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Abstract: Protein secondary structures are important in many biological processes and applications.
Due to advances in sequencing methods, there are many proteins sequenced, but fewer proteins
with secondary structures defined by laboratory methods. With the development of computer
technology, computational methods have (started to) become the most important methodologies for
predicting secondary structures. We evaluated two different approaches to this problem—driven by
the recent results obtained by computational methods in this task—(i) template-free classifiers, based
on machine learning techniques; and (ii) template-based classifiers, based on searching tools. Both
approaches are formed by different sub-classifiers—six for template-free and two for template-based,
each with a specific view of the protein. Our results show that these ensembles improve the results of
each approach individually.

Keywords: protein secondary structure prediction; deep learning; machine learning; BLAST;
ensemble

1. Introduction

Proteins are present in many biological processes in the cells of living beings, playing
different functions, such as transport, growth, and maintenance of the body. They are
formed by a sequence of amino acids, which consist of the protein’s primary structure [1].
Amino acids interact physically and chemically with each other, forming three-dimensional
structures. The local three-dimensional structure that each amino acid participates in is
called the secondary structure, whereas three-dimensional structure that the protein forms
is called the tertiary structure [2].

Analyzing the three-dimensional structures of proteins has a great impact on determin-
ing the protein functions [3], mainly because each function depends on a specific folding [4],
and each protein can exert more than one function [5], as well as the development of new
applications, such as drug and enzyme design and biosensors [6–8]. Recent work [9] has
shown that the prediction of the tertiary structure, directly from the primary structure, can
achieve good results, but this task is still open. The most common method in the literature
is to first understand the secondary structure and then predict the tertiary structure.

To determine the protein structures, laboratory methods are applied, such as X-
ray crystallography, multidimensional nuclear magnetic resonance, and infrared spec-
troscopy [10], with a complex interpretation of the results. For instance, to determine
the secondary structures of the protein, it is necessary to analyze the hydrogen bonding
patterns and geometric constraints, and to use the DSSP tool [11]. On the other hand,
the number of sequenced proteins grows faster each year, due to advances in gene se-
quencing [12]. Figure 1 shows the number of proteins sequenced on UniProtKB [13], the
main repository of sequenced proteins, and PDB [14], the main repository of proteins
with three-dimensional structures defined by laboratory methods, such as secondary and
tertiary structures. Thus, computational methods have become important to help predict
protein secondary structures efficiently and effectively.
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Figure 1. Difference in the number of sequenced proteins deposited in UniProtKB and the number of
proteins with determined three-dimensional structures deposited in PDB.

The protein secondary structure prediction task considers that each amino acid can
fold into one of eight possible classes. These classes are “B” (residue in isolated beta bridge),
“E” (extended strand), “G” (3-helix), “H” (alpha helix), “I” (5-helix), “L” (loop), “S” (bend),
and “T” (hydrogen-bonded turn) [3].

The protein secondary structure prediction classifiers in the literature are divided into
template-based and template-free classifiers. The template-based classifiers use tools to
search and find local alignments between proteins [15], which are usually employed by
the Basic Local Alignment Search Tool (BLAST) [16]. The template-free classifiers apply
machine learning and deep learning techniques to learn patterns and predict the structures
from unseen proteins.

The prediction methods using template-free classifiers for this task started in the
1970s, after Chou and Fasman’s work [17], mainly using statistics and manual rules [18,19].
These first methods for predicting secondary structures of proteins were evaluated in
small databases, due to the lack of computational power and the amount of proteins with
secondary structures defined by laboratory methods at that time. Furthermore, as they are
methods that use simple analyses, most of them were created from a few samples and by
manual processes; these methods are less effective than the methods of later decades.

With the development of computer power, the growth of databases, such as PDB [14],
CB513 [20], and the biennial Critical Assessment of protein Structure Prediction (CASP) [21],
new template-free methods have become popular, such as simple multilayer perceptron
neural networks [22–24], support vector machines [25], clustering [26], and hierarchical
classifiers [27]. At this phase of the problem, of predicting protein secondary structures,
the methods employed sliding window techniques to perform the classifications. However,
the classifiers did not show a consensus regarding the optimal size of the window used.
Furthermore, as these methods can only analyze the local window of interaction between
amino acids, longer interactions—that is, amino acids at distant positions in the sequence—
are not verified, and can be important to determine the secondary structures.

After 2010, template-free classifiers became the state-of-the-art, mainly using deep
learning techniques, such as recurrent neural networks (RNNs) with gated recurrent unit
(GRUs) [28] and long short-term memory (LSTM) [29] modules, convolutional neural
networks (CNNs), and ensemble techniques. RNN classifiers [30–32] receive the entire
sequence as input, being able to analyze the chain globally, surpassing the methods that use
sliding windows. However, the main negative for this approach involves the computational
cost of LSTM and GRU neurons, mainly in bidirectional classifiers, in addition to the
problem of vanishing and exploding the gradient.

CNN classifiers [33–35] have filters that can analyze several different windows of
a sequence. Deep convolutional networks can obtain long-distance information, but
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local information, gained in the early layers of the network, is lost. With that, several
methods have started to use inception blocks, where information from the shallower
layer is kept, concatenating the information with the deeper layers. This approach has
enabled an advance in the results of the prediction of secondary structures, such as the
method developed by Ratul et al. [33], which reached the state-of-the-art in CB6133 [7] and
CB513 [20] datasets, with a classifier with inception blocks.

The ensemble techniques for classifiers have shown that they can achieve better results
than individual classifiers. Oliveira et al. [12] presented a method for making the ensemble
techniques for classifiers, using a bag of bio-inspired optimization algorithms to find
weights for each class of each classifier. The authors showed that the genetic algorithm has
a greater impact on the final result than the other optimization algorithms. Drori et al. [36]
combined several classifiers, using the highest mean prediction value of the classifiers. The
approach presented by Drori et al. [36] is penalized by outliers; that is, classifiers that are
not ’very sure’ can harm the classification result. Kumar et al. [1] presented a method that
uses both RNN and CNN to perform the classification, using CNN as a local classifier and
RNN as a global classifier.

Regarding template-based classifiers, BLAST [16] was created in the 1990s, as well
as methods using this tool to make predictions of protein secondary structures [12,37,38].
However, template-based methods are not as explored in the literature as template-free
classifiers.

