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Abstract: Numerous studies have addressed the use of perovskite materials for fabricating a wide
range of optoelectronic devices. This study employs the deposition of an electron transport layer of
C60 and an Ag electrode on CH3NH3PbBr3 perovskite crystals to complete a photodetector structure,
which exhibits a metal–semiconductor–metal (MSM) type structure. First, CH3NH3PbBr3 perovskite
crystals were grown by inverse temperature crystallization (ITC) in a pre-heated circulator oven.
This oven was able to supply uniform heat for facilitating the growth of high-quality and large-area
crystals. Second, the different growth temperatures for CH3NH3PbBr3 perovskite crystals were
investigated. The electrical, optical, and morphological characteristics of the perovskite crystals
were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible
spectroscopy, and photoluminescence (PL). Finally, the CH3NH3PbBr3 perovskite crystals were
observed to form a contact with the Ag/C60 as the photodetector, which revealed a responsivity of
24.5 A/W.

Keywords: CH3NH3PbBr3 perovskite crystals; inverse temperature crystallization; large-area crystals;
MSM photodetectors

1. Introduction

Perovskite is a material that comprises an ABX3 structure. In this molecular formula, A, B,
and X represent an alkali metal ion or a methylamine radical (CH3NH3), a metal cation (Pb2, Sn2),
and a halogen cation (Cl-, Br-, I-), respectively. Compared with organic semiconductor materials,
perovskite materials based on organic metal halides exhibit unique optical and electrical properties. It is
well-established that the exciton binding energy of perovskite materials is extremely small; therefore,
the majority of the excitons, which are generated after being excited by light, can be separated to form
free electrons and holes at room temperature. Further, the carrier current possesses a fast diffusion
speed and a long diffusion distance. The diffusion lengths of electrons and holes vary with the crystal
structure. Compared with MAPbI3, MAPbBr3 has a shorter lattice constant, higher cohesion energy,
lower phase transition temperature, and superior anisotropy [1]. The energy gap is approximately
2.2 eV, and the emission wavelength is green [2]. It has a significantly high optical gain and can be
used as a gain dielectric layer in laser [3]. Perovskite materials have been successfully developed in
light-emitting diodes [4–7] and solar cells [8–12]. Perovskite materials can be utilized for a wide range
of applications in the field of optoelectronics. Thus far, various types of light sensors have been studied
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and consequently applied; these include various photodetectors and Schottky barrier diodes [13–25].
Metal–semiconductor–metal (MSM) structured light sensors or photodetectors have the advantages of
a straightforward manufacturing process, high sensitivity, and high response speed as compared with
sensors possessing other structures.

Therefore, this study employs CH3NH3PbBr3 perovskite crystals prepared by inverse temperature
crystallization method. Conventional crystallization methods, such as the typical cooling or antisolvent
vapor-assisted crystallization techniques, are time-consuming and have a long process period.
In contrast, the inverse temperature crystallization (ITC) is a fast solution-based crystal growth method,
and the optical, electrical, and crystal properties were comparable to the results of them [26–28]. C60/Ag
electrodes were formed to produce a MSM structure for its required research path. The optoelectronic
properties of the MSM-type CH3NH3PbBr3 perovskite photodetectors were then examined.

2. Materials and Methods

First of all, the CH3NH3PbBr3 perovskite precursor solution was prepared with the incorporation
of 0.0367 g PbBr2 (99.998%), 0.0112 g CH3NH3Br2 (MAB, 99.9%), and 1 mL of dimethylformamide
(DMF, 98%) solvent. Subsequently, the precursor solution was stirred until it turned clear. The Petri
dishes were sonicated with acetone, alcohol, and isopropyl alcohol for 10 min. The precursor solution
was then poured into the Petri dish and placed in the hot circulator oven at different temperatures,
namely: 40 ◦C, 50 ◦C, 60 ◦C, 70 ◦C, and 80 ◦C. CH3NH3PbBr3 crystals were found to grow at a slow
rate and gradually became larger during the crystal growth. Finally, the electron transport layer
of 20 nm-thick C60 and the 100 nm-thick Ag electrodes were deposited on CH3NH3PbBr3 crystals
via thermal evaporation and metal mask to complete the MSM structures with an interdigital finger
electrode. Figure 1 presents the schematic diagram of the MSM photodetector process procedure.
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Figure 1. Schematic diagram of experimental procedure in this research.

