple example data analyses to validateMOCA and demonstrate its usefulness. These applications
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suggest that MOCA can illuminate links between phenotypic
(e.g., gene expression patterns) and genetic changes useful for
understanding cancer progression, therapy resistance, and
tumorigenesis.

2 METHODS

2.1 Overview of MOCA Tools
MOCA conducts three distinct analyses: 1) genetic ancestry
annotation from cellular phylogenies, 2) assessment of genetic
ancestry annotation, and 3) gene expression trajectory analysis
in the context of the genetic ancestry (Figure 1A).

2.1.1 Genetic Ancestry Annotation Tools
MOCA identifies cells with similar or identical genotypes in
the phylogeny (Figure 1B), given an inferred cellular
phylogeny. MOCA presents two approaches to develop
groups of cells (ancestry type): one for ladder-like
phylogenies (UnbalancedAnnotation function) and the other

for balanced-shape phylogenies (BalancedAnnotation
function), following Paradis et al. (2004). Both functions
circumscribe groups of cells such that genetic distances
between cells within groups are smaller than between
groups (see BalancedAnnotation and UnbalancedAnnotation
for the detail). Cells within the same group are assigned to a
genetic ancestry type. If users need guidance in selecting which
annotation function to use, MOCA provides the TreeBalance
function, which analyzes the shape of a given phylogeny
(Bortolussi et al., 2006).

To empower users to confirm the annotation visually, MOCA
outputs cell phylogeny with the estimated genetic ancestries
mapped (e.g., Figure 1B). MOCA also produces annotation
files for manual editing and expert refinement. Of course,
alternatively, other cell clustering methods such as SCG (Roth
et al., 2016) may be used to directly annotate genetic ancestry
from observed single-cell sequences without reconstructing
cellular phylogenies. In this case, genetic ancestry may be
assigned to cells that are in the cell group (clone) by the
chosen method.

FIGURE 1 | Overview of MOCA. (A) MOCA workflow. MOCA analyzes cellular genetic variations and gene expression profiles from scRNA-seq data. (B) MOCA
takes as input a phylogenetic tree if the genetic ancestry of each cell is not provided. If the type of tree shape (balanced or unbalanced) is unclear, MOCA’s TreeBalance
function first suggests the tree’s shape. Based on the tree shape, MOCA suggests using either theBalancedAnnotation or theUnbalancedAnnotation function to identify
groups of genetically similar cells, which are defined as genetic ancestries. The phylogeny was inferred by BEAM analysis of 139 variants in the MGH26 data. (C)
MOCA’s AncestryComparison function visualizes and quantifies the relationship between inferred genetic ancestry annotations among different phylogenies. For each
pair of trees (genetic ancestry annotations), Cramer’s V effective size together with p-value is produced. (D) Using the genetic ancestries together with the gene
expression matrix (input), MOCA’s PhyloTrajectory function infers the expression trajectory. From the inferred trajectory, PhyloTrajectory calculates the Sub-
concordance index (SCI) for each genetic ancestry and Overall concordance index (OCI). The SCI index is the count of expression states which are largely unique to a
given genetic ancestry, e.g., >80% of cells. The OCI is the ratio of total expression states that are largely unique to any single ancestry compared to all the expression
states identified. (E) The SCI index for each genetic ancestry for different numbers of genes, 200–1,000. (F) The OCI of the tumor across gene sets, 200–1,000. These
indices are produced for each tree.
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2.1.2 Genetic Ancestry Validation Tools
When there is a large amount of missing data and false-negative
detection of mutant variants, which is not uncommon in scRNA-
seq data, the inferred cell phylogeny may not allow reliable
genetic ancestry annotation. Therefore, we need to validate
genetic ancestry annotation, if possible. MOCA compares
genetic ancestry annotations produced by two and more than
two computational methods and presents a visualization of the
agreement of ancestry annotation between phylogenies together
with statistical measures, i.e., Cramer’s V effect size and p-value
(see AncestryComparison for details) (Figure 1C). We may
consider genetic ancestry annotations reliable if the use of
phylogenies from different approaches produces consistent
results. We also suggest that the downstream gene expression
trajectory analysis should be performed only if there is
concordance among ancestry annotations from multiple
phylogenies.