Ensemble methods that use evolutionary optimization algorithms have been used in
several domains. Haque et al. [39] used a genetic algorithm to find the best combination
of algorithms for Alzheimer’s disease classification and face recognition. The method
finds the best combination of classifiers, and the fusion is conducted with a simple voting
strategy. Prado et al. [40] used a genetic algorithm to find the best combination of classifiers
for the energy consumption forecasting problem, while Kausar et al. [41] and Aburomman
and Reaz [42] applied the particle swarm optimization algorithm to perform weighted
voting of multiple classifiers to predict data from the UCI repository and for detection
of TCP/IP connections, respectively. Kardas et al. [43] also employed optimization by
evolutionary algorithms for the classification of data from the UCI repository, but unlike
the methodology of Kausar et al. [41], the proposed method used genetic algorithms.

The methods used by Prado et al. [40], Kausar et al. [41], Aburomman and Reaz [42],
and Kardas et al. [43] found weights for each classifier. These approaches can be disadvan-
tageous if a classifier correctly classifies a class and receives a lower weight in the voting
system or a weight equal to 0. Dimilliler et al. [44] compared this methodology with the
use of weights equal to 1 or 0 for each class of each classifier during the prediction, making
the ensemble using the weighted voting per class and obtaining the highest value. To
find the weights, their method applied genetic algorithm. As a result, Dimilliler et al. [44]
demonstrated that their approach can achieve better results than finding unique weights
for each classifier during the ensemble for a named-entity recognition task of biomedical
paper abstracts. Parvin and Alizadeh [45] showed that, by giving weights to each class of
each classifier from 0 to 1, the ensemble can reach better results than binary weights, as in
the method proposed by Dimilliler et al. [44], with experimental evidence for classification
of Farsi digits. Ekbal and Saha [46] also used the genetic algorithm to find weights for each
output of each classifier for the weighted voting for the named-entity recognition problem
for Indian languages.

In the present study, we investigate six different template-free classifiers and two differ-
ent template-based classifiers for protein secondary structure prediction. Our template-free
classifiers have both local classifications, made with the sliding windows technique (ran-
dom forest classifier), and global classifiers (RNN classifiers). We also evaluate inception
blocks (inception-v4 blocks classifier), inception blocks with GRU recurrent layers (incep-
tion recurrent network classifier), as well as classifiers for specific characteristics of the
database (a BERT-based classifier and CNN classifier). For the template-based classifiers,
we applied a configuration that uses only the best local alignments, but cannot predict



Int. J. Mol. Sci. 2021, 22, 11449 4 of 24

all structures for all amino acids, and a general configuration, which can predict for all
amino acids.

In addition, we explore the ensemble among template-based classifiers, as well as
the ensemble of template-free and template-based ensembles using genetic algorithm
optimization. The proposed optimization algorithm finds weights for each class of each
classifier. As our main contribution, we explore different representations of the protein
features, making our classifiers complementary, obtaining results that surpass the state-
of-the-art approaches by 8.2 percentage points on the CB6133 test set and 17.6 percentage
points on the CB513 test set.

2. Results

In this section, we present and discuss the experimental results of the proposed
method on the CB6133 and CB513 datasets.

2.1. Template-Free Classifiers

In this subsection, we present the experimental evaluation of the template-free classi-
fiers. We divide this section into results on the CB6133 and CB513 datasets.

2.1.1. CB6133 Dataset

We applied each one of the template-free classifiers to the test set of the CB6133 dataset.
The results obtained by each one of them are presented in Table 1. The best individual
classifier, RNN, obtained 76.09% of Q8 accuracy on the test set, while the worst classifier
was RF, which achieved 64.11% of Q8 accuracy.

Table 1. Results of the template-free classifiers on the test set of the CB6133 dataset.

Classifier Q8 Accuracy (%)

Ensemble of template-free classifiers 78.17
RNN 76.09
BERT 75.80
Iv4B 75.42
IRN 75.29

CNN 72.48
RF 64.11

Next, we build the ensemble between the template-free classifiers using the genetic
algorithm. The ensemble surpassed the best individual classifier, achieving 78.17% of Q8
accuracy, as shown in Table 1. Table 2 presents the weights of each class of each classifier
found in the ensemble, showing that BERT received the highest weights in seven of the
eight classes, even it not being the individual classifier with the highest Q8 accuracy.

Table 2. Weights found by the genetic algorithm for the ensemble of template-free classifiers on the
CB6133 validation set.

Class RNN RF Iv4B RIR BERT CNN

B 0.637 0.303 0.378 0.161 0.314 0.230
E 0.266 0.166 0.105 0.100 0.785 0.104
G 0.399 0.238 0.276 0.243 0.459 0.234
H 0.177 0.291 0.141 0.111 0.538 0.176
I 0.159 0.228 0.179 0.221 0.388 0.276
L 0.275 0.174 0.137 0.066 1.000 0.130
S 0.433 0.244 0.115 0.138 0.940 0.214
T 0.315 0.268 0.145 0.118 0.406 0.181
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In addition to the quantitative evaluation of the method as a whole, we evaluate the
precision and recall of each class, as shown in Table 3. In relation to the precision metric, all
classes had more than 0.5 with this evaluation; however, minority classes, such as “B”, “G”,
and “S”, had lower values than the majority classes. Regarding the recall metric, again, the
minority classes were harmed, due to the large amount of false negatives.

Table 3. Precision and Recall for each class from the prediction of the ensemble of template-free
classifiers on the test set of the CB6133 dataset.

Class Precision Recall

B 0.68 0.21
E 0.86 0.86
G 0.59 0.44
H 0.90 0.95
I — —
L 0.65 0.74
S 0.53 0.44
T 0.69 0.59

2.1.2. CB513 Dataset

After the experiments on the CB6133, we employed the classifiers on the CB513
dataset. According to Table 4, the best result obtained by an individual classifier was equal
to 71.17%, which was achieved by IRN. As we observed with the CB6133 dataset, the worst
classifier was RF, which achieved 60.34% of Q8 accuracy.

Table 4. Results of the template-free classifiers on the test set of the CB513 dataset.