3. Results and Discussion

In this study, the CH3NH3PbBr3 precursor solution was grown in an oven until the solution
completely evaporated. As shown in Figure 2, the CH3NH3PbBr3 crystal size was the largest under
the growth temperature at 40 ◦C (45.5 mm2). However, the MAPbBr3 crystal area gradually decreased
with an increase in the growth temperature. The CH3NH3PbBr3 crystal area was the smallest under
the growth temperature at 80 ◦C (9 mm2). Therefore, it can be observed that the growth temperature
is inversely proportional to the crystal size. A high temperature makes the solution evaporate and
decrease, such that it is difficult to grow a large-sized crystal.
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Figure 2. Pictures of MAPbBr3 crystals prepared at various temperature. The unit of scale is 1 mm.

Figure 3 shows the scanning electron microscopy (SEM) images of the MAPbBr3 crystals at 40 ◦C,
50 ◦C, 60 ◦C, 70 ◦C, and 80 ◦C, respectively.
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Figure 3. Scanning electron microscopy (SEM) images of the MAPbBr3 crystals growth temperature at
(a) 40 ◦C, (b) 50 ◦C, (c) 60 ◦C, (d) 70 ◦C, and (e) 80 ◦C.

The MAPbBr3 crystal was composed of several crystal grains. The crystal obtained at 40 and
80 ◦C comprised many smaller and larger grains, respectively. Further, it was found that the crystal
grains constituting the MAPbBr3 crystals became larger with an increase in the growth temperature.

As shown in Figure 4, the photoluminescence (PL) emission peaks of MAPbBr3 crystals were
located at 545.6 nm, 543 nm, 543.6 nm, 540.6 nm, and 542.4 nm at temperatures of 40 ◦C, 50 ◦C, 60 ◦C,
70 ◦C, and 80 ◦C, respectively. It was observed that the peaks were in close proximity between 540 nm
and 546 nm. The PL emission peak exhibited a blue shift with an increase in the growth temperature.
The blue shift may be attributed to the difference in laser fluence and measurement system, as well as
the atmosphere environment for characterization. [29–31]. The dominant PL peak (peak A) with the
highest energy is located at ~545 nm (2.275 eV, close to band gap) with a full width at half maximum
(FWHM) of ~30 nm. It is corresponding to the band-to-band transition. The lower energy peak (peak
B) at ~560 nm, which had a broad bandwidth of 30 nm, was attributed to the emission of band-to-trap
state (Br vacancies on the crystal surface) [32–34].
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Figure 4. Photoluminescence (PL) spectra of the MAPbBr3 crystals prepared at various temperatures.

As shown in Figure 5, the edges of absorption spectra of the MAPbBr3 crystals were located at
537.58 nm, 536.83 nm, 537.58 nm, 539.85 nm, and 536.03 nm at temperatures of 40 ◦C, 50 ◦C, 60 ◦C,
70 ◦C, and 80 ◦C, respectively. It can be observed that the edges of absorption spectra are extremely
close to one another, and that the peaks are located between 530 nm and 540 nm, corresponding to the
band gap of 2.275 eV of MAPbBr3 single crystals [35].
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Figure 5. Absorption spectra of the MAPbBr3 crystals prepared at various temperatures.

Figure 6 shows the X-ray diffraction (XRD) patterns of the MAPbBr3 crystal at 40 ◦C, 50 ◦C, 60 ◦C,
70 ◦C, and 80 ◦C. All growth temperatures displayed significant peaks at 14.95◦, 30.15◦, 46.0◦, and
62.75◦. The crystal plane directions corresponding to the cubic crystal structure were (001), (002), (003),
and (004), which, in turn, correspond to high-quality MAPbBr3 crystals. When the temperature was
40 ◦C, the peak intensity was observed to be higher. Conversely, at 80 ◦C, the peak intensities were
significantly lower. It can be seen from the SEM images in Figure 2 that the crystallinity and density
of the sample prepared at 40 ◦C is the best. The peak intensity is greater than that of the samples
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prepared at the temperatures of 50 to 80 ◦C, which is due to the lower density even though the particles
are larger.
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Figure 6. X-ray diffraction (XRD) patterns of the MAPbBr3 crystals prepared at various temperatures.