2.1.3 Gene Expression Trajectory Analysis Tools
MOCA’s PhyloTrajectory function analyzes the gene expression
matrix produced by scRNA-seq data analysis. PhyloTrajectory
uses Monocle (Qiu et al., 2017; Trapnell et al., 2014) to
reconstruct a gene expression trajectory, which also takes
information on evolutionary clusters (genetic ancestries) as
input (Figure 1D). In Monocle, the non-cancerous (normal)
cell is set to be the origin, i.e., it receives the pseudotime equal
to zero. Genes differentially expressed between given genetic
ancestries are identified (Yee, 1996), and a gene expression
trajectory using these genes is produced together with cell by
cell annotation of the expression state. Cells with similar gene
expression patterns receive the same expression state.

In the next step, the PhyloTrajectory function assesses whether
cells with the same genetic ancestry tend to have the same
expression state. Two measures are made available, one for
each genetic ancestry (Sub-concordance index; SCI) and the
other for the whole tumor (Overall concordance index; OCI).
SCI is calculated for each genetic ancestry. It is the count of
expression states that are uniquely composed of cells belonging to
a given genetic ancestry. To further describe SCI calculation, we
use an example gene expression trajectory shown in Figure 1D.
For example, many cells from ancestry 3 have gene expression
state 4, which rarely has cells from the other ancestries. On the
other hand, the other expression states contain cells from various
ancestries. In this case, the SCI of ancestry 3 is one. The minimum
value of SCI is zero (e.g., ancestry 1 and 2 in Figure 1D),
indicating cells from the given ancestry do not have a unique
gene expression pattern. A count greater than one indicates that
cells from the same ancestry can be further subclassified into
distinct groups by the similarity of gene expression patterns.
Second, OCI is the ratio of total expression states that are unique
to single ancestries in the data (Figure 1D). OCI indicates the
proportion of new expression states evolving within cancer cell
populations of the same genetic ancestry.

The above analysis is repeated over the desired range of gene
counts (see PhyloTrajectory for details), and the concordance
indices are summarized across the gene counts (Figures 1E,F).
When a limited number of genes’ expression patterns are altered

along with genetic changes, concordance between genetic
ancestry and gene expression states would be detected only
when a small number of genes are used. This is because the
use of a greater number of genes will dilute the biological signal by
including the genes that do not follow that trend.

In addition, PhyloTrajectory performs the above analysis for
each genetic ancestry annotation from different phylogenies,
which is important to consider the uncertainty of genetic
ancestry annotation. All inferences are visualized so that a
researcher can assess consistency when slightly (or more)
different genetic ancestry annotations are used. Such analyses
evaluate the robustness of the concordance seen between genetic
ancestry and gene expression state annotations. Users can also
perform the gene expression trajectory analysis using a consensus
genetic ancestry annotation produced using the
AncestryComparison function (see AncestryComparison) to
evaluate the inference further.

2.2 MOCA Functions
2.2.1 TreeBalance
For a given phylogeny, the TreeBalance function uses the
apTreeshape method and estimates the beta value of the Beta-
splitting model (Bortolussi et al., 2006). Trees with beta values less
than −1.5 are designated as unbalanced trees (PDA model), while
trees with beta values of greater than −1.5 are designated balanced
trees (Yule trees).

2.2.2 BalancedAnnotation and UnbalancedAnnotation
The BalancedAnnotation and UnbalancedAnnotation functions
use tools in the ape package (Paradis et al., 2004). The
BalancedAnnotation function iteratively identifies clades of
cells (genetic ancestry) until the desired number of clades
(default: 3) is determined. BalancedAnnotation first performs
pairwise testing on all possible clades to identify two clades that
have the least amount of genetic dissimilarity within each. The
first two clades are also required to have the desired minimum
percent of total cells (default: 0.75), while each clade has the
desired minimum percent of cells (default: 0.1). Next, the largest
remaining clades are identified. If two remaining clades are of
equal size, then the clade with the least genetic dissimilarity is
selected.

The UnbalancedAnnotation function partitions a given
phylogeny into the desired number of ancestries (default: 3),
in which each ancestry will have a similar number of cells. For
each ancestry, a single clade is identified from the tree containing
the nearest desired number of cells at each time. Then the next
clade containing the nearest desired number of cells is searched
after removing the first clade from the phylogeny. This process is
repeated until the desired number of clades is determined. If there
are two potential clades, the clade with the least genetic
dissimilarity is selected.