Classifier Q8 Accuracy (%)

Ensemble of template-free classifiers 73.12
IRN 71.17
Iv4B 70.94
BERT 70.24
RNN 69.88
CNN 69.80

RF 60.34

We then created the ensemble between the template-free classifiers using the genetic
algorithm. The result obtained by the ensemble was 73.12% of Q8 accuracy, outperforming
the individual classifiers. The weights found by the genetic algorithm showed that the
BERT classifier had the greatest impact on the ensemble of template-free classifiers, because
this classifier obtained the highest weights in most of the classes, as shown in Table 5.

Table 5. Weights found by the genetic algorithm for the ensemble of template-free methods on the
CB513 validation set.

Class RNN RF Iv4B RIR BERT CNN

B 0.288 0.465 0.554 0.360 0.237 0.310
E 0.156 0.240 0.117 0.202 0.968 0.110
G 0.292 0.429 0.364 0.392 0.589 0.283
H 0.091 0.179 0.253 0.350 0.606 0.131
I 0.320 0.332 0.182 0.228 0.268 0.240
L 0.160 0.147 0.208 0.254 1.000 0.110
S 0.290 0.202 0.248 0.191 0.968 0.164
T 0.245 0.192 0.236 0.398 0.532 0.141
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Next, we analyzed the precision and recall for each class. Table 6 presents these metrics.
As we reported on the CB6133 dataset, the precision of minority classes was lower than
the majority classes. The recall metric also maintains the same pattern. However, we
can highlight the performance of the “B” class, which achieved 0.05 of recall, with many
misclassifications.

Table 6. Precision and recall for each class from the prediction of the ensemble of template-free
classifiers on the test set of the CB513 dataset.

Class Precision Recall

B 0.55 0.05
E 0.81 0.84
G 0.50 0.40
H 0.88 0.92
I 0.00 0.00
L 0.60 0.71
S 0.58 0.31
T 0.58 0.59

2.2. Template-Based Classifiers

In this subsection, we present the experimental results of the template-based classifiers
on the CB6133 and CB513 datasets.

2.2.1. CB6133 Dataset

For the template-based classifiers, we started examining the Q8 accuracy of each
classifier on the test set of the CB6133 dataset. The best classifier—that is, the method
that obtained the highest Q8 accuracy values among the template-based classifiers, was
the general alignments classifier, which achieved 75.96% of Q8 accuracy, as presented in
Table 7. From the individual template-based classifiers, we explored the ensemble between
them using the genetic algorithm. As a result, the ensemble achieved 78.64% of Q8 accuracy,
outperforming the standard template-based classifiers.

Table 7. Results of the template-based classifiers on the test set of the CB6133 dataset.

Classifier Q8 Accuracy (%)

Ensemble of template-based classifiers 78.64
General alignments 75.96
Specific alignments 69.15

Next, we qualitatively analyzed the weights found in the ensemble. According to
Table 8, the weights found by the genetic algorithm indicate that, in some classes, specific
alignments received the highest weights, such as “E” and “G”, while general alignments
received in other classes, such as “B” and “H”.

Table 8. Weights found by the genetic algorithm for the ensemble of th template-based classifiers on
the CB6133 validation set.

Class Specific Alignments General Alignments

B 0.791 0.819
E 0.947 0.507
G 1.000 0.473
H 0.859 0.954
I 0.253 0.378
L 0.837 0.613
S 0.961 0.371
T 0.894 0.515
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In addition to method evaluation, we calculate precision and recall for each class.
The results obtained are shown in Table 9. Differently from the results of the template-
free classifiers, the minority classes, such as “B” and “G”, obtained good precision and
recall results.

Table 9. Precision and recall for each class from the prediction of the ensemble of template-based
classifiers on the test set of the CB6133 dataset.

Class Precision Recall

B 0.69 0.65
E 0.87 0.84
G 0.71 0.58
H 0.82 0.91
I — —
L 0.74 0.70
S 0.65 0.62
T 0.72 0.66

2.2.2. CB513 Dataset

In the following experiment, we evaluated the general alignments and the specific
alignment classifiers on the test set of the CB513 dataset. From the results reported in
Table 10, one could observe that the general alignment predictor had better results concern-
ing Q8 accuracy. We also created the ensemble of template-based classifiers. The ensemble
obtained better results than the individual methods.

Table 10. Results of the template-based classifiers on the test set of the CB513 dataset.

Classifier Q8 Accuracy (%)

Ensemble of template-based classifiers 89.30
General alignments 86.43
Specific alignments 76.34

As our ensemble methods found weights for each class of each classifier, we can verify
what class received higher weights. According to Table 11, we observed that the specific
alignments received the highest values in six of the eight classes when compared to the
general alignments. This indicates that this classifier is more important than the general
alignments classifier during the creation of the ensemble of template-based classifiers.

Table 11. Weights found by the genetic algorithm for the ensemble of template-based classifiers on
the CB513 validation set.

Class Specific Alignments General Alignments

B 0.738 0.601
E 0.891 0.669
G 0.771 0.488
H 0.597 1.000
I 0.048 0.092
L 0.638 0.611
S 0.560 0.359
T 0.672 0.495

With the results of the template-based classifier, we evaluated the precision and recall
of each class from the classification in Table 12. As we reported with the CB6133 dataset, the
minority classes achieved good results in the precision and recall metrics, differently from
the template-free classifiers. We also notice that class “I”, which contained only 30 samples,
had precision and recall metrics different from 0.
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Table 12. Precision and recall for each class from the prediction of the ensemble of the template-based
classifiers on the test set of the CB513 dataset.

Class Precision Recall

B 0.81 0.77
E 0.93 0.96
G 0.78 0.80
H 0.93 0.96
I 0.06 0.47
L 0.74 0.70
S 0.85 0.74
T 0.82 0.81

2.3. Ensemble of Template-Free and Template-Based Classifiers

In this subsection, we present and discuss the results of the ensemble of template-free
and template-based classifiers on the CB6133 and CB513 datasets.

2.3.1. CB6133 Dataset

After the ensemble of template-free classifiers and template-based classifiers, we
made the ensemble between these ensembles. The results obtained by the ensemble of
template-free and template-based classifiers surpassed the results achieved by each single
configuration, as shown in Table 13.

Table 13. Results of the template-free and template-based ensembles on the test set of the CB6133
dataset.