Figure 7 shows the current–voltage curve of the MAPbBr3 crystal; the red, blue, and green lines
depict the Ohmic region (n = 1), trap-filled region (n > 3), and Child’s region (n = 2), respectively.
According to Mott-Gurney’s law: µ = 8JDL3/9εεoV2 [26,36]. Consequently, the carrier mobility of
the MAPbBr3 crystal was calculated to be 14.4 cm2V−1s−1. The trap density is calculated using the
following equation: nt = 2VTFLεεo/eL2; the trap density of MAPbBr3 crystals was 4.7 × 1010 cm−3.
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Figure 7. Current–voltage curve of the MAPbBr3 crystal.

The MSM structure of the MAPbBr3 crystal photodetector is shown in Figure 8a. A medium layer
C60 was inserted between the silver (Ag) electrodes and the MAPbBr3 crystal in order to prevent from
a compound of both. Figure 8b shows a photograph of the MAPbBr3 crystal with the MSM structure.
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Figure 8. (a) Metal–semiconductor–metal (MSM) structure of the MAPbBr3 crystal photodetector.
(b) Photograph of a MAPbBr3 crystal photodetector.

Figure 9 shows the current vs. wavelength graph of the photodetector under each bias. The devices
exhibit high current values in the wavelength range of 400 nm to 560 nm for each bias. However,
the current decreased significantly in the range of 570 nm to 580 nm. The absorption edge located at
around 580 nm is corresponding to the trap level transition. The current was observed to rise slightly
between 600 nm and 640 nm owing to the carrier relations from the trap in the band structure.
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Figure 9. Current and wavelength curve MSM-MAPbBr3 crystal photodetectors.

Figure 10 shows the wavelength and responsivity at different bias voltages. At a wavelength of
400 nm, the responsivity of the component is 13.13 A/W, 14.97 A/W, 17.13 A/W, 19.98 A/W, 22.48 A/W,
and 24.50 A/W at different bias voltages of 15 V, 16 V, 17 V, 18 V, 19 V, and 20 V, respectively. From 400
nm to 460 nm, the responsivity gradually decreases and becomes stable in the range of 460 nm to 560
nm. The responsivity attained its lowest value at 580 nm, and increases slightly in the range of 600 nm
to 640 nm.
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In this study, MAPbBr3 crystals were grown at low temperatures using an improved inverse 
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different growth temperatures became larger as the temperature increased; however, the crystal size 
was found to decrease as the temperature increased. In all single crystals, the sample prepared at 
temperature 80 °C showed the smallest size; the single crystal prepared at 40 °C was observed to have 
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Figure 10. Responsivity and wavelength curve of MSM-MAPbBr3 crystal photodetectors.

Figure 11a plots typical dark and illuminated (under 0.8 mW/cm2) I–V characteristics of
MSM-MAPbBr3 crystal photodetectors at a bias ranging from 0 to 20 V. The photocurrent was
approximately 7.04 × 10−6 A, and the dark current was approximately 1.04 × 10−7 A at a bias of 5 V.
In this research, a relatively high dark current is a result of leakage current from the boundary in
the crystal. However, a large photocurrent-to-dark-current contrast ratio is observed—at almost two
orders of magnitude. The orders of magnitude of the photocurrent-to-dark-current contrast ratio were
similar to other structures in other studies [37–39]. As shown in Figure 11b, the photocurrent density
at −5 V was measured under different illumination intensities of a 200 W Xe lamp as the light source in
order to study the dependence of the photocurrent on the incident light intensity. A linear relationship
was observed when the intensity of incident light power was lower than 0.8 mW/cm2. However, when
the light intensity was higher than 0.8 mW/cm2, the photocurrent was saturated owing to the balance
between generation and recombination of electron–hole pairs.
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4. Conclusions

In this study, MAPbBr3 crystals were grown at low temperatures using an improved inverse
temperature crystallization method. It was observed that the small single crystals obtained at different
growth temperatures became larger as the temperature increased; however, the crystal size was found
to decrease as the temperature increased. In all single crystals, the sample prepared at temperature
80 ◦C showed the smallest size; the single crystal prepared at 40 ◦C was observed to have the largest
size. The XRD pattern revealed four significantly high peaks, which were associated with high-quality
MAPbBr3 crystals. The PL emission peak was obtained between 536 nm to 538 nm. The absorption
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edge was located at 580 nm and corresponded to the trap-level transition. The photocurrent increased
slightly from 600 to 640 nm, which had been caused by the carrier relations from the trap level.
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