2.2.3 AncestryComparison
For all the trees or genetic annotation files provided,
AncestryComparison produces a consensus annotation of
genetic ancestries and returns a heatmap colored with genetic
ancestry IDs, where each cell is aligned across the trees (or
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annotation files) together with the consensus annotation.
AncestryComparison will also assess the annotation agreement
between each pair of trees (or annotation files), including the
consensus annotation, by calculating Cramer’s V effect size and
p-value (a chi-square test). These measures are based on a
contingency table of cell count for each combination of
ancestry annotation (e.g., cells classified Ancestry 1.1 for a
phylogeny 1 and Ancestry 2.1 for a phylogeny 2 in
Figure 1C). These statistical measures are calculated for each
pair of phylogenies. With Cramer’s V effect size >0.2 with p <<
0.01, the agreement of ancestry annotations between two
phylogenies may be supported.

2.2.4 PhyloTrajectory
A set of expression trajectories is inferred using the desired range
of gene counts for each tree (genetic ancestry annotation). By
default, MOCA starts with the 200 most differentially expressed
genes and then adds the next top 100 most differentially
expressed genes until reaching the total of 1,000 genes that are
most differentially expressed between genetic ancestries. Genes
are first ranked based on the extent of their expression level
differences between genetic ancestries, using a method in
Monocle (Yee, 1996). For each desired number of genes (gene
scale), the dataset is restricted to the top genes most differentially
expressed between genetic ancestries. Monocle is used to infer the
gene expression trajectory.

2.3 Data Collection and Analysis
We obtained a gene expression matrix (Hou et al., 2016) from the
GEO database (http://www.ncbi.nlm.nih.gov/geo) (GSE65364).
After removing redundant genes and genes which were not
expressed, the gene expression matrix contained 14,611 genes.
The raw sequence reads were obtained from the NCBI Sequence
Read Archive (https://www.ncbi.nlm.nih.gov/sra) (SRP052901).
We refer to this as the Hou dataset. We also obtained other
filtered and normalized gene expression matrices of 5,948 genes
that were previously generated, i.e., MGH26 and the MGH31
datasets (Patel et al., 2014) from the GEO database (http://www.
ncbi.nlm.nih.gov/geo) (GSE57872). We obtained read sequences
from the NCBI SRA (https://www.ncbi.nlm.nih.gov/sra)
(PRJNA248302).

Raw read sequences from both datasets were aligned to the
human reference genome sequence (hg19) using STAR (Dobin
et al., 2013), and single nucleotide variants (SNVs) were called
using samtools (Li, 2011). Based on non-cancerous cells reported
in the original study (Patel et al., 2014), we removed SNVs when
all normal cells did not have a base assignment (missing data),
when base assignments were inconsistent among the normal cells,
or when they were heterozygous or were different from the
reference genome (potential germline heterozygosity). We also
excluded low-quality cells, where >50% of SNVs were missing.

To infer cellular phylogeny, we analyzed SNV profiles using
SCITE (Jahn et al., 2016) and BEAM (Miura et al., 2018). In
BEAM analysis, we excluded cells that received low posterior
probabilities of their refined base assignments because such cell
sequences are of low quality, e.g., many sequencing errors. In
SCITE analysis, we used the default false negative and false

positive detection rates of mutation (0.21545 and 1.3 × 10–5,
respectively).

3 RESULTS

3.1 Hou Data Analysis
First, we analyzed the Hou data usingMOCA. The purpose was to
validate MOCA’s performance. The original study sequenced
both DNA and RNA from each hepatocellular carcinoma cell
using a single-cell triple omics sequencing technique (scTrio-seq)
(Hou et al., 2016). We began by testing if SNVs detected from
RNA sequences can produce genetic ancestries similar to those
obtained from the analysis of their DNA sequences.

We prepared two datasets by filtering SNVs from RNA data
with two different cutoffs of the proportion of unambiguous base
assignment among cells (70% and 60%). After filtering SNVs, the
total number of SNVs in the datasets were 123 and 168,
respectively, which is around the minimum number required
for optimum performance of the phylogeny reconstruction
methods for single-cell sequencing data, e.g., BEAM (Miura
et al., 2018). The inferred phylogenies are shown in Figures
2A,B. Since the original study analyzed DNA sequences and
classified the cells into two groups based on the presence and
absence of copy number alterations (CNAs), we mapped these
classifications onto our phylogenies inferred using SNVs from
RNA sequences of the same cells. Cells in the same DNA-based
group clustered well on our RNA-seq phylogenies, with only
3 cells showing disagreements. This result suggested that SNVs
from RNA sequences can be used for genetic ancestry annotation,
which is also consistent with reports from a previous study
(Moravec et al., 2021).