Classifier Q8 Accuracy (%)

Final ensemble 85.06
Ensemble of template-based classifiers 78.64
Ensemble of template-free classifiers 78.17

One important analysis that can be done by our ensemble of template-free and
template-based classifiers, involves the value of weights that the fusion method found. Ac-
cording to the weights reported in Table 14, even with less Q8 accuracy than template-based
classifiers, template-free obtained the highest weights in six of eight classes.

Table 14. Weights found by the genetic algorithm for the ensemble of template-free and template-
based ensembles with the CB6133 validation set.

Class Ensemble of Ensemble of
Template-Free Classifiers Template-Based Classifiers

B 0.667 0.797
E 0.792 0.423
G 0.834 0.988
H 1.000 0.273
I 0.698 0.465
L 0.772 0.595
S 0.923 0.605
T 0.904 0.616

Next, we analyzed the precision and recall of each class. Table 15 presents these
metrics, showing that, in the majority of cases, the ensemble of template-free and template-
based ensembles improved the results of precision and recall of each one of the ensembles
individually.
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Table 15. Precision and recall for each class from the prediction of the ensemble of template-free and
template-based ensembles on the test set of the CB6133 dataset.

Class Precision Recall

B 0.74 0.64
E 0.92 0.90
G 0.71 0.66
H 0.93 0.94
I — —
L 0.77 0.81
S 0.70 0.66
T 0.77 0.73

To assess the obtained results, we evaluated the confusion matrix generated by our
final ensemble. Figure 2 illustrates the confusion matrix, showing that all classes had at
least 64% of accuracy. The secondary structure of minority classes, such as “B” and “G”,
obtained less accuracy than the majority classes, such as “E” and “H”, suggesting that if
there is more data from these classes, the classifier can achieve better results. There is no
structure of class “I" on the test set.

B E G H I L S T
Predicted

B
E

G
H

I
L

S
T

Tr
ue

0.64 0.07 0.00 0.02 0.00 0.17 0.05 0.05

0.00 0.91 0.00 0.01 0.00 0.06 0.01 0.01

0.00 0.02 0.66 0.12 0.00 0.06 0.04 0.10

0.00 0.00 0.01 0.94 0.00 0.03 0.00 0.02

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.06 0.01 0.03 0.00 0.81 0.05 0.03

0.00 0.03 0.02 0.05 0.00 0.17 0.66 0.07

0.00 0.01 0.04 0.10 0.00 0.07 0.05 0.73
0.0

0.2

0.4

0.6

0.8

Figure 2. Confusion matrix of the ensemble of template-free and template-based ensembles.

With the result obtained by our ensemble of template-free and template-based clas-
sifiers, we can compare the Q8 accuracy obtained by our method with the classifiers
in the literature. Our proposed method was able to outperform the state-of-the-art ap-
proaches [33] by 8.2 p.p., as reported in Table 16. The basic ensembles (template-free and
template-based) also surpassed the state-of-the-art approaches.

Table 16. Comparison with the literature on the test set of the CB6133 dataset.

Method Q8 Accuracy (%)

Final ensemble 85.1
Ensemble of template-based classifiers 78.6
Ensemble of template-free classifiers 78.2

Ratul et al. [33] 76.9
Oliveira et al. [3] 76.4
Drori et al. [36] 76.3
Gou et al. [47] 75.7

Johansen et al. [32] 74.8
Guo et al. [48] 74.2
Zhou et al. [8] 74.0

Zhou and Troyanskaya [7] 72.1
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2.3.2. CB513 Dataset

Following the experiments, considering the template-free and template-based clas-
sifiers on the CB6133 dataset, we conducted the evaluation of the fusion between these
classifiers on the CB513 dataset. As in the experiment using the CB6133 database, the
ensemble between the two methods reached better results compared to the individual
ensembles, as shown in Table 17.

Table 17. Results of the template-free and template-based ensembles on the test set of the CB513
dataset.

Classifier Q8 Accuracy (%)

Final ensemble 89.46
Ensemble of template-based classifiers 89.30
Ensemble of template-free classifiers 73.12

After analyzing the weights of the ensemble, as conducted on the CB6133, the ensem-
ble of the template-free received the highest values in more classes. According to Table 18,
only in the “B” and “G” classes did the template-based classifier receive higher weights
than the template-free classifier.

Table 18. Weights found by the genetic algorithm for the ensemble of template-based classifiers on
the CB513 validation set.

Class Ensemble of Ensemble of
Template-Free Classifiers Template-Based Classifiers

B 0.811 0.918
E 0.779 0.433
G 0.693 0.828
H 0.984 0.268
I 0.599 0.493
L 0.782 0.513
S 1.000 0.575
T 0.880 0.627

We then evaluated the precision and recall metrics for each class of the predictions of
the ensemble of template-free and template-base ensembles. The results of these evaluations
are presented in Table 19. We conclude that the ensemble, in most of the cases, improved
the results compared to the individual ensemble classifiers.

Table 19. Precision and recall for each class from the prediction of the ensemble of template-free and
template-based ensembles on the test set of the CB513 dataset.

Class Precision Recall

B 0.82 0.75
E 0.94 0.95
G 0.77 0.81
H 0.94 0.96
I 0.14 0.20
L 0.88 0.88
S 0.86 0.73
T 0.81 0.82

Next, we evaluated the confusion matrix generated by our final ensemble. Figure 3
shows the confusion matrix, which each class, with the exception of class “I”, had at least
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73% accuracy. Class “I” has only 30 structures on the test set, and only 6 structures of this
class were correctly classified.

B E G H I L S T
Predicted

B
E

G
H

I
L

S
T

Tr
ue

0.75 0.07 0.00 0.01 0.00 0.11 0.04 0.02

0.00 0.95 0.00 0.00 0.00 0.03 0.01 0.01

0.00 0.00 0.81 0.08 0.02 0.00 0.01 0.08

0.00 0.00 0.01 0.96 0.00 0.01 0.00 0.02

0.00 0.00 0.03 0.60 0.20 0.07 0.03 0.07

0.00 0.04 0.01 0.02 0.00 0.88 0.03 0.02

0.00 0.02 0.02 0.03 0.00 0.10 0.73 0.10

0.00 0.01 0.03 0.08 0.00 0.03 0.03 0.82
0.0

0.2

0.4

0.6

0.8

Figure 3. Confusion matrix of the ensemble of template-free and template-based ensembles.

Among the methods in the literature, our methods surpassed the state-of-the-art
approaches [33]. According to Table 20, our final ensemble surpassed the state-of-the-art
approaches by 17.6 percentage points.

Table 20. Comparison with the literature on the test set of the CB513 dataset.

Method Q8 Accuracy (%)

Final ensemble 89.5
Ensemble of template-based classifiers 89.3
Ensemble of template-free classifiers 73.1

Ratul et al. [33] 71.9
Busia et al. [49] 71.4
Uddin et al. [50] 70.9

Johansen et al. [32] 70.9
Drori et al. [36] 70.7
Fang et al. [51] 70.6
Zhou et al. [8] 70.3
Gou et al. [47] 70.2
Li and Yu [52] 69.4
Lin et al. [53] 68.4

Wang et al. [54] 68.2
Sønderby and Winther [30] 67.4
Zhou and Troyanskaya [7] 66.4

Hattori et al. [31] 66.0

2.4. Ensemble Evaluation

In this section, we evaluate the results achieved by our ensemble method—genetic
algorithm (GA)—compared to other ensemble techniques, using meta-classifiers. We
used two different meta-classifiers to create the ensemble, random forest and multilayer
perceptron (MLP). Both of them received as input the predictions on the training set of the
classifiers that will be combined.

For a fair comparison with our method, we made a grid search for each one of the
ensembles, for instance meta-classifier random forest to ensemble BERT. We evaluated
different values of the number of trees and the maximum depth for the random forest
meta-classifier, and the number of layers, and the number of neurons per layer for MLP.
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For MLP experiments, we applied the reduced learning rate on plateau and early stopping
techniques to boost their performances.

The results obtained by our method and the meta-classifiers are presented in Table 21.
Our method (GA) achieved the highest Q8 accuracy on the validation sets on 15 of 18
experiments, showing that this algorithm can obtain robust results and can surpass meta-
classifiers on the ensemble tasks.

Table 21. Comparison of different ensemble techniques on the validation set of the CB6133 and
CB513 datasets.

Classifier
CB6133 CB513

GA RF MLP GA RF MLP

RNN 77.07 76.04 73.86 75.49 74.70 74.61
RF 64.80 65.03 65.85 65.35 65.57 61.23

Iv4B 75.79 74.85 74.50 76.06 75.12 74.46
IRN 76.00 75.02 74.13 76.35 75.44 75.39

BERT 76.15 75.23 75.23 76.21 75.19 75.36
CNN 73.06 72.09 72.25 72.92 71.59 72.70

Template-free 78.70 77.13 77.03 78.52 77.04 76.57
Template-based 80.18 78.64 80.41 79.80 78.88 79.68
Final ensemble 86.07 79.37 82.29 85.67 80.26 81.27

3. Discussion

The objective of this study was to investigate different classifiers with distinct views
of the representation of the protein features. Our method has two main ways to make
the prediction—template-free and template-based classifiers. Both of them surpassed the
state-of-the-art approaches on the CB6133 and CB513 datasets.

For the template-free classifiers, the ensemble between them showed that the most
important classifier was BERT, which was the predictor that received the highest weights
in more classes. This may have been related to the recent success of this type of algorithm,
based on transformers, in different tasks, as in natural language processing (NLP), as
shown by BERT, and for image classification, as shown by vision transformer [55].

The results achieved by our template-free classifiers are competitive with the results
obtained by other classifiers in the literature. We conjecture that, with more data, our
method can obtain better Q8 accuracy because deep learning algorithms have more gener-
alization capability under a variety of data. Further investigation of different types of data
augmentation, as augmentation for images, for text, and for tabular data, specific for each
one of our classifiers, may help to achieve better results.

The main drawbacks of all of our template-free classifiers involve the lack of explain-
ability of the results; that is, understanding why each classifier makes the prediction of
one class and the computational cost of the whole method, which includes training all
of the classifiers of one type of classifier (for instance, training ten different bidirectional
recurrent networks that compose the RNN classifier), to make the ensemble between this
classifier and the template-free classifier. One example of these drawbacks is related to
random forest. This classifier is the easiest to verify the decisions made, however, there are
2500 trees to manually verify and understand the choices, making this infeasible.

Our template-based classifier had the highest Q8 accuracy between the basic ensembles
(template-free and template-based). We believe that this classifier achieved better results
due to the high similarity of the proteins in the test set with the proteins with secondary
structures determined by the laboratory methods of PDB. Future works can investigate the
impact of limited search databases on the prediction of secondary structures.

The results of the ensemble evaluation section demonstrate that our ensemble method
(GA-based) can achieve better results compared to the meta-classifiers. The investigation
of other types of ensemble techniques, using deep features, can be a path for future work.
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4. Materials and Methods

In this section, we describe our template-free and template-based classifiers for pre-
dicting protein secondary structures, as well as the ensemble technique employed. We also
present the evaluation metrics and the datasets employed in our work.

4.1. Template-Free Classifiers

In this subsection, we present our six template-free classifiers—bidirectional recurrent
neural network, random forest, inception-v4 blocks, inception recurrent network, BERT,
and convolutional neural network.

The execution time required to train each classifier to make predictions on the CB6133
and CB513 datasets, as well as to ensemble the template-free classifiers, is shown in
Table 22. In all experiments, we used the Google Colaboratory infrastructure (https://
colab.research.google.com, accessed on 22 October 2021).

Table 22. Execution time (in minutes) required to train each template-free classifier and to ensem-
ble them.

Classifier Execution Time (min)

RNN 494
RF 2370

Iv4B 235
IRN 312

BERT 7204
CNN 5285

Ensemble of template-free classifiers 80

4.1.1. Bidirectional Recurrent Neural Networks

Recurrent neural networks (RNN) are capable of analyzing and classifying sequences
based on past information. However, for the protein secondary structure prediction task,
the “past” (the predecessor amino acids) and the “future” (the successor amino acids)
impact the secondary structure of an amino acid. Therefore, bidirectional recurrent neural
networks are more effective for this task. Even more, this type of classifier can deal with
the whole sequence, belonging to the set of global classifiers.

Based on this, we evaluated the use of bidirectional recurrent networks for this task.
We analyzed different configurations of RNNs, varying the number of bidirectional layers
and the number of neurons per layer. Due to the smaller number of parameters than the
LSTM [29], we performed the experiments using GRU [28] memory modules. The best
configurations were using 600 neurons per layer and {2, 3, 4, 5, 6} layers.