In addition, the original study analyzed gene expression
patterns and reported that genes affected by the CNAs also
showed proportional changes in their expressions (Hou et al.,
2016). This result suggests that gene expression alterations
followed genetic changes. Therefore, we tested if MOCA’s gene
expression trajectory analysis and genetic ancestry can produce
the same inference. Figures 2C,D showed the gene expression
trajectories when the RNA-seq genetic ancestries were given. The
concordance between genetic ancestry and gene expression
annotation for both phylogenies was detected. For example,
the use of the dataset with 70% SNV filtering cutoff (BEAM7
in Figure 2B) produced two gene expression states (excluding the
state for the normal cell), and one of them agreed with genetic
ancestry annotation (Figure 2D). Also, the use of genetic ancestry
annotation from the original study (DNA-based annotation)
produced good concordance between genetic and expression
states annotations (Figure 2E). Therefore, these inferences
were consistent with the original study, validating MOCA’s
performance.

The above results were based on the expression trajectory
analysis of 1,000 genes. We repeated these MOCA analyses using
a smaller number of genes. Interestingly, the use of a smaller
number of genes (<700 genes) did not detect concordance
between genetic and gene expression annotations
(Supplementary Figure S1). This is likely because the quality
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of gene expression data was low due to the technical limitation of
scTrio-seq, i.e., the number of zero expression data was much
larger than the other two datasets from scRNA-seq. Therefore,
the use of a greater number of genes was necessary to detect
concordance between genetic and gene expression annotations.

3.2 Analyses of MGH26 Datasets
We also applied MOCA to two glioblastoma tumor datasets
(MGH26 and MGH31). We prepared two datasets in the same
fashion as the Hou data analysis for each tumor, i.e., SNV
filtering with different cutoffs. Then SCITE (Jahn et al., 2016)
and BEAM (Miura et al., 2018) were used for phylogenetic
reconstruction. In total, we obtained 4 cell phylogenies for each
tumor (two datasets analyzed by twomethods) to make sure that
the two trees did not accidentally show appreciable agreements
in genetic ancestry annotations (Figure 1B and Supplementary
Figure S2). We first present the result for the MGH26 dataset.
The total numbers of SNVs in these datasets were 139 and 180.
We chose to generate three genetic ancestry groups for each
phylogeny using the TreeBalance, UnbalancedAnnotation, and
BalancedAnnotation functions. Visual comparison of genetic
ancestry annotation among these four phylogenies using the
AncestryComparison function showed that two genetic groups
(ancestry 1 and 3) were largely consistent among phylogenies
(Figures 1C, 3A). Even when we attempted to make three
groups, only two groups of cells could be reliably

distinguished. So, we did not consider any more groups.
Next, we statistically confirmed the visual agreement between
the two ancestries across phylogenies, i.e., all pairs of
annotations resulted in Cramer’s V effect sizes ranging from
0.38 to 0.67 (p << 0.01). Cramer’s V effect size higher than 0.2
implies a moderate association between annotations
(Supplementary Figure S3A). We also tried Rand Index but
found it overly conservative in our exploratory analyses (results
not shown). Therefore, we did not implement Rand Index in
MOCA. Last, our visual inspection of the inferred cellular
phylogenies did not find other possible genetic ancestry
annotations, so we explored only two ancestries in the
downstream gene expression trajectory analysis.

We performed gene expression trajectory analysis using these
genetic ancestry annotations and 200–1,000 genes using the
PhyloTrajectory function (Figure 1D and Supplementary
Figure S2). Based on the Overall concordance index, the
number of expression states was often more than twice the
number of genetic ancestries. One or two states were generally
unique to certain genetic ancestries (Figures 3B,C). This pattern
indicates that some cells from the same genetic ancestry evolved
distinct gene expression patterns, while gene expression patterns
converged for some cells from different genetic ancestries. This
inference was consistently obtained in analyses with a small and
large number of genes. Also, the inferences were consistent across
slightly different ancestry annotations from different phylogenies,

FIGURE 2 | Hou data analysis. (A,B) Inferred phylogenies on datasets where 60% (A) and 70% (B) SNV filtering cutoffs were applied. BEAMwas used for building
cellular phylogeny to account for missing data and mutation calling errors. The genetic ancestry annotation obtained from the analysis of DNA data is shown next to the
phylogenies. The DNA-based annotation was obtained fromHou et al. (2016). (C–E) The inferred expression trajectory using genetic ancestries annotated on the dataset
with 60% SNV filtering cutoff tree (C), 70% SNV filtering cutoff tree (D), and DNA-based genetic ancestry annotation (E). 1,000 most differentially expressed genes
between the genetic ancestries were used in each analysis.
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demonstrating their robustness (Figures 3B,C and
Supplementary Figure S2).