As the amino acid sequences are sparse vectors, this is 20 features equal to 0 and
1 feature equal to 1, such as one-hot encoding, we evaluated the presence of an embedding
layer for this information. The remaining features, the position-specific scoring matrix
(PSSM) information, go directly to the first bidirectional recurrent layer. The results on the
validation set showed that this approach helped improve the results. Figure 4 shows the
general configuration of our RNN classifier.

For each configuration, we analyzed the ensemble of two networks with the same
configuration, with one of them evaluating the sequence in the standard direction, this is in
the form that the sequences are present in the files, and another analyzing the inverted way,
i.e., from the end to the beginning of the sequence. The probabilities of the two networks
are concatenated and normalized, with the sum of all eight classes for each amino acid
equal to 1. The final result of the ensemble of each configuration is considered the final
prediction of that configuration.

We trained all networks with the TensorFlow [56] framework by 50 epochs, with
a learning rate equal to 10−4, categorical cross-entropy loss function, Adam optimizer,
early stopping, and reducing the learning rate on plateau by 10−1. In the end, we made

https://colab.research.google.com
https://colab.research.google.com
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the ensemble between the five configurations and considered this final prediction as the
prediction of the RNN classifier.

Amino Acid
Sequence

PSSM

Embedding Layer

Bidirectional Recurrent Layer

Output Layer

Figure 4. General configuration of each RNN classifier.

4.1.2. Random Forest

The local interaction between close amino acids—different from the global analysis
made by RNN—also has an impact on the prediction of protein secondary structures.
Between the local interaction classifiers, the methods in the literature usually use slid-
ing window-based predictors; however, each one of them employed different sliding
window sizes.

Driven by the local classifiers available in the literature for the protein secondary
structure prediction task, we created our local classifier based on random forest. In this
classifier, we split the sequence into blocks, and the classifier predicted the secondary
structure of the central amino acid. We evaluated different parameters, such as the number
of trees, the maximum depth of the trees, and the window sizes, on the validation sets.
The best parameters that we found were 500 trees per random forest classifier, with the
maximum depth equal to 15, and with 5 different window sizes, from 9, i.e., 4 amino acids
before and 4 after the central amino acid, up to 17 (that is, windows of sizes 9, 11, 13, 15,
and 17). For padding, we used the same idea as used in the databases—values equal to 0 at
the beginning and end of the sequences.

With the five random forest classifiers with different sliding window sizes, we made
the ensemble between them. The final result made by the ensemble is considered the final
prediction of random forest, which we called the RF prediction. Figure 5 illustrates the
ensemble of random forest classifiers.

Prediction

Window 9 Window 11 Window 13 Window 15 Window 17

Figure 5. Ensemble of RF classifiers.

4.1.3. Inception-v4 Blocks

Convolutional neural networks can obtain local information from images from the first
layers of the architecture. When the network becomes deeper, the local information gets
lost, mainly, due to that, deep layers can understand global and general features of images.

The recent results of inception-based [57,58] protein secondary structure prediction
methods [33,49,51] showed that this kind of architecture can aggregate local information,
generated by the first layers, and global information, which is generated by deep layers.
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Driven by this success, we evaluated the newest inception architecture (Inception-v4 [58])
for the protein secondary structure prediction task. As the original inception-v4 was created
to make image classification, using 2D convolutions and 2D poolings, we transformed
the 2D convolutions and 2D poolings into 1D operations, because our task consisted of
analyzing sequences of amino acids, instead of analysis of image parts.

We evaluated the three blocks that composed the inception-v4 architecture, called
“block A”, “block B”, and “block C”, stacking from 1 to 10 blocks of the same type. Moreover,
we analyzed the use of embedding layers for the sparse amino acid sequence, as we did on
the RNN classifier. The best five configurations found on the validation set were using {3,
4, 5, 6, 7} stacked “blocks B”, using the embedding layer for the amino acid sequence.

We trained all networks with TensorFlow [56] framework for 50 epochs, with learning
rate equal to 10−3, categorical cross-entropy loss function, Adam [59] optimizer, early
stopping, and reducing learning rate by 10−1 after five epochs, without better results on
the validation set. Figure 6 illustrates the general architecture of our inception-v4 block
(Iv4B) classifiers.

Amino Acid
Sequence

PSSM

Embedding Layer

Inception-v4 Block B

Output Layer

Figure 6. General configuration of each inception-v4 block classifier.

After the prediction of the five different classifiers (that we called inception-v4 block
(Iv4B), we made the ensemble between them. We considered the final ensemble as the
prediction of the Iv4B classifier.

4.1.4. Inception Recurrent Networks

Driven by the development of our Iv4B classifier, we evaluated the stacking of bidi-
rectional recurrent layers after the stacked inception-v4 blocks. Our main goal with this
method was to use the representations learned by Iv4B classifiers as input to a purely
global classifier, in this case, bidirectional recurrent networks.

We employed the five variations of Iv4B, and we evaluated a different number of
bidirectional recurrent layers (1, 2, 3, 4, 5), and the number of neurons per layers (100, 200,
300, 400, 500). Our best results on the validation set used 3 bidirectional recurrent layers,
with 100 neurons per layer.

We trained all of the networks with TensorFlow [56] framework for 50 epochs, with
learning rate equal to 10−3, categorical cross-entropy loss function, Adam [59] optimizer,
early stopping, and reducing learning rate by 10−1 after five epochs, without better results
on the validation set. Figure 7 illustrates the general architecture of this classifier.

Then, we made the prediction between the five configurations of this classifier (that
we called inception recurrent networks, IRN). The ensemble is considered the prediction of
the IRN classifier.
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Amino Acid
Sequence

PSSM

Embedding Layer

Inception-v4 Block B

Output Layer

Bidirectional Recurrent Layer

Figure 7. General configuration of each IRN classifier.

4.1.5. BERT

Transformer-based [60] architectures achieved good results in many natural language
processing (NLP) tasks. The most famous architecture based on transformers is the Bidirec-
tional Encoder Representations from Transformers (BERT) [61]. This architecture surpassed
the state-of-the-art approaches in many NLP tasks, such as sentiment analysis, named-
entity recognition, sentiment analysis, and text classification. Based on the recent success
of BERT, many methods for biological processes began to use BERT for different applica-
tions [62–64]. Furthermore, as BERT was originally trained on English texts, a new version
of BERT became popular for proteins, which was trained on the BFD [65] dataset. This new
version, called BERT-prot [64], showed good results on different tasks based on protein
classifications.

Driven by this success of BERT-prot on protein classification problems, we evaluated
two different views for the protein secondary structure prediction application. In the
first one, we applied the BERT-prot for the named-entity recognition task. In this type of
classification, each amino acid is classified in one of each entity, or secondary structure.
This first classifier uses all of the sequences as input, so it can analyze the protein as a
global classifier. For the second view, we transformed the protein secondary structure into
local classification, i.e., we broke the sequences into parts and used each part as a text
classification task, classifying the central amino acid. In these two different views, we only
used the letters that represented each amino acid and excluded the PSSM information. For
text classification, we created padding using special characters. Figure 8 shows all six BERT
classifiers.

...N...S...L...V...ALK...L...T...N...H...

Amino Acid Sequence

BERT 21

BERT 41

BERT 61

BERT 81

BERT 101

BERT Named-Entity
Recognition

Figure 8. BERT for protein secondary structure prediction task.

For the text classification task, we analyzed different window sizes, and the best results
on the validation set were obtained by five different configurations (21, 41, 61, 81, 101).
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All classifiers were fine-tuned by five epochs, using the ktrain [66] package, Adam [59]
optimizer, learning rate equal to 10−5, and early stopping.

In the end, we had six classifiers (one using the named-entity recognition task view,
and five using the text classification task view). Then, we made the ensemble between
them. The ensemble of BERT-based classifiers was labeled as ’the BERT classifier’.

4.1.6. Convolutional Neural Networks

As our RNN, RF, Iv4B, and IRN classifiers use all of the features from the datasets, i.e.,
the amino acid sequence and PSSM information, and our BERT classifier only employed
the amino acid sequence, we investigated one different classifier that applied only the
PSSM features. Considering that this information only has values between 0 and 1, and
each amino acid has 21 features for PSSM, the original format available in the datasets is
the matrix of Lx21, where L represents the size of the sequence. With that, we analyzed the
transformation of these characteristics as an image and the usage of convolutional neural
networks (CNNs) for the image classification task.

With the image representation, we investigated the sliding window classification, i.e.,
we broke the sequence into parts and we made the classification of the secondary structure
for the central amino acid. For the beginning and end of the proteins, we padded with
values equal to 0. We evaluated different CNN architectures, such as EfficientNets [67],
ResNets [68], and DenseNets [69], as well as the size of the sliding window. The bests
results achieved on the validation set were using EfficientNetB7 networks, with images
with dimensions equal to 21 × 21, 63 × 63, 105 × 105, and 147 × 147. As the minimum
size of input for the networks is 32 × 32, we resized the 21 × 21 image into 63 × 63. Each
value of PSSM information was transformed to 3 × 3, 1 × 3, 1 × 5, and 1 × 7 pixels for
21 × 21, 63 × 63, 105 × 105, and 147 × 147 images, respectively. Figure 9 illustrates the
general architecture of CNN classifier.

PSSM

EfficientNetB7

Output Layer

Figure 9. General configuration of each CNN classifier.

We trained the EfficientNetB7 with TensorFlow [56] framework for 50 epochs, with
learning rate equal to 10−3, categorical cross-entropy loss function, Adam [59] optimizer,
early stopping, and reducing learning rate by 10−1 after five epochs, without better results
on the validation set.

Afterward, we made the ensemble between the four networks. The final ensemble
between the EfficientNetB7 is considered the CNN classifier.

4.1.7. Ensemble of Template-Free Classifiers

After the predictions of RNN, RF, Iv4B, IRN, BERT, and CNN, we constructed the
ensemble between them. We called this ensemble the template-free ensemble.

4.2. Template-Based Classifiers

Our template-based classifiers use BLAST to search for homologous proteins. We
employed, as a searching database, all proteins with secondary structures determined by
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laboratory methods from PDB until 2018, and we used the retrieved proteins to make the
predictions of the query’s secondary structures. As the protein query could be on the PDB
database, we removed it from the retrieved results.

We created two different template-based classifiers. The first method, which we called
specific alignments, considers only good alignments between the protein query and the
homologies from PDB, while the second method, which we called general alignments,
could retrieve general alignments, with fewer restrictions.

The execution required to search for homologous proteins (using BLAST) for specific
alignments and general alignments classifiers, as well as for the ensemble of the template-
based classifiers, is shown in Table 23. For template-based classifiers, no training step is
required, differently from template-free classifiers.

Table 23. The execution time (in minutes) required to search for homologous proteins for each
template-based classifier, and to ensemble them.

Classifier Execution Time (min)

Specific alignments 58
General alignments 65

Ensemble of template-based classifiers 52

4.2.1. Specific Alignments

For the specific alignments classifier, we evaluated different restriction configurations
of the retrieved homologies. We analyzed the number of alignments retrieved, the E-
value configuration, and the use of weights to weight the retrieved proteins. We made
a grid search with different parameters; the best results achieved on the validation set
involved using the first 10 retrieved sequences, with decreasing weights, i.e., the first one
received weights equal to 10, the second one received weights equal to 9, and so on, and
the restriction of the E-value less than or equal to 10−5 for the alignments. In the end, the
probability of each structure was equal to the alignment voting.

As this classifier only considers good alignments, some amino acids can have no
secondary structure predictions. In these cases, we consider that the probabilities of each
class are equal to 0.

4.2.2. General Alignments

Our second template-based classifier, general alignments, is more general than the
specific alignments classifiers. The general alignments classifier can predict all amino acid
secondary structures.

We evaluated different parameters of this classifier, which included E-value configura-
tion, the number of alignments retrieved, the use of local search, i.e., if the amino acid did
not receive a prediction, we searched for neighbor amino acids that received a prediction.
After the grid search, the best parameters found on the validation set was the E-value less
than or equal to 10, using the top 100 retrieval sequences, with decreasing weights, i.e., the
first one received weights equal to 100, the second one received weights equal to 99, and so
on, and a local search of a size equal to 201, and if the window did not find a prediction, it
could increase.