3.3 MGH31 Data Analysis
In contrast to the Hou and MGH26 datasets, genetic ancestry
annotation did not agree well between inferred phylogenies in the
MGH31 data analysis (p = 0.03–0.1; Supplementary Figure S3B).
This is likely because of the presence of large-scale deletions that
complicate phylogenetic inference due to the loss of variants. For
example, SCITE assumes a lack of deletions (Jahn et al., 2016). In
this case, the use of genetic ancestry annotation based on copy
number alteration may be more appropriate (Figure 3D).
Therefore, we performed a PhyloTrajectory analysis with two
genetic ancestry groups based on the similarity of copy number
alterations, which were previously reported for this dataset (Serin
Harmanci et al., 2020). From PhyloTrajectory, we identified one
expression state unique to ancestry 1, which harbors 13q and 14q
deletions, and another state for the normal cells (Figure 3E).
Genetic ancestry 2, consisting of cells that contain the 1p and
5q amplification, had no unique expression states for the ancestry
because the state that contained ancestry 2 was also shared by some
cells from ancestry 1 (Figure 3E). A similar result was consistently
produced in analyses with different sets of genes (Figures 3F,G).

4 DISCUSSION

MOCA is a collection of tools for exploring tumor evolution using
genetic variation and gene expression profiles from the same cells.
MOCA is designed for scRNA-seq data that enables the profiling
of genetic variation and gene expressions of cells. We have
demonstrated its potential through analyses of two scRNA-seq
glioblastoma datasets. This study also validated MOCA’s
performance on a dataset with known cellular populations and
expression alterations.

But, it is important to note some caveats. Firstly, MOCA tests
the reliability of genetic ancestry annotation by assessing the
similarity of clusterings obtained from different phylogenies
using distinct methods. These methods have unique strengths
as well as weaknesses. For example, SCITE may not perform well
for datasets with a large number of SNVs (>1,000), and the
selection of BEAM is not recommended for datasets with a large
number of cells (>2,000) (Chen et al., 2020). Therefore, methods
need to be cautiously selected for a given dataset. Also, in
analyzing empirical datasets, it is not always possible to know
about the optimal approach.When the most appropriate way is in
doubt, we suggest applying multiple methods and looking for
consistent patterns.

FIGURE 3 | Glioblastoma tumor data analysis. (A–C) Analysis of MGH26 tumor data. (A) Schematic of genetic ancestries that are consistent across four
phylogenies (Supplementary Figure S2). (B) Sub-concordance index (SCI) of genetic ancestry 1 and 3. (C) The number of all expression states and states that are
unique to genetic ancestries allowing a few exceptions (>80% of cells from an ancestry share the same expression state). (D–G) Analysis of MGH31 tumor dataset. (D)
Schematic of genetic ancestries. Copy number aberrations were used for genetic ancestry annotation for MGH31 data. Cells of genetic ancestry 1 contained 13q
and 14q deletion, while cells of genetic ancestry 2 contained 1p and 5q amplification. (E) The inferred expression trajectory using the top 1,000 most differentially
expressed genes between the genetic ancestries. All normal cells were predicted to have the same gene expression state. (F) The Sub-concordance index (SCI) of each
genetic ancestry. Normal cells were excluded, which always had a concordance index equal to one. (G) The Overall concordance index (OCI). The expression state for
normal cells was included. The MGH26 and MGH31 datasets are from Patel et al. (2014).
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Secondly, the number of genetic ancestries to consider in
MOCA analysis is subjective. Users can choose to have a small
or large number of clades by setting parameters (see
BalancedAnnotation and UnbalancedAnnotation). When a
dataset contains many cells, a large number of cell groups
may be defined. The same may be possible if scRNA-seq
datasets cover many SNVs. For such datasets, branch
supports obtained by Felsenstein’s bootstrap procedure for
molecular phylogenies (Felsenstein, 1985; Nei and Kumar,
2000) may be useful to identify reliable clades for genetic
ancestries.

In conclusion, MOCA provides tools to assess the reliability of
genetic ancestry annotation from phylogenies inferred using
noisy genetic data (i.e., SNVs detected in scRNA-seq data).
MOCA also produces simple measures of concordance
between genetic ancestries and gene expression state
annotations, which would guide users to explore divergent and
convergent evolution of gene expression patterns. MOCA is
written in R and is available from https://github.com/
SayakaMiura/MOCA.
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