4.2.3. Ensemble of Template-Based Classifiers

After the prediction of the specific alignment and general alignment classifiers, we
made the ensemble between them. We called this ensemble the template-based ensemble.

4.3. Ensemble of Template-Free and Template-Based Classifiers

After the ensemble of template-free methods and the ensemble of template-based
classifiers, we made the ensemble between them, called the final ensemble. This process re-
quired 52 min for execution, considering the predictions on the CB6133 and CB513 datasets.
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4.4. Ensemble Method

We used the method presented in this section to make the ensemble between each
classifier, for instance, the ensemble of random forests, between classifiers of the same
group, such as template-free classifiers, and the final ensemble between the template-free
and template-based classifiers.

Our ensemble method uses the prediction of each classifier that will be fused, and
it finds weights for each class of each classifier. For example, if we make the ensemble
between five classifiers, the algorithm finds eight weights for each classifier, considering
that there are eight possible classes, totaling forty weights. All of the weights were found
using the predictions made on the validation set.

The core of our method is the genetic algorithm [70]. The algorithm starts with 2000 in-
dividuals (representing the weights that will be associated with each class, for each classi-
fier), with weights generated by uniform distribution, between 0 and 1. In each generation,
we select the 100 best individuals by the highest Q8 accuracy to generate 900 new indi-
vidual throw crossovers. These 1000 individuals (parents and new individuals) generate
more 1000 individual throw mutations. At the end of each step, i.e., after crossovers and
mutations, we normalize the individual dividing each weight by the maximum weight of
this individual. We used 1000 generations and the early stopping technique, which stops
the algorithm after 50 generations without better results.

Afterward, the algorithms select the top 100 individuals ordered by Q8 accuracy to
make a local search. The top 100 individual generate 100 individual throw mutations.
Again, we normalized each individual by dividing each weight by the maximum weight of
this individual. We carry out this process by 1000 generations or if the early stopping stops
the algorithm. In the end, the best individual, i.e., the best weights, based on Q8 accuracy,
are used to make the ensemble between the classifiers.

4.5. Evaluation Metrics

We applied the Q8 accuracy, precision, and recall metrics to evaluate our method.
Equation (1) shows the Q8 accuracy, which is the most important metric used in the
literature to compare different classifiers for the protein secondary structure prediction task.

Q8 Accuracy =

∑
i∈{B, E, G, H, I, L, S, T}

correct predictions in i

∑
i∈{B, E, G, H, I, L, S, T}

number of amino acids in i
(1)

Precision metric is presented in Equation (2), where TP indicates the number of true
positive and FP specifies the number of false positives. This metric evaluates the proportion
of positive classifications of positive samples.

Precision =
TP

TP + FP
(2)

Equation (3) shows the recall metric. In the equation, FN indicates the number of
false negative samples. This metric evaluates the proportion of correctly classified positive
data samples.

Recall =
TP

TP + FN
(3)

4.6. Datasets

In our study, we used two datasets, CB6133 and CB513. In this section, we present
some relevant characteristics of these two datasets.

4.6.1. CB6133 Dataset

The CB6133 dataset is a set of 6133 proteins with sequences up to 700 amino acids,
and each protein of this database has a maximum of 30% similarity between them [7].
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Each protein of the dataset has a matrix of 700 × 50 features, i.e., the first dimension
of the matrix indicates the amino acids (proteins with less than 700 amino acids received
padding). For each amino acid that forms the protein, there exist 50 features. The 21 first
features indicate the letter that represents the amino acid in the one-hot encoding format
(all 20 amino acids, for instance “A” for alanine, plus the special amino acid “X”), i.e.,
each amino acid only has one value equal to 1 and the remaining are equal to 0. The next
21 features were generated by the position-specific score matrix (PSSM) [16]. The last
8 features are the 8 possible secondary structures in the one-hot encoding format. The
padding amino acids have all the features equal to 0.

We used the same split of the dataset as applied in the literature; that is, 5600 proteins
for training, 256 proteins for validation, and 272 proteins for testing. Thus, we are able
to compare our results directly and fairly with the results in the literature. Figure 10
presents the distribution of the secondary structures on the training, validation, and test
sets, showing that the distributions on these three groups are similar. On the training and
validation sets, there are structures of class “I”, while in the test set, there is no data of
this class.
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Figure 10. Class distribution on train, validation, and test set on the CB6133 dataset.

For the experiments involving the CB513 dataset, we employed a filtered version
of the CB6133 for training and validation. This filtered version of the CB6133 only has
proteins with less than 25% of similarity with the proteins of the CB513 dataset. We used
the same split of this dataset as applied in the literature, i.e., 5278 proteins for training and
256 proteins for validation.

4.6.2. CB513 Dataset

The CB513 dataset is a set of 513 proteins that were used only in the test [20]. Only
one of the 513 proteins has more than 700 amino acids, so we decided to split this unique
protein into two proteins, with the first one with 700 amino acids and the second one with
the remaining amino acids.

As with the CB6133, all proteins of the CB513 dataset have 50 features, with the first
21 features related to the letter that represents the amino acid in the one-hot encoding
format, the next 21 features indicate the PSSM information, and the remaining is related
to the secondary structure in the one-hot encoding format. Again, proteins with less than
700 amino acids received padding with all values equal to 0.

Figure 11 illustrates the training, validation, and test set distributions of the secondary
structures. The training and validation sets employed are from the filtered version of the
CB6133 dataset, which has less than 25% of similarity to the proteins on the CB513 dataset.
It shows a similar split to the CB6133 dataset. In the CB513 experiments, there exist data of
class “I” in the training, validation, and test sets.
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Figure 11. Class distribution on train, validation, and test set on the CB513 dataset.

5. Conclusions

The correct predictions of protein secondary structures significantly impact the de-
termination of protein functions and folding. With advances in sequencing methods and
the cost of determining protein secondary structures, the gap between the number of
sequenced proteins and proteins with verified secondary structures grows every year.
Because of this, several computational methods have been presented in the literature to
predict secondary structures, helping to fill this gap.

In this study, we evaluated two different types of classifiers for this task—template-
free and template-based. Both classifiers were formed by other classifiers, with a single
view of the problem. Moreover, the ensemble of template-free and template-based classi-
fiers demonstrated that they could achieve robust results, outperforming state-of-the-art
methods.
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